Language Acquisition Fall 2010/Winter 2011

Morphology & Syntax

Afra Alishahi, Heiner Drenhaus

Computational Linguistics and Phonetics Saarland University

Rules that Govern Form

• Moving from fixed forms (e.g. 'apple') to derivational forms

```
play → plays, played, playing
I, you, admire → "I admire you"
```

- Morphology and syntax
 - In all languages, the formation of words and sentences follows highly regular patterns
 - How are the regulations and exceptions represented?
- The study and analysis of language production in children reveals common and persistent patterns

U-shaped Learning Curves

- Observed U-shaped learning curves in children
 - Imitation: an early phase of conservative language use
 - Generalization: general regularities are applied to new forms
 - Overgeneralization: occasional misapplication of general patterns
 - Recovery: over time, overgeneralization errors cease to happen

- Lack of Negative Evidence
 - Children do not receive reliable corrective feedback from parents to help them overcome their mistakes (Marcus, 1993)

Case Study: Learning English Past Tense

- The problem of English past tense formation:
 - Regular formation:

stem + 'ed'

- Irregulars do show some patterns
 - No-change: **hit** \rightarrow **hit**
 - Vowel-change: ring \rightarrow rang, sing \rightarrow sang
- Over-regularizations are common: goed
 - These errors often occur after the child has already produced the correct irregular form: went
- What causes the U-shaped learning curve?

A Symbolic Account of English Past Tense

• Dual-Route Account: two qualitatively different mechanisms

- Prediction:
 - Errors result from transition from rote learning to rule-governed
 - Recovery occurs after sufficient exposure to irregulars

A Connectionist Account of Learning English Past Tense

• A connectionist model (Plunkett & Marchman, 1993)

- Properties:
 - Early in training, the model shows tendency to overgeneralize; by the end of training, it exhibits near perfect performance
 - U-shaped performance is achieved using a single learning mechanism, but depends on sudden change in the training size

A Hybrid, Analogy-based Account

- Taatgen & Anderson (2002): an rational model of learning past tense based on the ACT-R architecture
 - Declarative memory chunks represent past tenses, both as a goal and as examples

goal to determine past tense of walk

stored in the memory

A Hybrid, Analogy-based Account

• The analogy strategy is implemented by two production rules, based on simple pattern matching:

RULE ANALOGY-FILL-SLOT

IF the goal has an empty <u>suffix</u> slot
AND there is an example in which <u>suffix</u> has a value
THEN set the <u>suffix</u> of the goal to the <u>suffix</u> value of
the example

RULE ANALOGY-COPY-A-SLOT

IF the goal has an empty <u>stem</u> slot and the <u>of</u> slot has a certain value

AND in the example the values of the <u>of</u> and <u>stem</u> slots are equal

THEN set the <u>stem</u> to the value of the <u>of</u> slot

ACT-R Equations

Description

Equation

Activation

A = B + context + noise

Base-level activation $B(t) = \log \sum_{j=1}^{n} (t - t_j)^{-d}$

Retrieval time Time = Fe^{-fA}

Expected outcome Expected outcome $= P_p G - C_p + noise$ The activation of a chunk has three parts: base-level activation, spreading activation from the current context and noise. Since spreading activation is a constant factor in the models discussed, we treat activation as if it were just base-level activation.

n is the number of times a chunk has been retrieved from memory, and t_j represents the time at which each of these retrievals took place. So, the longer ago a retrieval was, the less it contributes to the activation. *d* is a fixed ACT-R parameter that represents the decay of base-level activation in declarative memory.

Activation determines the time required to retrieve a chunk. A is the activation of the chunk that has to be retrieved, and F and f are fixed ACT-R parameters. Retrieval will only succeed as long as the activation is larger than retrieval threshold τ , which is also a fixed parameter.

Expected outcome is based on three quantities, the estimated probability of success of a production rule (P), the estimated cost of the production rule (C), and the value of the goal (G).

A Hybrid, Analogy-based Account

• ACT-R's production rule mechanism learns new rules by combining two rules that have fired consecutively into one:

RULE LEARNED-REGULAR-RULE

IF the goal is to find the past tense of a word and slots <u>stem</u> and <u>suffix</u> are empty

THEN set the <u>suffix</u> slot to ED and set the <u>stem</u> slot to the word of which you want the past tense

A Hybrid, Analogy-based Account

11

Innateness of Language

- Central claim: humans have innate knowledge of language
 - Assumption: all languages have a common structural basis
- Argument from the Poverty of the Stimulus (Chomsky 1965)
 - Linguistic experience of children is not sufficiently rich for learning the grammar of the language, hence they must have some innate specification of grammar
 - Assumption: knowing a language involves knowing a grammar
- Universal Grammar (UG)
 - A set of rules which organize language in the human brain

Principles & Parameters

- A framework for representing UG
 - A finite set of fundamental principles that are common to all languages
 - E.g., "a sentence must have a subject"
 - A finite set of parameters that determine syntactic variability amongst languages
 - E.g., a binary parameter that determines whether the subject of a sentence must be overtly pronounced
 - Learning involves identifying the correct grammar
 - I.e., setting UG parameters to proper values for the current language

Computational Implementation of P&P

- Formal parameter setting models for a small set of grammars
 - Clark 1992, Gibson & Wexler 1994, Niyogi & Berwick 1996, Briscoe 2000
- General approach:
 - Analyze current input string and set the parameters accordingly
 - Set a parameter when receiving evidence from an example which exhibits that parameter (trigger)
- Representative models:
 - Triggering Learning Algorithm or TLA [Gibson & Wexler, 1994]
 - Structural Triggers Learner or STL [Fodor, 1998]
 - Variational Learner or VL [Yang, 2002]

- TLA: randomly modifies a parameter value if it cannot parse the input
- STL: learns sub-trees (treelets) as parameter values
- VL: assigns a weight to each parameter, and rewards or penalizes these weights depending on parsing success

Computational Implementation of P&P

- TLA: chooses one of the possible interpretations of the ambiguous trigger
- STL: ignores ambiguous triggers and waits for unambiguous ones
- VL: each interpretation is parsed and the parameter weights are changed accordingly

Computational Challenges of P&P

- Practical limitations:
 - Formalizing a UG that covers existing languages is a challenge
 - Learning relies on well-formed sentences as input
- P&P framework predicts a huge space of possible grammars
 - 20 binary parameters lead to > 1 million grammars
- Search spaces for a grammar contain local maxima
 - I.e. learner may converge to an incorrect grammar
- Most of the P&P models are psychologically implausible
 - They predict that a child may repeatedly revisit the same hypothesis or jump randomly around the hypothesis space

Usage-based Accounts of Language Acquisition

- Main claims:
 - Children learn language regularities from input alone, without guidance from innate principles
 - Mechanisms of language learning are not domain-specific
- Verb Island Hypothesis (Tomasello, 1992)
 - Children build their linguistic knowledge around individual items rather than adjusting general grammar rules they already possess
 - Children use cognitive processes to gradually categorize the syntactic structure of their item-based constructions
 - General-purpose cognitive tools are used for this purpose: imitation, analogy, structure mapping

Distributional Representation as an Alternative to Grammar

- Knowing a language is <u>not</u> equated with knowing a grammar
 - Knowledge of language is developed to perform communicative tasks of comprehension and production
- Neural networks for language representation and acquisition
 - Different levels of linguistic representation are emergent structures that a network develops in the course of learning
 - E.g., Elman (1990, 1991), Allen (1997), Allen & Seidenberg (1999)

Case Study: Elman (1990)

• A model of leaning lexical classes and word order

Word Categories

Category	Examples	
NOUN-HUM	man, woman	
NOUN-ANIM	cat, mouse	
NOUN-INANIM	book, rock	
NOUN-AGRESS	dragon, monster	
NOUN-FRAG	glass, plate	
NOUN-FOOD	cookie, break	
VERB-INTRAN	think, sleep	
VERB-TRAN	see, chase	
VERB-AGPAT	move, break	
VERB-PERCEPT	smell, see	
VERB-DESTROY	break, smash	
VERB-EAT	eat	

Templates for Sentence Generation

WORD 1	WORD 2	WORD 3
NOUN-HUM	VERB-EAT	NOUN-FOOD
NOUN-HUM	VERB-PERCEPT	NOUN-INANIM
NOUN-HUM	VERB-DESTROY	NOUN-FRAG
NOUN-HUM	VERB-INTRAN	
NOUN-HUM	VERB-TRAN	NOUN-HUM
NOUN-HUM	VERB-AGPAT	NOUN-INANIM
NOUN-HUM	VERB-AGPAT	
NOUN-ANIM	VERB-EAT	NOUN-FOOD
NOUN-ANIM	VERB-TRAN	NOUN-ANIM
NOUN-ANIM	VERB-AGPAT	NOUN-INANIM
NOUN-ANIM	VERB-AGPAT	
NOUN-INANIM	VERB-AGPAT	
NOUN-AGRESS	VERB-DESTROY	NOUN-FRAG
NOUN-AGRESS	VERB-EAT	NOUN-HUM
NOUN-AGRESS	VERB-EAT	NOUN-ANIM
NOUN-AGRESS	VERB-EAT	NOUN-FOOD

Sample Training Sequence

Input	Output
00000000000000000000000000000000000000	00000000000000000000000000000000000000
00000000000000000000000000000000000000	00000000000000000000000000000000000000
00000000000000000000000000000000000000	00000100000000000000000000000000000000
00000100000000000000000000000000000000	0000000000000000000000000000000000 (move)
0000000000000000000000000000000000 (move)	00000000000000010000000000000 (man)
0000000000000001000000000000 (man)	00010000000000000000000000000000000000
00010000000000000000000000000000000000	00001000000000000000000000000000000000
00001000000000000000000000000000000000	01000000000000000000000000000000000000
01000000000000000000000000000000000000	00000000000000000000000000000000000000
00000000000000000000000000000000000000	00000000000100000000000000000 (girl)
0000000000010000000000000000 (girl)	0000000001000000000000000000 (eat)
0000000001000000000000000000 (eat)	00100000000000000000000000000000 (bread)
00100000000000000000000000000000000000	000000010000000000000000000000000 (dog)
00000000100000000000000000000000000000	0000000000000000001000000000 (move)
00000000000000000000000000000000000000	00000000000000000000000000000000000 (mouse)
0000000000000000000000000000000000 (mouse)	0000000000000000010000000000 (mouse)
00000000000000000000000000000000000000	000000000000000001000000000 (move)
0000000000000000000000000000000000 (move)	10000000000000000000000000000000000000
10000000000000000000000000000000000000	000000000000001000000000000000000 (lion)

Analysis of Hidden Unit Activation Patterns

24

Learning Grammar from Corpora

- Many computational models show the possibility of learning a grammar from corpus data
 - Machine learning techniques induce a grammar that fits data
 - Jones, Gobet, & Pine (2000), Clark (2001), Gobet, Freudenthal, & Pine (2004), Solan, Horn, Ruppin & Edelman (2004)
- Common properties:
 - Most of these models are not incremental
 - They mostly focus on the acquisition of syntax (usually a CFG), but not semantics

Case Study: MOSAIC (Jones et al., 2000)

- MOSAIC (Model Of Syntax Acquisition In Children; Jones et al 2000)
 - Learns from raw text, and produces utterances similar to what children produce using a discrimination network

Case Study: MOSAIC (Jones et al., 2000)

• Underlying mechanisms

- Learning: expand the network based on input data
- production: traverse the network and output contents of the nodes
- Generalization
 - Generative links allow limited generalization abilities
 - Lack of semantic knowledge prevents meaningful generalization
 - Generalized sentences are limited to high-frequency terms
- Evaluation
 - The model was trained on a subset of CHILDES
 - It was used to simulate verb island phenomenon, optional infinitive in English, subject omission, ...