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Linking Syntax to Semantics

• How is the surface structure (syntax) linked to the 
underlying meaning (semantics)?

• Alternative 1: syntax is learned independently of semantics; later 
the two are linked together

• Alternative 2: syntax and semantics are learned simultaneously

•  Central unit: verb argument structure

• Relationship btw the semantics of a verb and its syntactic form

• Number and type of the arguments that the verb takes

• Semantic roles that the arguments receive in an event

• Syntactic realization of the verb and its arguments
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How to Convey a Relational Meaning?
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The chimp is eating an apple

chimp

apple

eat



How to Convey a Relational Meaning?
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The rabbit is blicking the duck

This is blicking!

[Fisher’94]



How to Convey a Relational Meaning?
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She is dropping the vase.
The vase is falling.

*She is falling the vase.
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AGENT is VERBing
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AGENT is VERBing THEME
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THEME is VERBing
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Acquisition of Verb Argument Structure

• General patterns 

• Young children are sensitive to argument structure regularities 

• Idiosyncrasies 

• Semantically similar verbs can have different syntactic behaviour

• A U-shaped behavioural pattern is observed for children’s 
argument structure acquisition
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bunny gorped duck  ⇒ causal action?

kitty blicked down the street  ⇒ manner of motion?

I filled the glass with water, *I filled water into the glass
*They loaded the truck with hay, They loaded hay into the truck



Semantic Bootstrapping

• Semantic Bootstrapping (Pinker, 1984)

• Syntactic behaviour of a verb is innately determined by the 
decompositional representation of its meaning

• With the innate knowledge of mapping between semantics and 
syntax, a child can predict the correct mapping once she knows 
what a verb means
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Agent is 1st argument of CAUSE

Patient is 2nd argument of CAUSE

Theme is 1st argument of GO and BE



Argument Structure Constructions

• Construction Grammar 

• Meaning may be directly associated with syntactic forms

• Lakoff 1987, Fillmore et al. 1988, Langacker 1999

• Argument structure construction (Goldberg, 1995)

• A mapping between underlying verb-argument relations and the 
syntactic form that is used to express them
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Subj V Obj Obj2 ⇔ X cause Y receive Z 

Example: Pat faxed Bill the letter. 

Subj V Oblique ⇔ X move Y 

Example: The fly buzzed into the room. 



How are Constructions Learned?

• Tomasello (1991): 

• Argument structure patterns are acquired on a verb-by-verb basis

• Abstract constructions learned through categorization and 
generalization of common patterns

• Goldberg (1995): 

• Constructional meaning is formed around the meanings of highly 
frequent light verbs 

• E.g., the construction “Subj V Oblique” paired with the meaning 
“X moves Y” corresponds to the light verb go
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Computational Modeling of Constructions

• FrameNet (Baker, Fillmore, Low, 1998)

• A database of lexical constructions (or frames)

• The acquisition of constructions

• Learning lexical constructions via structure mapping (Chang, 
2004)

• Learning verb meaning from image data (Dominey, 2003; 
Dominey & Inui, 2004)

• Learning abstract constructions from verb usage data (Alishahi & 
Stevenson, 2008)
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Case Study: Chang (2004)

• Learning lexical-based constructions from child-directed data

• Goal: learning associations between form relations (word order) 
and meaning relations (role-filler bindings)

• Search space: grammars defined by a unification-based formalism 
(Embodied Construction Grammar, ECG)

• Form and meaning representations: subgraphs of elements and 
relations among them

• Construction representation: a mapping between two subgraphs

• Learning task: finding the best grammar to fit the observed data
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Case Study: Chang (2004)

• Learning lexical-based constructions from child-directed data
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construction THROW-BALL
constituents

t1: THROW
t2: BALL

form
t1f before t2f

meaning
t1m.throwee  t2m



Case Study: Chang (2004)

• The model makes generalizations at the lexical level:
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construction THROW-BLOCK
constituents

t1: THROW
t2: BLOCK

form
t1f before t2f

meaning
t1m.throwee  t2m

construction THROW-BALL
constituents

t1: THROW
t2: BALL

form
t1f before t2f

meaning
t1m.throwee  t2m

construction THROW-OBJECT
constituents

t1: THROW
t2: OBJECT

form
t1f before t2f

meaning
t1m.throwee  t2m



Case Study: Chang (2004)

• The model makes generalizations at the lexical level:
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in the analysis of , where weight reflects rel-
ative (in)frequency, type denotes the number of
ontology items of type , summed over all the con-
stituents in the analysis and discounted by parame-
ter . The score also includes terms for the height
of the derivation graph and the semantic fit provided
by the analyzer as a measure of semantic coherence.
In sum, these criteria favor constructions that are

simply described (relative to the available meaning
representations and the current set of constructions),
frequently useful in analysis, and specific to the data
encountered. The MDL criteria thus approximate
Bayesian learning, where the minimizing of cost
corresponds to maximizing the posterior probabil-
ity, the structural prior corresponds to the grammar
size, and likelihood corresponds to the complexity
of the data relative to the grammar.

4 Learning verb islands
The model was applied to the data set described in
Section 2.3 to determine whether lexically specific
multi-word constructions could be learned using the
MDL learning framework described. This task rep-
resents an important first step toward general gram-
matical constructions, and is of cognitive interest,
since item-based patterns appear to be learned on
independent trajectories (i.e., each verb forms its
own “island” of organization (Tomasello, 2003)).
We give results for drop ( =10 examples), throw
( =25), and fall ( =50).
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Figure 8: Incrementally improving comprehension
for three verb islands.
Given the small corpus sizes, the focus for this

experiment is not on the details of the statisti-
cal learning framework but instead on a qualita-
tive evaluation of whether learned constructions im-
prove the model’s comprehension over time, and
how verbs may differ in their learning trajectories.
Qualitatively, the model first learned item-specific

constructions as expected (e.g. throw bear, throw
books, you throw), later in learning generalizing
over different event participants (throw OBJECT,
PERSON throw, etc.).
A quantitative measure of comprehension over

time, coverage, was defined as the percentage of to-
tal bindings in the data accounted for at each learn-
ing step. This metric indicates how new construc-
tions incrementally improve the model’s compre-
hensive capacity, shown in Figure 8. The throw sub-
set, for example, contains 45 bindings to the roles of
the Throw schema (thrower, throwee, and goal loca-
tion). At the start of learning, the model has no com-
binatorial constructions and can account for none of
these. But the model gradually amasses construc-
tions with greater coverage, and by the tenth input
token, the model learns new constructions that ac-
count for the majority of the bindings in the data.
The learning trajectories do appear distinct:

throw constructions show a gradual build-up before
plateauing, while fall has a more fitful climb con-
verging at a higher coverage rate than throw. It is
interesting to note that the throw subset has a much
higher percentage of imperative utterances than fall
(since throwing is pragmatically more likely to be
done on command); the learning strategy used in
the current model focuses on relational mappings
and misses the association of an imperative speech-
act with the lack of an expressed agent, providing a
possible explanation for the different trajectories.
While further experimentation with larger train-

ing sets is needed, the results indicate that the model
is able to acquire useful item-based constructions
like those learned by children from a small number
examples. More importantly, the learned construc-
tions permit a limited degree of generalization that
allows for increasingly complete coverage (or com-
prehension) of new utterances, fulfilling the goal of
the learning model. Differences in verb learning
lend support to the verb island hypothesis and illus-
trate how the particular semantic, pragmatic and sta-
tistical properties of different verbs can affect their
learning course.

5 Discussion and future directions
The work presented here is intended to offer an al-
ternative formulation of the grammar learning prob-
lem in which meaning in context plays a pivotal role
in the acquisition of grammar. Specifically, mean-
ing is incorporated directly into the target grammar
(via the construction representation), the input data
(via the context representation) and the evaluation
criteria (which is usage-based, i.e. to improve com-
prehension). To the extent possible, the assump-



• A Bayesian model of early argument structure acquisition

• Each verb usage is represented as a set of features

Case Study: Alishahi & Stevenson (2008)
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Sara is eating an apple

<Agent, Theme>argument roles

arg1 verb arg2syntactic pattern
<human, food>argument categories

[act,consume]verb semantic primitives
eathead verb



• A Bayesian model of early argument structure acquisition

• Each verb usage is represented as a set of features

• Each construction is a cluster of verb usages

• A probability distribution                                                  
over feature values

• The best construction is                                                         
found for each new usage                                                      
through a Bayesian approach

Case Study: Alishahi & Stevenson (2008)
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<Agent, Theme>argument roles

arg1 verb arg2syntactic pattern

<human, food>argument categories

[act,consume]verb semantic
primitives

eathead verb

<Agent,>argument roles

arg1 verbsyntactic pattern

<human>argument categories

[act,movee]verb semantic
primitives

runhead verb

<Agent, Theme>argument roles

arg1 verb arg2syntactic pattern

<human, food>argument categories

[act,createe]verb semantic
primitives

makehead verb

<Agent, Theme>argument roles

arg1 verb arg2syntactic pattern

<animal, food>argument categories

[act,consume]verb semantic
primitives

eathead verb

<Agent, Theme>argument roles

arg1 verb arg2syntactic pattern

<human, liquid>argument categories

[act,consume]verb semantic
primitives

drinkhead verb

Syntactic pattern:

Argument categories:

Verb semantic primitives:



Sample Constructions

• Verb semantic primitives for Transitive Construction:
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A. Alishahi, S. Stevenson/Cognitive Science 32 (2008) 809

Fig. 8. The probability distribution of semantic primitives in the transitive construction at two different points in
learning. Note: Darker squares correspond to higher probabilities.

rest, cause, and become due to receiving more intransitive usages than other simulations in
the first 50 input pairs. However, after 500 input pairs, all the simulations display a similar
distribution across the primitives act, move, playfully, manner, consume, and rest, with a higher
probability for act (because it occurs with all intransitive verb usages in our lexicon). Most
other primitives have a probability near zero.

An interesting trend can be observed for the ditransitive construction (as in John gave
Mary the book). In our lexicon, the only verb that appears in this construction is give. An

Fig. 9. The probability distribution of semantic primitives in the intransitive construction at two different points
in learning. Note: Darker squares correspond to higher probabilities.
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Sample Constructions

• Verb semantic primitives for Intransitive Construction:
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A. Alishahi, S. Stevenson/Cognitive Science 32 (2008) 809

Fig. 8. The probability distribution of semantic primitives in the transitive construction at two different points in
learning. Note: Darker squares correspond to higher probabilities.

rest, cause, and become due to receiving more intransitive usages than other simulations in
the first 50 input pairs. However, after 500 input pairs, all the simulations display a similar
distribution across the primitives act, move, playfully, manner, consume, and rest, with a higher
probability for act (because it occurs with all intransitive verb usages in our lexicon). Most
other primitives have a probability near zero.

An interesting trend can be observed for the ditransitive construction (as in John gave
Mary the book). In our lexicon, the only verb that appears in this construction is give. An

Fig. 9. The probability distribution of semantic primitives in the intransitive construction at two different points
in learning. Note: Darker squares correspond to higher probabilities.
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Sample Sentence Production
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820 A. Alishahi, S. Stevenson/Cognitive Science 32 (2008)

Fig. 15. Comparing the first eight uses of fall for Adam with the first eight sentences generated by our model.

(Note that a number of the patterns shown in Adam’s speech are unknown to our model, such
as negatives and imperatives.)

6.5. Productive generalization

We noted that children sometimes mistakenly over-generalize, but eventually recover from
these errors only by receiving additional positive evidence. However, this ability to converge
on appropriate argument structures for each verb does not prevent a speaker from making
productive generalizations in which a verb may be used in a construction that is “unusual” for
it to convey particular semantic properties (Goldberg, 1995). For instance, in The fly buzzed
into the room, the sound emission verb buzz adopts a manner of motion interpretation due
to the directional movement construction it occurs in. We showed above that phases of over-
generalization and recovery, similar to those of children, can be observed in the output of
our model. In this section, we demonstrate that the model can handle instances of productive
generalization as well. We test our model with a verb appearing in an unusual (for that verb)
construction, and show that the model can determine appropriate semantic properties of the
usage based on what it has learned for that construction when used with other verbs. We
also show that the model can produce an appropriate syntactic form for a predicate used with
semantic properties that are unusual for it.

We add a new verb dance to the input generation lexicon, with a single intransitive frame,
as shown in Fig. 16. We train the model on 500 training input pairs, an amount corresponding
to an advanced stage of learning. In all training pairs in which dance appears, it is used

Fig. 16. The lexical entry for dance in the input-generation lexicon.
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• First eight usages of fall by Adam (CHILDES) and by one of 
the simulations of our model



Learning Curves

• Learning phases are successfully simulated:

• Imitation

• Overgeneralization and recovery

• Productive generalization
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A. Alishahi, S. Stevenson/Cognitive Science 32 (2008) 813
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Fig. 13. Cumulative accuracy of the model for predicting syntactic pattern. Note: Solid lines show performance
with noiseless input data, and dashed lines show performance with noisy input data.

a clear U-shaped pattern. For each verb, we ran eight separate simulations using the same
methodology as above, but in this case, we used only “noisified” corpora and the test input
always contained the same target verb. Figure 14 shows four sample learning curves for each
of the verbs go and fall. With testing of individual verbs, the variability in the performance
of the model early on is more pronounced, due to variations in exposure to that verb in the
random corpora. For frequent verbs with various argument structures, such as go, a U-shaped
curve is often observed. The learning curve for fall, which is less frequent, shows a delay
compared to more frequent verbs such as go, but the U-shaped curve can still be observed in
most simulations.

Figures 13 and 14 show that model generally exhibits the characteristics of a U-shaped
learning curve observed for children. In the following subsections, we turn to a more detailed
description of the behavior of the model as it uses the knowledge it has acquired at various
stages of learning along the “U”: specifically, during generalization (including an initial stage
of imitation), possible over-generalization and recovery, and productive generalization.
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Verb Semantic Roles

• Semantic (thematic) roles indicate the relations of the 
participants in an event to the main predicate

Subject

Pat gave the hammer to Matt.
Direct Object PP Phrase

Give[cause,possess](Pat,Hammer,To(Matt))

Agent Theme Recipient
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Theoretical Questions

• What is the nature of semantic roles? 

• Traditional view: roles are atomic and universal, such as Agent, 
Theme, Goal, … (e.g., Jackendoff 1990)

• Proto-role Hypothesis (Dowty, 1991): roles are a set of 
properties, such as volitional, affecting, animate

• Where do they come from?

• Traditional view: roles and their link to syntactic positions are 
innate (e.g., Pinker 1989)

• Alternative view: they are gradually learned from verb usages 
(e.g., Tomasello 2000)
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AGENT is VERBing THEME
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AGENT is VERBing THEME

reader is reading text



30

AGENT is VERBing THEME

eater is eating food
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AGENT is VERBing THEME

drinker is drinking liquid



Learnability of Semantic Roles

• Usage-based account: verb-specific roles change to general 
roles over time 

• Experimental evidence confirms that access to general roles 
such as Agent and Theme is age-dependent (Shayan & 
Gershkoff-Stow, 2007)

hit

{hitter}, {hittee}

eat

{eater}, {food}

write

{writer}, {text}

trns. verb

{agent}, {theme} 
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Linking Semantic Roles to Grammatical 
Functions

• Semantic roles are linked to syntactic positions early on

• Children are sensitive to the association between semantic roles 
(e.g. Agent) and grammatical functions (e.g. Subject) from an 
early age (Fisher 1994, 1996; Nation et al., 2003)

• Nativist account

• Innate linking rules that map roles to sentence structure enable 
children to infer associations between role properties and 
syntactic positions (e.g., Pinker, 1989)
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Computational Studies of Roles

• Assignment of general pre-defined roles to sentence 
constituents 

• E.g., McClelland and Kawamoto (1986), Allen (1997)

• Role learning

• Learning verb-specific roles from annotated data (Chang 2004)

• Discovering relational concepts from unstructured examples 
(Kemp et al., 2006; Doumas et al., 2008) 

• Acquiring semantic profiles for general roles from verb usages 
(Alishahi & Stevenson, 2008)
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Case Study: Allen (1997)

• A connectionist model of thematic role assignment

• Integrates syntax, semantics and lexical information

• Is trained on usages of most frequent verbs in CHILDES

• Predicts semantic properties of verbs and nouns 

• Simulates grammaticality judgment
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Clean up (50)

Semantics/Roles 
(360 Distributed)

Hidden (100)

Argument Semantics 
(390 Distributed)

Verb 
(110 Local)

Preposition 
(21 Local)

Figure 1: Architecture of the verb model

a dog and John walks a mile). The position of argu-
ments in the utterance is represented by distinct tem-
poral patterns of presentation. In addition to providing
a mechanism for expressing the binding of arguments
and roles, this representational system allows net to
develop sensitivity to the number and positions of ar-
guments.

The output of the model is a semantic array consist-
ing of two types of information. First, core semantic
features, largely triggered by the verb in the utterance,
are encoded as a distributed set of semantic features.
Second, argument roles are represented in this array
by a distributed set of what might be called sub-types
or proto-features.

Built into the model, then, is the capacity to extract
from the signal the words (prepositions, verbs and
nouns) that are present and the sequence they arrive
in; a set of semantic features associated with those ar-
guments, and an approximation of the intended mean-
ings of the utterances the system is learning from.
What is not built in is prior knowledge of which as-
pects of an interpretation correspond to which formal
elements, and more importantly, which combinations
of formal elements. This flexibility as to which parts
of utterances are related to which aspects of an inter-
pretation means that the network could learn about
a language in which, for example, the meaning con-
tributed by a preposition in English is instead con-
tributed by a verb or set of verbs.

The argument array, representing the noun phrases
in an utterance, consisted of 390 semantic units,
whose labels were culled from the WordNet database
(Miller 1990). Each noun phrase in the incoming
clause was coded in terms of these units. For example,
names like John or Peter were encoded as +human,
+animate, +male, +automotive, etc, but -vehicle. The
set of 360 features used to encode verbal features were
also culled from the wordnet database. Each utterance
was encoded in terms of the core semantic features of
the verb in the sense it appeared in the corpus. For
example, an utterance including eat was encoded as
+act, +cause, and +consume, but -communicate.

As mentioned, in addition to verbal semantics, the
semantic (or interpretive) array also included 89 units
encoding various aspects of the roles played by NPs
in utterances. The basic roles consisted of a set of
fairly traditional thematic roles. In other words, in the
utterance John kissed Mary, Mary was assigned a pa-
tient role, while Johnwas assigned the causer role. As
can be seen in figure 2, the particular role that an ar-
gument played in an utterance was further elaborated
by additional units corresponding to sub-types of the
basic role. (One of the things that the network learns
is that each of the subroles entails its corresponding
basic role.)

Cause
patient
change of state
motion
travel
location
experiencer
possessor
instrument
path

Causation Subtypes
apply force
action
direct cause
allow
help
impede
instrumental
author
agent
internal cause

Figure 2: Each basic role was elaborated by a set of
subroles: See text

The set of role subtypes for each of the basic roles
was garnered from work in lexical semantics and typo-
logical studies (e.g. (Talmy 1985, Levin & Rappaport-
Hovav 1994, Jackendoff 1990)) and is meant to be rep-
resentative of the range of semantic criteria that have
grammatical consequences across languages.

As for the mechanism that allows us to interpret the
bindings of arguments and roles, the model uses the
temporal structure of node activity to represent bind-
ings between roles and fillers. What this means is that
bindings are represented as the in phase firing of argu-
ments and fillers across a temporal pattern of activa-
tion.

The caretaker speech from the Peter corpus, part of
the Bloom 1970 section of the CHILDES database
was used to generate a training corpus. Utterances
containing the most frequent 110 verbs in the corpus
were extracted. This list was reduced by eliminating
non-declarative clauses or utterances with clausal ar-
guments. Recoding each of the nominal arguments
into the semantic features reduced the number of pat-
terns from 12,000 to about 1200.

The net was trained using the back propagation
through time algorithm for 100000 iterations. The
presentation of an input string proceeded as follows.



Role Representation
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Clean up (50)

Semantics/Roles 
(360 Distributed)

Hidden (100)

Argument Semantics 
(390 Distributed)

Verb 
(110 Local)

Preposition 
(21 Local)

Figure 1: Architecture of the verb model

a dog and John walks a mile). The position of argu-
ments in the utterance is represented by distinct tem-
poral patterns of presentation. In addition to providing
a mechanism for expressing the binding of arguments
and roles, this representational system allows net to
develop sensitivity to the number and positions of ar-
guments.

The output of the model is a semantic array consist-
ing of two types of information. First, core semantic
features, largely triggered by the verb in the utterance,
are encoded as a distributed set of semantic features.
Second, argument roles are represented in this array
by a distributed set of what might be called sub-types
or proto-features.

Built into the model, then, is the capacity to extract
from the signal the words (prepositions, verbs and
nouns) that are present and the sequence they arrive
in; a set of semantic features associated with those ar-
guments, and an approximation of the intended mean-
ings of the utterances the system is learning from.
What is not built in is prior knowledge of which as-
pects of an interpretation correspond to which formal
elements, and more importantly, which combinations
of formal elements. This flexibility as to which parts
of utterances are related to which aspects of an inter-
pretation means that the network could learn about
a language in which, for example, the meaning con-
tributed by a preposition in English is instead con-
tributed by a verb or set of verbs.

The argument array, representing the noun phrases
in an utterance, consisted of 390 semantic units,
whose labels were culled from the WordNet database
(Miller 1990). Each noun phrase in the incoming
clause was coded in terms of these units. For example,
names like John or Peter were encoded as +human,
+animate, +male, +automotive, etc, but -vehicle. The
set of 360 features used to encode verbal features were
also culled from the wordnet database. Each utterance
was encoded in terms of the core semantic features of
the verb in the sense it appeared in the corpus. For
example, an utterance including eat was encoded as
+act, +cause, and +consume, but -communicate.

As mentioned, in addition to verbal semantics, the
semantic (or interpretive) array also included 89 units
encoding various aspects of the roles played by NPs
in utterances. The basic roles consisted of a set of
fairly traditional thematic roles. In other words, in the
utterance John kissed Mary, Mary was assigned a pa-
tient role, while Johnwas assigned the causer role. As
can be seen in figure 2, the particular role that an ar-
gument played in an utterance was further elaborated
by additional units corresponding to sub-types of the
basic role. (One of the things that the network learns
is that each of the subroles entails its corresponding
basic role.)

Cause
patient
change of state
motion
travel
location
experiencer
possessor
instrument
path

Causation Subtypes
apply force
action
direct cause
allow
help
impede
instrumental
author
agent
internal cause

Figure 2: Each basic role was elaborated by a set of
subroles: See text

The set of role subtypes for each of the basic roles
was garnered from work in lexical semantics and typo-
logical studies (e.g. (Talmy 1985, Levin & Rappaport-
Hovav 1994, Jackendoff 1990)) and is meant to be rep-
resentative of the range of semantic criteria that have
grammatical consequences across languages.

As for the mechanism that allows us to interpret the
bindings of arguments and roles, the model uses the
temporal structure of node activity to represent bind-
ings between roles and fillers. What this means is that
bindings are represented as the in phase firing of argu-
ments and fillers across a temporal pattern of activa-
tion.

The caretaker speech from the Peter corpus, part of
the Bloom 1970 section of the CHILDES database
was used to generate a training corpus. Utterances
containing the most frequent 110 verbs in the corpus
were extracted. This list was reduced by eliminating
non-declarative clauses or utterances with clausal ar-
guments. Recoding each of the nominal arguments
into the semantic features reduced the number of pat-
terns from 12,000 to about 1200.

The net was trained using the back propagation
through time algorithm for 100000 iterations. The
presentation of an input string proceeded as follows.

• Each basic role was elaborated by a set of subroles, or proto-
role properties:



Semantic Prediction & Grammaticality
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The semantics corresponding to the first argument in
the utterance were activated at the first time step. If
there were additional arguments, the semantics corre-
sponding to the second (or third) argument were acti-
vated at the second (or third) time step. This cycle of
pattern presentation is repeated six times, for a total
of eighteen time steps. (The activation pattern corre-
sponding to the verb and preposition,if any, are acti-
vated at all time steps). The probability that any pat-
tern was presented on any trial was determined by its
frequency in the corpus. Feedback was given concern-
ing the activation of role units at the time steps that
corresponded to the activation patterns of their fillers.
Note that feedback was given to the network con-

cerning the interpretation of the utterance as a whole,
rather than about any specific word or words. Pro-
viding feedback concerning the meaning of the utter-
ance is, of course, a strong assumption about what is
available to language learners, but no stronger than
that outlined in most theories of acquisition, insofar as
it includes the assumption that the learner has avail-
able the intended meaning of some utterances, and
uses this information to adjust current hypotheses con-
cerning the relation between form and meaning (e.g.
(Pinker 1989).
After 100,00 iterations, activation levels for each of

the units in the output was within 20% of its target for
every training exemplar, and the network was consid-
ered trained at this point.

4. Generalization and Constraints
Testing the network consisted of supplying both gram-
matical and ungrammatical novel utterances and mea-
suring the activation of role units. For purposes of
analysis, the network is considered to have accepted a
novel sentence if it computes a role phase for all and
only the number of arguments in the novel sentence.
The net shows an interesting capacity to general-

ize. As an example, consider the output of the utter-
ance John kicked Mary the ball (Figure 3 ). The top
4 rows of the figure (Input Section) show the input
to the model at each time step. Relevant output in the
bottom 13 rows shows the argument roles and verb se-
mantics computed for each of the time steps after step
9 (Output Section). Although the network had never
been exposed to kick in the double object form during
training, it does get the number and assignment prob-
lems correct. That is, the endpoint and patient roles
are coactive with (assigned to) Mary, while the ball is
assigned a travel role. John receives an interpretation
of agentive cause. In addition, the semantic features
associated with the word kick are correctly activated.
As an illustration of the rejection of an utterance,

consider the ungrammatical *John put the book (Fig-
ure 4), where the number of roles computed is three
but the number of arguments presented is two. Note
that the network has received no specific evidence as

John Kick Mary Ball

Time Step

INPUT
Verb Input

kick
Noun Input

Ball
John
Mary

OUTPUT
Argument Roles Computed

contact
cause
travel+
patient
changestate
benefit
endpoint
possess

Core Semantics Computed

hit
touch
hitwiththefoot
kick
hitagainst

1 2 3 4 5 6 7 8 9 101112131415161718

Figure 3: Generalization to Double Object Form

to how to interpret either the grammatical or ungram-
matical test utterances. In 86however, the network
does not arrive at an interpretation for all and only the
arguments in the input utterance.

5. Neighborhood Boundaries
Figure 5 shows that the net “rejects” the utterance
John carried Mary the basket. (Note that there is some
confusion here between which argument is doing the
traveling.) Comparing the nets performance with the
verb carry with its performance with the verb kick in
this construction raises the issue alluded to in the in-
troduction: Why would the network reject one of the
utterances and not the other if the semantics of both
verbs overlap in basic ways? The net knows how to
interpret both carry the ball to John and kick the ball
to John. Why does the net discriminate between carry
John the basket and kick John the ball?
The reason the net discriminates between the two

verbs is that kick is closer along semantic dimensions
which are relevant to getting this set of argument role
assignments. Although kick and carry have many
features in common ( Kick: [+cause, +apply force,
+move, +travel, +contact, +hit with foot, +strike,
+kick, +instantaneous force, +hit]; Carry: [+cause,
+apply force, +move, +travel, +contact, +carry, +sup-
port, +continuous force, +accompany]), the network
treats the two verbs differently because, after learn-

John Put Book

Time Step

INPUT

Verb Input

put
Noun Input

Book

John

OUTPUT

Roles Computed

cause

travel+

endpoint
Core Semantics Computed

move

put

set
1 2 3 4 5 6 7 8 9 101112131415161718

Figure 4: Violation of what is traditionally known as
the subcategorization frame of put results in a mis-
match between the number of arguments on the input
and the number computed on the output

ing, the set of features that is necessary to get the right
interpretation are just those that distinguish the verbs
which do alternate from those that do not.
How did the net discover that the right set of fea-

tures? Determining the right set of features relies on a
statistical fact: that the particular features that are cru-
cial to an alternation are neither so specific that they
are present in only one verb, nor so widely utilized
that they are active both when the relevant interpreta-
tion is required and when it is not. On presentation
of the verb kick, the net is attracted into a state that is
similar to that which arises when presented with hit,
and other verbs that activate the notion of [instanta-
neous force]. During the course of learning the net-
work has associated that feature, among others, with
this set of verbs. Since that is the feature (in combi-
nation with other factors, i.e., the type, number, and
sequence of arguments) the network has come to as-
sociate with a particular set of role assignments, kick
in the double object form produces that assignment
pattern as well.
This behavior shows crucially that the network is

not merely sensitive to overall semantic similarity:
rather, the network has organized the semantic space
such that some features are more important than others

John carry Mary basket

Time Step

INPUT
Verb Input

carry
Noun Input

Basket
John
Mary

OUTPUT
Roles Computed

cause
travel+
endpoint
possess

Core Semantics Computed

move
support
contcont

1 2 3 4 5 6 7 8 9 101112131415161718

Figure 5: Although similar in gross semantics to kick
when used in the prepositional dative form, the net-
work does not come to a coherent interpretation of the
verb carry in the double object form

to getting a particular interpretation.

6. Syntactic Bootstrapping
In addition to organizing the semantic space to al-
low for generalization (and as a side effect, to distin-
guish between possible and impossible form to mean-
ing mappings) the child must also continually learn
new verbs.
There are two well known attempts to incorporate

the relationship between a verb’s meaning and its
grammatical behavior into theories of language acqui-
sition. The first is that represented by Pinker (1989)
and colleagues, who argue that learners use knowl-
edge of what a verb means to generate the syntactic
privileges of a verb. As just discussed, the semantic
representations developed in the network do influence
which verbs in combination with particular patterns
will produce a coherent output. It is important to un-
derstand, however, that this is only one part of what
influences how a verb is used.
Gleitman and her colleagues (Landau & Gleitman

1985) have argued that the relationship between form
and meaning may be exploited in the opposite direc-
tion, such that the set of forms that a verb is used with
may be a source of knowledge about what that verb
means, a process sometimes called syntactic boot-
strapping. To demonstrate how the form-meaning re-
lationships developed in the network might underly a



Case Study: Alishahi & Stevenson (2010)

• A Bayesian model of early verb learning can learn 

• general conceptions of roles based only on exposure to 
individual verb usages

• associations between general semantic properties and the 
syntactic positions of the arguments

• The acquired semantic roles 

• naturally metamorphose from verb-specific to general properties

• are an intuitive match to the expected properties of various roles

• are useful in guiding comprehension in the face of ambiguity
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Distributional Representations of Roles
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Lexical properties: 
{living thing, animal, chimp, ...}

Event-based properties: 
{volitional, affecting, animate, ...}

Lexical properties: 
{entity, object, fruit, ...}

Event-based properties: 
{non-independently exist, affected, change, ...}

Event (Verb): Eat

Event properties: 
action, consumption

Number of arguments: 2 The chimp is 
eating an apple

arg1 verb arg2



Event-based Properties 
of Transitive Arguments
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very similar to the lexical portion of the Agent profile shown in Figure 5,
since the agents of both constructions are usually either humans or animals.
However, the event-based portion of the two Agent profiles are different
after the first few properties. For the Object position, the predicted profiles

PARTIAL FRAME: TRANSITIVE

Number of arguments 2
Syntactic pattern arg1 verb arg2

ARGUMENT 1 (AGENT)
Probability Event-based property
0.048 independently exist
0.048 sentient
0.035 animate
0.035 change
0.035 affected
0.035 change emotional
0.035 becoming
0.013 volitional
0.013 possessing
0.013 getting

Probability Lexical property
0.054 entity
0.040 object
0.040 physical object
0.026 being
0.026 organism
0.026 living thing
0.026 animate thing
0.015 person
0.015 individual
0.015 someone
0.015 somebody
0.015 mortal
0.015 human
0.015 soul
0.015 causal agent
0.015 cause
0.015 causal agency
0.014 unit
0.014 artifact
...

...

ARGUMENT 2 (THEME)
Probability Event-based property
0.086 state
0.031 independently exist
0.031 change
0.031 change possession

Probability Lexical property
0.056 entity
0.037 object
0.037 physical object
0.023 unit
0.023 artifact
0.023 artefact
0.023 whole
0.023 whole thing
0.018 abstraction
0.014 being
0.014 organism
0.014 living thing
0.014 animate thing
0.014 person
0.014 individual
0.014 someone
0.014 somebody
0.014 mortal
0.014 human
...

...

Figure 5. Semantic profiles of argument positions Agent and Theme in a transitive
construction.
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Lexical Properties 
of Transitive Arguments
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very similar to the lexical portion of the Agent profile shown in Figure 5,
since the agents of both constructions are usually either humans or animals.
However, the event-based portion of the two Agent profiles are different
after the first few properties. For the Object position, the predicted profiles

PARTIAL FRAME: TRANSITIVE

Number of arguments 2
Syntactic pattern arg1 verb arg2

ARGUMENT 1 (AGENT)
Probability Event-based property
0.048 independently exist
0.048 sentient
0.035 animate
0.035 change
0.035 affected
0.035 change emotional
0.035 becoming
0.013 volitional
0.013 possessing
0.013 getting

Probability Lexical property
0.054 entity
0.040 object
0.040 physical object
0.026 being
0.026 organism
0.026 living thing
0.026 animate thing
0.015 person
0.015 individual
0.015 someone
0.015 somebody
0.015 mortal
0.015 human
0.015 soul
0.015 causal agent
0.015 cause
0.015 causal agency
0.014 unit
0.014 artifact
...

...

ARGUMENT 2 (THEME)
Probability Event-based property
0.086 state
0.031 independently exist
0.031 change
0.031 change possession

Probability Lexical property
0.056 entity
0.037 object
0.037 physical object
0.023 unit
0.023 artifact
0.023 artefact
0.023 whole
0.023 whole thing
0.018 abstraction
0.014 being
0.014 organism
0.014 living thing
0.014 animate thing
0.014 person
0.014 individual
0.014 someone
0.014 somebody
0.014 mortal
0.014 human
...

...

Figure 5. Semantic profiles of argument positions Agent and Theme in a transitive
construction.
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very similar to the lexical portion of the Agent profile shown in Figure 5,
since the agents of both constructions are usually either humans or animals.
However, the event-based portion of the two Agent profiles are different
after the first few properties. For the Object position, the predicted profiles
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Number of arguments 2
Syntactic pattern arg1 verb arg2
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Probability Event-based property
0.048 independently exist
0.048 sentient
0.035 animate
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0.013 volitional
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0.013 getting
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0.015 individual
0.015 someone
0.015 somebody
0.015 mortal
0.015 human
0.015 soul
0.015 causal agent
0.015 cause
0.015 causal agency
0.014 unit
0.014 artifact
...

...

ARGUMENT 2 (THEME)
Probability Event-based property
0.086 state
0.031 independently exist
0.031 change
0.031 change possession

Probability Lexical property
0.056 entity
0.037 object
0.037 physical object
0.023 unit
0.023 artifact
0.023 artefact
0.023 whole
0.023 whole thing
0.018 abstraction
0.014 being
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Figure 5. Semantic profiles of argument positions Agent and Theme in a transitive
construction.
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Learning Curves for Semantic Profiles

42

same syntactic pattern and number of arguments. (As shown in Section 6.1.2,
adding the appropriate semantic primitives that indicate the semantic type of
the main verb results in more specific semantic profiles for a particular
grammatical position.) Nevertheless, the general transitive profiles in Figure 8
illustrate the process of evolving from a verb-specific profile (e.g., ‘eaten’ and
‘vanished’ in the earlier profile) to a more general one, as a result of processing
more input.

To observe the trend of moving from a more specific to a more general
semantic profile for each argument position, we need to compare the
semantic profile for an argument position at a given point in learning, and
the profile for that position that the model eventually converges to at the end
of each simulation. More technically, we need to measure the divergence
between the two probability distributions represented by these semantic
profiles. We use a standard divergence measure, Relative Entropy, for this
purpose.6 This measure shows how different the two semantic profiles are,
with a value of zero indicating two identical profiles. Figure 9 shows the
profile divergence for Subject and Object positions of a transitive construc-
tion after every 5 input items over a total of 200 items, averaged over 5
simulations. The divergence between the lexical portion of the profiles is
shown by solid lines, and the divergence between the event-based portion of
the profiles is shown by dashed lines. Figure 9 shows that the profile for
the Subject position (i.e., the Agent) is learned faster than the profile for the
Object position (i.e., the Theme), which is a much less constrained role. The

Figure 9. Learning curves for semantic profiles. The x-axis is time (number of inputs), and the
y-axis is divergence from the profile that the model eventually converges to. Solid and dashed
lines show the divergence between the lexical and event-based portions of the profiles,
respectively.

6 RelativeEntropy (PIQ) ! aiP(i)log
P(i)

Q(i)
; where P and Q are probability distributions.
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Verb Selectional Restrictions

• Most verbs impose semantic restrictions on the arguments 
that they take, which

• affect the acceptability of natural language sentences: eating food, 
drinking water, *eating water, *drinking food

• facilitate language comprehension and word learning

• Earlier theories view selectional constraints as defining 
features of the arguments:

• Identifying necessary and sufficient restrictions is a challenge

43

hit ( Subj , Obj )

Subj: HUMAN or HIGHER ANIMAL

Obj: PHYSICAL OBJECT



Verb Selectional Preferences

• Resnik (1993) proposed an alternative view: verbs have 
preferences for the type of arguments they allow for

• World knowledge is represented as a semantic class hierarchy

• Selectional preferences are viewed as probability distributions 
over various semantic classes

• Verbs have different degrees of preference 

• e.g. eat and sing have strong preferences for the direct object 
position, but put and make do not
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Computational Modeling of Selectional 
Preferences

• Most of the existing computational models are influenced 
by the information-theoretic model of Resnik (1993,1996)

• Represent preference for an argument position of a verb as a 
mapping of each semantic class to a real number

• Model the induction of a verb’s preferences as estimating that 
number, using a training data set

• Examples: Li and Abe (1998), Abney and Light (1999), Ciaramita 
and Johnson (2000), Clark and Weir (2002)

• Different approach: Erk (2007) 

• Estimate preferences for a head word based on the similarities 
between that word and other head words observed in a corpus.
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Cognitive Modeling and NLP

• Early NLP viewed itself as building models of human 
understanding

• Modern NLP has shifted emphasis

• Focus on applications: do limited tasks accurately and robustly, 
often without real understanding 

• Emphasis on representations, coverage and efficiency, not 
concerned with cognitive plausibility

• However, cognitive modeling of language is heavily 
informed by research in NLP

• Modeling of human language acquisition is influenced by 
specialized machine learning techniques
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Open Questions

• How various aspects of language acquisition interact with 
each other?

• Various learning procedures are most probably interleaved (e.g., 
word leaning and syntax acquisition)

• Most of the existing models of language acquisition focus on one 
aspect, and simplify the problem

• How to evaluate the models on realistic data?

• Large collections of child-directed utterances/speech are 
available, but no such collection of semantic input

• A wide-spread evaluation approach is lacking in the community
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