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Rules that Govern Form

• Moving from fixed forms (e.g. ‘apple’) to derivational forms

• Morphology and syntax

• In all languages, the formation of words and sentences follows 
highly regular patterns

• How are the regulations and exceptions represented?

• The study and analysis of language production in children 
reveals common and persistent patterns
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play → plays, played, playing

I, you, admire → “I admire you”



U-shaped Learning Curves

• Observed U-shaped learning curves in children

• Imitation: an early phase of conservative language use 

• Generalization: general regularities are applied to new forms

• Overgeneralization: occasional misapplication of general patterns

• Recovery: over time, overgeneralization errors cease to happen

• Lack of Negative Evidence

• Children do not receive reliable corrective feedback from parents 
to help them overcome their mistakes (Marcus, 1993)
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Case Study: Learning English Past Tense

• The problem of English past tense formation:

• Regular formation:  

• Irregulars do show some patterns 

• No-change: hit → hit 

• Vowel-change: ring → rang,  sing → sang

• Over-regularizations are common:  goed

• These errors often occur after the child has already produced the 
correct irregular form:  went

• What causes the U-shaped learning curve?
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stem + ‘ed’



A Symbolic Account of English Past Tense

• Dual-Route Account: two qualitatively different mechanisms
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List of exceptions
(Associative memory)

Regular route
(Rule-based)

Output past tense

Input stem

Blocking

• Prediction:
• Errors result from transition from rote learning to rule-governed

• Recovery occurs after sufficient exposure to irregulars



A Connectionist Account of Learning 
English Past Tense

6

hidden units

Output units: phonological features of past tense

Input units: phonological features of the stem

• A connectionist model (Plunkett & Marchman, 1993)

• Properties:

• Early in training, the model shows tendency to overgeneralize; by 
the end of training, it exhibits near perfect performance

• U-shaped performance is achieved using a single learning 
mechanism, but depends on sudden change in the training size



• Taatgen & Anderson (2002): an rational model of learning 
past tense based on the ACT-R architecture

• Declarative memory chunks represent past tenses, both as a goal 
and as examples

A Hybrid, Analogy-based Account 
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† Attempt to generate a new past tense by analogy: retrieve an arbitrary past tense from
memory and use it as a template to find a past tense for the current word. Analogy is also
a strategy that is often used in ACT-R (e.g. Lebiere, Wallach, & Taatgen, 1998;
Salvucci & Anderson, 1998) and is probably one of the dominant human strategies
for problem solving and discovery. (We will refer to this strategy as the analogy
strategy, or simply analogy.)

† Just use the stem as past tense, basically doing nothing at all. (We will refer to this as the
zero strategy or zero rule.)

None of these strategies are very good initially. Analogy involves more than one reasoning
step and is only successful if a suitable example is retrieved. The retrieve strategy needs
examples before it can be successful. The zero rule always succeeds, but does not produce
a past tense that can be distinguished from the present tense. Before the model can do
anything useful beyond producing a past tense that is identical to the stem, it has to
perceive some examples in the environment. Note that there is no production rule for
the regular rule yet, ACT-R will learn it later on as a specialization of the analogy strategy.
These initial strategies are similar to those proposed by MacWhinney (1978), who also
suggested that the regular rule is formed on the basis of analogy.

4.1. A detailed description of the model

The model uses declarative-memory chunks to represent past tenses, both as a goal and
as examples. A goal to determine the past tense of walk looks like:

PAST-TENSE-GOAL23
ISA PAST
OF WALK
STEM NIL
SUFFIX NIL

The goal is of type PAST (indicated by the “ISA PAST”), has the value WALK in its OF
slot (WALK itself is also a declarative chunk), and has its other two slots, STEM and
SUFFIX, set to NIL, indicating that they have no value yet. In order to produce a past
tense, the two empty slots, STEM and SUFFIX, have to be filled. Once this goal is
accomplished, the chunk is stored in declarative memory, and looks like:

PAST-TENSE-GOAL23
ISA PAST
OF WALK
STEM WALK
SUFFIX ED

As has been mentioned, the models starts out with three strategies: retrieval, analogy and
the zero rule. Both retrieval and zero rule are modeled by a single production rule each.
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goal to determine 
past tense of walk

accomplished goal, 
stored in the memory



• The analogy strategy is implemented by two production 
rules, based on simple pattern matching:

A Hybrid, Analogy-based Account 
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RULE ANALOGY-FILL-SLOT 
IF! the goal has an empty suffix slot
AND there is an example in which suffix has a value 
THEN! set the suffix of the goal to the suffix value of 
the example

RULE ANALOGY-COPY-A-SLOT 
IF! the goal has an empty stem slot and the of slot has a

  certain value 
AND in the example the values of the of and stem slots are 
equal
THEN! set the stem to the value of the of slot



ACT-R Equations
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Hahn and Nakisa (2000) model, the network is trained on a partial vocabulary and is tested
on the rest of it. The model did very well on unknown words, being correct 81% of the
time. This indicates that information is contained within the phonological structure of the
word, enabling the model to often guess the right inflection correctly. Nevertheless the
model does not learn to apply the -s default rule. Instead, Hahn and Nakisa challenge the
Marcus et al. (1995) claim that German has a default rule at all. The fact remains though,
that German speakers use the -s suffix much more often than their model.

2. The ACT-R architecture

The basic theoretical foundation of the ACT-R architecture is rational analysis (Ander-
son, 1990). According to rational analysis, each component of the cognitive system is
optimized with respect to demands from the environment, given its computational limita-
tions. The main components in ACT-R are a declarative (fact) memory and a production
(rule) memory. To avoid confusion with grammatical rules, we will refer to rules in
production memory with production rules. ACT-R is a so-called hybrid architecture, in
the sense that it has both symbolic and sub-symbolic aspects. We will introduce these
components informally. Table 1 provides a formal specification of some critical aspects of
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Table 1
ACT-R equationsa

Equation Description

Activation
A ¼ B1 context1 noise The activation of a chunk has three parts: base-level activation,

spreading activation from the current context and noise. Since
spreading activation is a constant factor in the models discussed,
we treat activation as if it were just base-level activation.

Base-level activation
BðtÞ ¼ log

Pn
j¼1 ðt2 tjÞ2d n is the number of times a chunk has been retrieved from

memory, and tj represents the time at which each of these
retrievals took place. So, the longer ago a retrieval was, the less
it contributes to the activation. d is a fixed ACT-R parameter
that represents the decay of base-level activation in declarative
memory.

Retrieval time
Time ¼ Fe2fA Activation determines the time required to retrieve a chunk. A is

the activation of the chunk that has to be retrieved, and F and f
are fixed ACT-R parameters. Retrieval will only succeed as long
as the activation is larger than retrieval threshold t , which is
also a fixed parameter.

Expected outcome
Expected outcome ¼ PpG2 Cp 1 noise Expected outcome is based on three quantities, the estimated

probability of success of a production rule (P), the estimated
cost of the production rule (C), and the value of the goal (G).

a These equations are simplified versions of the original Anderson and Lebiere (1998) equations.



• ACT-R’s production rule mechanism learns new rules by 
combining two rules that have fired consecutively into one:

A Hybrid, Analogy-based Account 
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RULE LEARNED-REGULAR-RULE 

IF!the goal is to find the past tense of a 
word and slots stem and suffix are empty 

THEN! set the suffix slot to ED and set the 
stem slot to the word of which you want the 
past tense



A Hybrid, Analogy-based Account 
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errors made with irregular verbs, which can be either an error of non-inflection or over-
regularization. All errors on regular verbs are errors of non-inflection; therefore, since the
proportion of errors is one minus the proportion of correct inflections, it is omitted from
the graph. It is usually hard to detect errors of non-inflection in actual data, because only in
contexts where it is clear that a past tense should have been used (like in “Yesterday Daddy
go…”) can the error be recognized. The data are usually plotted like in Fig. 3b, where
overregularization equals the number of correct responses on irregular verbs divided by
the sum of correct irregulars and irregulars inflected regularly.

The results show U-shaped learning, at least when they are plotted in the same way as
the data usually are (Fig. 3b). The downward slope coincides with the learning of the
regular rule. At this point in the simulation the model has not memorized all irregular past
tenses yet at a level that they can be retrieved without errors. If it fails to retrieve an
irregular past tense it will use one of the regular rules, producing overregularization. The
regular rules may also win the competition with the retrieve production rule because of the
stochastic noise, so the model will not even try to retrieve an irregular past tense. A third
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Fig. 3. Results of the model. (a) Proportions of responses by the model over time. Incorrect regulars are not
indicated since these are all “Regular not inflected”. (b) Overregularization of the model as it is usually plotted:
overregularization is equal to (irregular correct)/(irregular correct1 irregular regularized), and regular mark rate
equals (regular correct)/(regular correct1 regular incorrect).



Innateness of Language

• Central claim: humans have innate knowledge of language

• Assumption: all languages have a common structural basis

• Argument from the Poverty of the Stimulus (Chomsky 1965)

• Linguistic experience of children is not sufficiently rich for 
learning the grammar of the language, hence they must have 
some innate specification of grammar

• Assumption: knowing a language involves knowing a grammar

• Universal Grammar (UG)

•  A set of rules which organize language in the human brain 
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Principles & Parameters

• A framework for representing UG

• A finite set of fundamental principles that are common to all 
languages 

• E.g., “a sentence must have a subject”

• A finite set of parameters that determine syntactic variability 
amongst languages 

• E.g., a binary parameter that determines whether the subject of 
a sentence must be overtly pronounced

• Learning involves identifying the correct grammar

• I.e., setting UG parameters to proper values for the current 
language

13



Computational Implementation of P&P

• Formal parameter setting models for a small set of grammars 

• Clark 1992, Gibson & Wexler 1994, Niyogi & Berwick 1996, Briscoe 2000

• General approach:

• Analyze current input string and set the parameters accordingly

• Set a parameter when receiving evidence from an example which 
exhibits that parameter (trigger)

• Representative models:

• Triggering Learning Algorithm or TLA [Gibson & Wexler, 1994]

• Structural Triggers Learner or STL [Fodor, 1998]

• Variational Learner or VL [Yang, 2002]
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Computational Implementation of P&P

• TLA: randomly modifies a parameter value if it cannot 
parse the input

• STL: learns sub-trees (treelets) as parameter values

• VL: assigns a weight to each parameter, and rewards or 
penalizes these weights depending on parsing success
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. . .

trigger



Computational Implementation of P&P

• TLA: chooses one of the possible interpretations of the 
ambiguous trigger

• STL: ignores ambiguous triggers and waits for unambiguous 
ones

• VL: each interpretation is parsed and the parameter weights 
are changed accordingly
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. . .

trigger What if it is ambiguous?



Computational Challenges of P&P

• Practical limitations:

• Formalizing a UG that covers existing languages is a challenge

• Learning relies on well-formed sentences as input

• P&P framework predicts a huge space of possible grammars 

• 20 binary parameters lead to > 1 million grammars

• Search spaces for a grammar contain local maxima 

• I.e. learner may converge to an incorrect grammar

• Most of the P&P models are psychologically implausible 

• They predict that a child may repeatedly revisit the same 
hypothesis or jump randomly around the hypothesis space
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Usage-based Accounts of Language 
Acquisition

• Main claims: 

• Children learn language regularities from input alone, without 
guidance from innate principles

• Mechanisms of language learning are not domain-specific

• Verb Island Hypothesis (Tomasello, 1992)

• Children build their linguistic knowledge around individual items 
rather than adjusting general grammar rules they already possess

• Children use cognitive processes to gradually categorize the 
syntactic structure of their item-based constructions

• General-purpose cognitive tools are used for this purpose: 
imitation, analogy, structure mapping
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Distributional Representation as an 
Alternative to Grammar

• Knowing a language is not equated with knowing a grammar

• Knowledge of language is developed to perform communicative 
tasks of comprehension and production

• Neural networks for language representation and acquisition

• Different levels of linguistic representation are emergent structures 
that a network develops in the course of learning

• E.g., Elman (1990, 1991), Allen (1997), Allen & Seidenberg (1999)
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Case Study: Elman (1990)
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Hidden units

Output units

Input units Context units

input: 2-3 word sentences

Network is trained to predict 
the next word as output

A copy of the hidden units is kept as context

• A model of leaning lexical classes and word order



Word Categories
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196 ELMAN 

TABLE 3 
Categories of Lexical Items Used in Sentence Simulation 

Category Examples 

NOUN-HUM 
NOUN-ANIM 
NOUN-INANIM 
NOUN-AGRESS 
NOUN-FRAG 
NOUN-FOOD 
VERB-INTRAN 
VERB-TRAN 
VERB-AGPAT 
VERB-PERCEPT 
VERB-DESTROY 
VERB-EAT 

man, woman 
cot, mouse 
book, rack 
dragon, monster 
glass, plate 
cookie, break 
think, sleep 
see, chase 
move, break 
smell, see 
breok, smash 
eat 

TABLE 4 
Templates far Sentence Generator 

WORD 1 WORD 2 WORD 3 

NOUN-HUM 
NOUN-HUM 
NOUN-HUM 
NOUN-HUM 
NOUN-HUM 
NOUN-HUM 
NOUN-HUM 
NOUN-ANIM 
NOUN-ANIM 
NOUN-ANIM 
NOUN-ANIM 
NOUN-INANIM 
NOUN-AGRESS 
NOUN-AGRESS 
NOUN-AGRESS 
NOUN-AGRESS 

VERB-EAT 
VERB-PERCEPT 
VERB-DESTROY 
VERB-INTRAN 
VERB-TRAN 
VERB-AGPAT 
VERB-AGPAT 
VERB-EAT 
VERB-TRAN 
VERB-AGPAT 
VERB-AGPAT 
VERB-AGPAT 
VERB-DESTROY 
VERB-EAT 
VERB-EAT 
VERB-EAT 

NOUN-FOOD 
NOUN-INANIM 
NOUN-FRAG 

NOUN-HUM 
NOUN-INANIM 

NOUN-FOOD 
NOUN-ANIM 
NOUN-INANIM 

NOUN-FRAG 
NOUN-HUM 
NOUN-ANIM 
NOUN-FOOD 

but there were no breaks between successive sentences. A fragment of the 
input stream is shown in Column 1 of Table 5, with the English gloss for 
each vector in parentheses. The desired output is given in Column 2. 

For this simulation a network similar to that in the first simulation was 
used, except that the input layer and output layers contained 31 nodes each, 
and the hidden and context layers contained 150 nodes each. 

The task given to the network was to learn to predict the order of succes- 
sive words. The training strategy was as follows. The sequence of 27,354 



Templates for Sentence Generation

22

196 ELMAN 
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Sample Training Sequence
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FINDING STRUCTURE IN TIME 197 

TABLE 5 
Fragment of Training Sequences far Sentence Simulation 

Input output 

31-bit vectors formed an input sequence. Each word in the sequence was 
input, one at a time, in order. The task on each input cycle was to predict 
the 31-bit vector corresponding to the next word in the sequence. At the end 
of the 27,534 word sequence, the process began again, without a break, 
starting with the first word. The training continued in this manner until the 
network had experienced six complete passes through the sequence. 

Measuring the performance of the network in this simulation is not 
straightforward. RMS error after training dropped to 0.88. When output 
vectors are as sparse as those used in this simulation (only 1 out of 31 bits 
turned on), the network quickly learns to turn off all the output units, which 
drops error from the initial random value of - 15.5 to 1.0. In this light, a 
final error of 0.88 does not seem impressive. 

Recall that the prediction task is nondeterministic. Successors cannot be 
predicted with absolute certainty; there is a built-in error which is inevitable. 
Nevertheless, although the prediction cannot be error-free, it is also true 
that word order is not random. For any given sequence of words there are a 
limited number of possible successors. Under these circumstances, the net- 
work should learn the expected frequency of occurrence of each of the possi- 
ble successor words; it should then activate the output nodes proportional 
to these expected frequencies. 

This suggests that rather than testing network performance with the RMS 
error calculated on the actual successors, the output should be compared 



Analysis of Hidden Unit Activation 
Patterns

24

EMAN 

LO.-ASS 

VERBS 
DO.OPT - 

DQOBLIG 

ANIMALS 

ANIMATES 

HUMAN 

NOUNS 

‘-Isi BREAKABLES 

I I I I I 

2.0 1.5 1.0 0.0 -0.5 

Figure 7. Hierarchical cluster diagram of hidden unit activation vectors in simple sentence 
prediction task. labels indicate the inputs which produced the hidden unit vectors: inputs 
were presented in context, and the hidden unit vectors averaged across multiple contexts. 

Several points should be emphasized. First, the category structure appears 
to be hierarchical. Thus, “dragons” are large animals, but also members of 
the class of [ - human, + animate] nouns. The hierarchical interpretation is 
achieved through the way in which the spatial relations (of the representa- 
tions) are organized. Representations that are near one another in the repre- 
sentational space form classes, while higher level categories correspond to 
larger and more general regions of this space. 

Second, it is also true that the hierarchy is “soft” and implicit. While 
some categories may be qualitatively distinct (i.e., very far from each other 



Learning Grammar from Corpora

• Many computational models show the possibility of 
learning a grammar from corpus data 

• Machine learning techniques induce a grammar that fits data

• Jones, Gobet, & Pine (2000), Clark (2001), Gobet, Freudenthal, & Pine 
(2004), Solan, Horn, Ruppin & Edelman (2004)

• Common properties:

• Most of these models are not incremental

• They mostly focus on the acquisition of syntax (usually a CFG), 
but not semantics
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Common Links

Case Study: MOSAIC (Jones et al., 2000)

SeeEat

{the pie}

{the apple} {the pear}
{the pear}

{the apple}

{the ball}

Similarity link

rootEat the appleSee the pearEat the pear

• MOSAIC (Model Of Syntax Acquisition In Children; Jones et al 2000)                                                                                                               

• Learns from raw text, and produces utterances similar to what children 
produce using a discrimination network



Case Study: MOSAIC (Jones et al., 2000)
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• Underlying mechanisms

• Learning: expand the network based on input data

• production: traverse the network and output contents of the nodes

• Generalization

• Generative links allow limited generalization abilities

• Lack of semantic knowledge prevents meaningful generalization

• Generalized sentences are limited to high-frequency terms

• Evaluation

• The model was trained on a subset of CHILDES

• It was used to simulate verb island phenomenon, optional infinitive 
in English, subject omission, ...


