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Children’s Sensitivity to Lexical Categories

• Gelman & Taylor’84: 2-year-olds treat names not followed by a 
determiner (e.g. “Zav”) as a proper name, and interpret them as 
individuals (e.g., the animal-like toy).
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Look, this is Zav!
Point to Zav.



Children’s Sensitivity to Lexical Categories

• Gelman & Taylor’84: 2-year-olds treat names followed by a 
determiner (e.g. “the zav”) as a common name, and interpret them 
as category members (e.g., the block-like toy).
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Look, this is a zav!
Point to the zav.



Challenges of Learning Lexical Categories

• Children form lexical categories gradually and over time

• Nouns and verb categories are learned by age two, but adjectives 
are not learned until age six

• Child language acquisition is bounded by memory and 
processing limitations

• Child category learning is unsupervised and  incremental

• Highly extensive processing of data is cognitively implausible

• Natural language categories are not clear cut

• Many words are ambiguous and belong to more than one category

• Many words appear in the input very rarely
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Information Cues

• Children might use different information cues for learning 
lexical categories

• perceptual cues (phonological and morphological features)

• semantic properties of the words

• distributional properties of the local context each word appears in 

• Distributional context is a reliable cue 

• Analysis of child-directed speech shows abundance of consistent 
contextual patterns (Redington et al., 1998; Mintz, 2003)

• Several computational models have used distributional context to 
induce intuitive lexical categories (e.g. Schutze 1993, Clark 2000)
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Computational Models of Lexical 
Category Induction

• The majority of the existing models categorize word types in 
an iterative, batch process

• E.g. Brown’92, Schütze’93, Redington et al’98

• Incremental clustering models

• Cartwright & Brent’97

• Use word groups to extract templates from sentences, then use a 
MDL approach to merge word groups together

• Evaluated on artificially generated input

• Parisien et al’08

• A Bayesian clustering model with a bootstrapping module; 
categories are revised periodically

• Very sensitive to context features, and computationally extensive
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Computational Models of Lexical 
Category Induction
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• Hierarchical clustering

[e.g., Schutze’93, Redington et al’98]

• Start from a cluster per word  

• merge two most similar 

• clusters in each iteration



• Cluster optimization

[e.g., Brown’92,  Clark’00]

• partition vocabulary                                                                 
into non-overlapping clusters 

• optimize clusters according                                                          
to an information theoretic                                                
measure 
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Computational Models of Lexical 
Category Induction

• Incremental clustering models

• ( Cartwright & Brent’97, Parisien et al’08, Chrupala & Alishahi’10 )

• Each word usage is processed one at a time

• It is added to the most similar existing cluster, or a new cluster is 
created 
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Case Study: Parisien et al. (2008)

• A Bayesian model of lexical category induction

• Word usages are categorized based on similarity of their content 
and context  to the existing categories

      -2  -1   0     1  2
“want  to put them on”

• Best cluster is selected by maximizing the conditional 
probability of each cluster for the current usage:
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learn adult-like categories. The model’s learning tra-
jectory resembles some relevant behaviours seen in
children, and we also show that the categories that
our model learns can be successfully used in a lexical
disambiguation task.

2 Overview of the Computational Model

We adapt a probabilistic incremental model of un-
supervised categorization (i.e., clustering) proposed
by Anderson (1991). The original model has been
used to simulate human categorization in a variety
of domains, including the acquisition of verb argu-
ment structure (Alishahi and Stevenson, 2008). Our
adaptation of the model incorporates an explicit boot-
strapping mechanism and a periodic merge of clus-
ters, both facilitating generalization over input data.
Here, we explain the input to our model (Section 2.1),
the categorization model itself (Section 2.2), how we
estimate probabilities to facilitate bootstrapping (Sec-
tion 2.3), and our approach for merging similar clus-
ters (Section 2.4).

2.1 Input Frames
We aim to learn categories of words, and we do this
by looking for groups of similar word usages. Thus,
rather than categorizing a word alone, we categorize a
word token with its context from that usage. The ini-
tial input to our model is a sequence of unannotated
utterances, that is, words separated by spaces. Before
being categorized by the model, each word usage in
the input is processed to produce a frame that con-
tains the word itself (the head word of the frame) and
its distributional context (the two words before and
after it). For example, in the utterance ‘I gave Josie
a present,’ when processing the head word Josie, we
create the following frame for input to the categoriza-
tion system:

feature w−2 w−1 w0 w+1 w+2

I gave Josie a present

where w0 denotes the head word feature, and w−2,
w−1, w+1, w+2 are the context word features. A con-
text word may be ‘null’ if there are fewer than two
preceding or following words in the utterance.

2.2 Categorization
Using Anderson’s (1991) incremental Bayesian cat-
egorization algorithm, we learn clusters of word us-
ages (i.e., the input frames) by drawing on the overall
similarity of their features (here, the head word and
the context words). The clusters themselves are not
predefined, but emerge from similarities in the input.
More formally, for each successive frame F in the
input, processed in the order of the input words, we
place F into the most likely cluster, either from the

K existing clusters, or a new one:

BestCluster(F ) = argmax
k

P (k|F ) (1)

where k = 0, 1, ..,K, including the new cluster
k = 0. Using Bayes’ rule, and dropping P (F ) from
the denominator, which is constant for all k, we find:

P (k|F ) =
P (k)P (F |k)

P (F )
∝ P (k)P (F |k) (2)

The prior probability of k, P (k), is given by:

P (k) =
cnk

(1 − c) + cn
, 1 ≤ k ≤ K (3)

P (0) =
1 − c

(1 − c) + cn
(4)

where nk is the number of frames in k, and n is
the total number of frames observed at the time of
processing frame F . Intuitively, a well-entrenched
(large) cluster should be a more likely candidate for
categorization than a small one. We reserve a small
probability for creating a new cluster (Eq. 4). As the
model processes more input overall, it should become
less necessary to create new clusters to fit the data, so
P (0) decreases with large n. In our experiments, we
set c to a large value, 0.95, to further increase the
likelihood of using existing clusters.1
The probability of a frame F given a cluster k,

P (F |k), depends on the probabilities of the features
in F given k. We assume that the individual fea-
tures in a frame are conditionally independent given
k, hence:

P (F |k) = PH(w0|k)
∏

i∈{−2,−1,+1,+2}

P (wi|k) (5)

where PH is the head word probability, i.e., the like-
lihood of seeing w0 as a head word among the frames
in cluster k. The context word probability P (wi|k) is
the likelihood of seeing wi in the ith context position
of the frames in cluster k. Next, we explain how we
estimate each of these probabilities from the input.

2.3 Probabilities and Bootstrapping
For the head word probability PH(w0|k), we use a
smoothed maximum likelihood estimate (i.e., the pro-
portion of frames in cluster k with head word w0).
For the context word probability P (wi|k), we can
form two estimates. The first is a simple maximum
likelihood estimate, which enforces a preference for
creating clusters of frames with the same context
words. That is, head words in the same cluster will

1The prior P (k) is equivalent to the prior in a Dirichlet pro-
cess mixture model (Sanborn et al., 2006), commonly used for
sampling clusters of objects.

learn adult-like categories. The model’s learning tra-
jectory resembles some relevant behaviours seen in
children, and we also show that the categories that
our model learns can be successfully used in a lexical
disambiguation task.

2 Overview of the Computational Model

We adapt a probabilistic incremental model of un-
supervised categorization (i.e., clustering) proposed
by Anderson (1991). The original model has been
used to simulate human categorization in a variety
of domains, including the acquisition of verb argu-
ment structure (Alishahi and Stevenson, 2008). Our
adaptation of the model incorporates an explicit boot-
strapping mechanism and a periodic merge of clus-
ters, both facilitating generalization over input data.
Here, we explain the input to our model (Section 2.1),
the categorization model itself (Section 2.2), how we
estimate probabilities to facilitate bootstrapping (Sec-
tion 2.3), and our approach for merging similar clus-
ters (Section 2.4).

2.1 Input Frames
We aim to learn categories of words, and we do this
by looking for groups of similar word usages. Thus,
rather than categorizing a word alone, we categorize a
word token with its context from that usage. The ini-
tial input to our model is a sequence of unannotated
utterances, that is, words separated by spaces. Before
being categorized by the model, each word usage in
the input is processed to produce a frame that con-
tains the word itself (the head word of the frame) and
its distributional context (the two words before and
after it). For example, in the utterance ‘I gave Josie
a present,’ when processing the head word Josie, we
create the following frame for input to the categoriza-
tion system:

feature w−2 w−1 w0 w+1 w+2

I gave Josie a present

where w0 denotes the head word feature, and w−2,
w−1, w+1, w+2 are the context word features. A con-
text word may be ‘null’ if there are fewer than two
preceding or following words in the utterance.

2.2 Categorization
Using Anderson’s (1991) incremental Bayesian cat-
egorization algorithm, we learn clusters of word us-
ages (i.e., the input frames) by drawing on the overall
similarity of their features (here, the head word and
the context words). The clusters themselves are not
predefined, but emerge from similarities in the input.
More formally, for each successive frame F in the
input, processed in the order of the input words, we
place F into the most likely cluster, either from the

K existing clusters, or a new one:

BestCluster(F ) = argmax
k

P (k|F ) (1)

where k = 0, 1, ..,K, including the new cluster
k = 0. Using Bayes’ rule, and dropping P (F ) from
the denominator, which is constant for all k, we find:

P (k|F ) =
P (k)P (F |k)

P (F )
∝ P (k)P (F |k) (2)

The prior probability of k, P (k), is given by:

P (k) =
cnk

(1 − c) + cn
, 1 ≤ k ≤ K (3)

P (0) =
1 − c

(1 − c) + cn
(4)

where nk is the number of frames in k, and n is
the total number of frames observed at the time of
processing frame F . Intuitively, a well-entrenched
(large) cluster should be a more likely candidate for
categorization than a small one. We reserve a small
probability for creating a new cluster (Eq. 4). As the
model processes more input overall, it should become
less necessary to create new clusters to fit the data, so
P (0) decreases with large n. In our experiments, we
set c to a large value, 0.95, to further increase the
likelihood of using existing clusters.1
The probability of a frame F given a cluster k,

P (F |k), depends on the probabilities of the features
in F given k. We assume that the individual fea-
tures in a frame are conditionally independent given
k, hence:

P (F |k) = PH(w0|k)
∏

i∈{−2,−1,+1,+2}

P (wi|k) (5)

where PH is the head word probability, i.e., the like-
lihood of seeing w0 as a head word among the frames
in cluster k. The context word probability P (wi|k) is
the likelihood of seeing wi in the ith context position
of the frames in cluster k. Next, we explain how we
estimate each of these probabilities from the input.

2.3 Probabilities and Bootstrapping
For the head word probability PH(w0|k), we use a
smoothed maximum likelihood estimate (i.e., the pro-
portion of frames in cluster k with head word w0).
For the context word probability P (wi|k), we can
form two estimates. The first is a simple maximum
likelihood estimate, which enforces a preference for
creating clusters of frames with the same context
words. That is, head words in the same cluster will

1The prior P (k) is equivalent to the prior in a Dirichlet pro-
cess mixture model (Sanborn et al., 2006), commonly used for
sampling clusters of objects.



Case Study: Parisien et al. (2008)
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etitions are common. While a few of the sequences
may exist in the training data, we expect the model
to mostly use the underlying category information to
cluster the frames.
We intend to show that the model uses context to

find the right category for a novel word. To evaluate
the model’s behaviour, we let it categorize each of
the randomly generated frames. We score each frame
as follows: if the frame gets put into a new cluster,
it earns score zero. Otherwise, its score is the pro-
portion of frames in the chosen cluster matching the
correct part of speech (we use a PoS-tagged version
of the training corpus; for example, a noun frame put
into a cluster with 60% nouns would get 0.6). We re-
port the mean score for each of the noun, verb, and
adjective sets. Intuitively, the matching score indi-
cates how well the model recognizes that the given
contexts are similar to input it has seen before. If the
model clusters the novel word frame with others of
the right type, then it has formed a category for the
contextual information in that frame.
We use the full combination model (Eq. (7)) to

evaluate the learning rates of individual parts of
speech. We run the model on the training subset of
the evaluation corpus. After every 10,000 words of
input, we use the model to categorize the 1,500 con-
text frames with novel words (500 frames each for
noun, verb, and adjective). As in experiment 1, the
model does not record these categorizations.

5.2 Results
Figure 2 shows the mean matching scores for each
of the tested parts of speech. Recall that since the
frames each use a novel head word, a higher match-
ing score indicates that the model has learned to cor-
rectly recognize the contexts in the frames. This does
not necessarily mean that the model has learned sin-
gle, complete categories of ‘noun,’ ‘verb,’ and ‘ad-
jective,’ but it does show that when the head word
gives no information, the model can generalize based
on the contextual patterns alone. The model learns
to categorize novel nouns better than verbs until late
in training, which matches the trends seen in children.
Adjectives progress slowly, and show nearly no learn-
ing ability by the end of the trial. Again, this appears
to reflect natural behaviour in children, although the
effect we see here may simply be a result of the over-
all frequency of the PoS types. Over the entire corpus
(development and evaluation), 35.4% of the word to-
kens are nouns and 24.3% are verbs, but only 2.9%
are tagged as adjectives. The model, and similarly a
child, may need much more data to learn adjectives
than is available at this stage.
The scores in Figure 2 tend to fluctuate, partic-

ularly for the noun contexts. This fluctuation cor-
responds to periods of overgeneralization, followed
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Figure 2: Comparative learning trends of noun, verb,
and adjective patterns.

by recovery (also observed in children; see, e.g.,
Tomasello, 2000). When the model merges two clus-
ters, the contents of the resulting cluster can initially
be quite heterogeneous. Furthermore, the new cluster
is much larger, so it becomes a magnet for new cate-
gorizations. This results in overgeneralization errors,
giving the periodic drops seen in Figure 2. While our
formulation in Section 2.4 aims to prevent such er-
rors, they are likely to occur on occasion. Eventually,
the model recovers from these errors, and it is worth
noting that the fluctuations diminish over time. As the
model gradually improves with more input, the dom-
inant clusters become heavily entrenched, and incon-
sistent merges are less likely to occur.

6 Experiment 3: Disambiguation

The category structure of our model allows a single
word type to be a member of multiple categories. For
example, kiss could belong to a category of predom-
inantly noun usages (Can I have a kiss?) and also
to a category of verb usages (Kiss me!). As a result,
the model easily represents lexical ambiguity. In this
experiment, inspired by disambiguation work in psy-
cholinguistics (see, e.g., MacDonald, 1993), we ex-
amine the model’s ability to correctly disambiguate
category memberships.

6.1 Methods
Given a word that the model has previously seen as
various different parts of speech, we examine how
well the model can use that ambiguous word’s con-
text to determine its category in the current usage.
For example, by presenting the word kiss in sepa-
rate noun and verb contexts, we expect that the model
should categorize kiss as a noun, then as a verb, re-
spectively. We also wish to examine the effect of the
target word’s lexical bias, that is, the predominance of
a word type to be used as one category over another.
As with adults, if kiss is mainly used as a noun, we
expect the model to more accurately categorize the

• The model replicates the order of acquisition of different 
categories as observed in children



• The model predicts that using previous category labels will 
improve the overall performance

Case Study: Parisien et al. (2008)
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we map them to the following 11 tags: noun, verb,
auxiliary, adjective, adverb, determiner, conjunction,
negation, preposition, infinitive to, and ‘other.’ When
we evaluate the model’s categorization performance,
we have two different sets of clusters of the words in
the test set: one set resulting from the gold standard,
and another as a result of the model’s categorization.
We compare these two clusterings, using the adjusted
Rand index (Hubert and Arabie, 1985), which mea-
sures the overall agreement between two clusterings
of a set of data points. The measure is ‘corrected for
chance,’ so that a random grouping has an expected
score of zero. This measure tends to be very con-
servative, giving values much lower than an intuitive
percentage score. However, it offers a useful relative
comparison of overall cluster similarity.

4.3 Results

Figure 1 gives the adjusted Rand scores of the three
model variants, word-based, bootstrap, and combi-
nation. Higher values indicate a better fit with the
gold-standard categorization scheme. The adjusted
Rand score is corrected for chance, thus providing a
built-in baseline measure. Since the expected score
for a random clustering is zero, all three model vari-
ants operate at above-baseline performance.
As seen in Figure 1, the word-based model gains

an early advantage in the comparison, but its per-
formance approaches a plateau at around 200,000
words of input. This suggests that while simple
word distributions provide a reliable source of infor-
mation early in the model’s development, the infor-
mation is not sufficient to sustain long-term learn-
ing. The bootstrap model learns much more slowly,
which is unsurprising, given that it depends on hav-
ing some reasonable category knowledge in order to
develop its clusters—leading to a chicken-and-egg
problem. However, once started, its performance im-
proves well beyond the word-based model’s plateau.
These results suggest that on its own, each compo-
nent of the model may be effectively throwing away
useful information. By combining the two models,
the combination model appears to gain complemen-
tary benefits from each component, outperforming
both. The word-based component helps to create a
base of reliable clusters, which the bootstrap compo-
nent uses to continue development.
After all of the training text, the combination

model uses 411 clusters to categorize the test tokens
(compared to over 2,000 at the first test point). While
this seems excessive, we note that 92.5% of the test
tokens are placed in the 25 most populated clusters.3

3See www.cs.toronto.edu/˜chris/syncat for examples.
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Figure 1: Adjusted Rand Index of each of three mod-
els’ clusterings of the test set, as compared with the
PoS tags of the test data.

5 Experiment 2: Learning Trends

A common trend observed in children is that differ-
ent syntactic categories are learned at different rates.
Children appear to have learned the category of nouns
by 23 months of age, verbs shortly thereafter, and
adjectives relatively late (Kemp et al., 2005). Our
goal in this experiment is to look for these specific
trends in the behaviour of our model. We thus simu-
late an experiment where a child uses a novel word’s
linguistic context to infer its syntactic category (e.g.,
Tomasello et al., 1997). For our experiment, we ran-
domly generate input frames with novel head words
using contexts associated with nouns, verbs, and ad-
jectives, then examine the model’s categorization in
each case. We expect that our model should approxi-
mate the developmental trends of children, who tend
to learn the category of ‘noun’ before ‘verb,’ and both
of these before ‘adjective.’

5.1 Methods

We generate new input frames using the most com-
mon syntactic patterns in the training data. For each
of the noun, verb, and adjective categories (from the
gold standard), we collect the five most frequent PoS
sequences in which these are used, bounded by the
usual four-word context window. For example, the
Adjective set includes the sequence ‘V Det Adj N
null’, where the sentence ends after the N. For each
of the three categories, we generate each of 500 input
frames by sampling one of the five PoS sequences,
weighted by frequency, then sampling words of the
right PoS from the lexicon, also weighted by fre-
quency. We replace the head word with a novel word,
forcing the model to use only the context for cluster-
ing. Since the context words are chosen at random,
most of the word sequences generated will be novel.
This makes the task more difficult, rather than sim-
ply sampling utterances from the corpus, where rep-



Case Study: Alishahi & Chrupala (2009)

• An incremental clustering algorithm:
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1. Each word usage is put into a new category

2. The most similar category to the new one is found

I. If the similarity is above a certain threshold 
θw, the two clusters are merged

II.The most similar category to the newly merged 
one is found

i. If the similarity is above a certain 
threshold θc, the two clusters are merged



Representation of Word Categories

• Word usage: a vector of content and context features:

• A lexical category is a cluster of word usages 

• Category: the mean of the distribution vectors of its members

• The similarity between two categories: dot product of their vectors
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-2=want -2=have -1=to 0=go 0=sit 0=show 0=send 1=it ...

0.25 0.75 1 0.25 0.25 0.25 0.25 0.5 ...

-2=want -1=to 0=put 1=them 2=on
1 1 1 1 1

-2   -1   0   1   2
“want to put them on”



Evaluation of the Acquired Categories

• Most of the models treat POS tags as gold-standard

• Evaluate learned categories based on how well they match POS 
categories

• Instead, they use the categories in a variety of tasks

• Word prediction from context

• Inferring semantic properties of novel words based on the 
context they appear in

• They compare the performance in each task against a POS-
based implementation of the same task
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Word Prediction

• Task: predicting a missing (target) word based on its context

• This task is non-deterministic (i.e. it can have many answers), but 
the context can significantly limit the choices

• Human subjects have shown to be remarkably accurate at 
using context for guessing target words (Gleitman’90, Lesher’02)
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She slowly --- the road

I had --- for lunch



Word Prediction Using Categories
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-2 -1 0 1 2
want to put them on

Test item:

Categorize

-2 -1 0 1 2
... ... ... ... ...

Cw

Ranked word list 
for content feature

make
take
get
put
sit
eat
let

point
give

:

Reciprocal rank 
of the target word:

1/4



Word Prediction - POS Categories
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baby 's Mummy
n v n:prop

put them on the table look
v pro prep det n v

have her hair brushed
v pro n part

there is a spider
adv:loc v det n

...

baby
table
hair

spider
...

Noun Category

-2 -1 0 1 2
... ... ... ... ...

Labelled Data Feature Representation



• Task: guessing the semantic properties of a novel word based 
on its local context

• Children and adults can guess (some aspects of) the meaning 
of a novel word from context (Landau & Gleitman’85, Naigles & Hoff-
Ginsberg’95)

Inferring Word Semantic Properties

19

I had ZAV for lunch



Inferring Semantic Properties

20

-2 -1 0 1 2

I ate Zag for lunch
Test item:

Categorize

-2 -1 0 1 2
... ... ... ... ...

Cw

Semantic feature for 
target word position

entity
object

substance
matter
food

edible
:

0
soup

original target word:

substance
food

edible
liquid
meal
soup

:

Semantic 
vector

Similarity Measure



Lexical Category Acquisition

• Finer-grained lexical categories seem more suitable for 
some tasks than traditional POS categories

• Standardized applications are needed to evaluate and compare 
lexical categories induced by different unsupervised methods

• When categorizing words, do children pay attention to 
semantic cues as well?

• Computational investigation: include the semantic features of 
words into a category learning model, and evaluate the 
performance

• What about other cues? (E.g., phonological and 
morphological features)
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Rules that Govern Form

• Moving from fixed forms (e.g. ‘apple’) to derivational forms

• Morphology and syntax

• In all languages, the formation of words and sentences follows 
highly regular patterns

• How are the regulations and exceptions represented?

• The study and analysis of language production in children 
reveals common and persistent patterns

22

play → plays, played, playing

I, you, admire → “I admire you”



U-shaped Learning Curves

• Observed U-shaped learning curves in children

• Imitation: an early phase of conservative language use 

• Generalization: general regularities are applied to new forms

• Overgeneralization: occasional misapplication of general patterns

• Recovery: over time, overgeneralization errors cease to happen

• Lack of Negative Evidence

• Children do not receive reliable corrective feedback from parents 
to help them overcome their mistakes (Marcus, 1993)
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Case Study: Learning English Past Tense

• The problem of English past tense formation:

• Regular formation:  

• Irregulars do show some patterns 

• No-change: hit → hit 

• Vowel-change: ring → rang,  sing → sang

• Over-regularizations are common:  goed

• These errors often occur after the child has already produced the 
correct irregular form:  went

• What causes the U-shaped learning curve?

24

stem + ‘ed’



A Symbolic Account of English Past Tense

• Dual-Route Account (Pinker, 1991): two qualitatively different 
mechanisms
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List of exceptions
(Associative memory)

Regular route
(Rule-based)

Output past tense

Input stem

Blocking

• Prediction:
• Errors result from transition from rote learning to rule-governed

• Recovery occurs after sufficient exposure to irregulars



A Connectionist Account of Learning 
English Past Tense

26

hidden units

Output units: phonological features of past tense

Input units: phonological features of the stem

• A connectionist model (Plunkett & Marchman, 1993)

• Properties:

• Early in training, the model shows tendency to overgeneralize; by 
the end of training, it exhibits near perfect performance

• U-shaped performance is achieved using a single learning 
mechanism, but depends on sudden change in the training size



• A rational model of learning past tense based on the ACT-R 
architecture (Taatgen & Anderson, 2002)

• Declarative memory chunks represent past tenses, both as a goal 
and as examples

A Hybrid, Analogy-based Account 
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† Attempt to generate a new past tense by analogy: retrieve an arbitrary past tense from
memory and use it as a template to find a past tense for the current word. Analogy is also
a strategy that is often used in ACT-R (e.g. Lebiere, Wallach, & Taatgen, 1998;
Salvucci & Anderson, 1998) and is probably one of the dominant human strategies
for problem solving and discovery. (We will refer to this strategy as the analogy
strategy, or simply analogy.)

† Just use the stem as past tense, basically doing nothing at all. (We will refer to this as the
zero strategy or zero rule.)

None of these strategies are very good initially. Analogy involves more than one reasoning
step and is only successful if a suitable example is retrieved. The retrieve strategy needs
examples before it can be successful. The zero rule always succeeds, but does not produce
a past tense that can be distinguished from the present tense. Before the model can do
anything useful beyond producing a past tense that is identical to the stem, it has to
perceive some examples in the environment. Note that there is no production rule for
the regular rule yet, ACT-R will learn it later on as a specialization of the analogy strategy.
These initial strategies are similar to those proposed by MacWhinney (1978), who also
suggested that the regular rule is formed on the basis of analogy.

4.1. A detailed description of the model

The model uses declarative-memory chunks to represent past tenses, both as a goal and
as examples. A goal to determine the past tense of walk looks like:

PAST-TENSE-GOAL23
ISA PAST
OF WALK
STEM NIL
SUFFIX NIL

The goal is of type PAST (indicated by the “ISA PAST”), has the value WALK in its OF
slot (WALK itself is also a declarative chunk), and has its other two slots, STEM and
SUFFIX, set to NIL, indicating that they have no value yet. In order to produce a past
tense, the two empty slots, STEM and SUFFIX, have to be filled. Once this goal is
accomplished, the chunk is stored in declarative memory, and looks like:

PAST-TENSE-GOAL23
ISA PAST
OF WALK
STEM WALK
SUFFIX ED

As has been mentioned, the models starts out with three strategies: retrieval, analogy and
the zero rule. Both retrieval and zero rule are modeled by a single production rule each.
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† Attempt to generate a new past tense by analogy: retrieve an arbitrary past tense from
memory and use it as a template to find a past tense for the current word. Analogy is also
a strategy that is often used in ACT-R (e.g. Lebiere, Wallach, & Taatgen, 1998;
Salvucci & Anderson, 1998) and is probably one of the dominant human strategies
for problem solving and discovery. (We will refer to this strategy as the analogy
strategy, or simply analogy.)

† Just use the stem as past tense, basically doing nothing at all. (We will refer to this as the
zero strategy or zero rule.)

None of these strategies are very good initially. Analogy involves more than one reasoning
step and is only successful if a suitable example is retrieved. The retrieve strategy needs
examples before it can be successful. The zero rule always succeeds, but does not produce
a past tense that can be distinguished from the present tense. Before the model can do
anything useful beyond producing a past tense that is identical to the stem, it has to
perceive some examples in the environment. Note that there is no production rule for
the regular rule yet, ACT-R will learn it later on as a specialization of the analogy strategy.
These initial strategies are similar to those proposed by MacWhinney (1978), who also
suggested that the regular rule is formed on the basis of analogy.

4.1. A detailed description of the model

The model uses declarative-memory chunks to represent past tenses, both as a goal and
as examples. A goal to determine the past tense of walk looks like:

PAST-TENSE-GOAL23
ISA PAST
OF WALK
STEM NIL
SUFFIX NIL

The goal is of type PAST (indicated by the “ISA PAST”), has the value WALK in its OF
slot (WALK itself is also a declarative chunk), and has its other two slots, STEM and
SUFFIX, set to NIL, indicating that they have no value yet. In order to produce a past
tense, the two empty slots, STEM and SUFFIX, have to be filled. Once this goal is
accomplished, the chunk is stored in declarative memory, and looks like:

PAST-TENSE-GOAL23
ISA PAST
OF WALK
STEM WALK
SUFFIX ED

As has been mentioned, the models starts out with three strategies: retrieval, analogy and
the zero rule. Both retrieval and zero rule are modeled by a single production rule each.
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• The analogy strategy is implemented by two production 
rules, based on simple pattern matching:
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RULE ANALOGY-FILL-SLOT 
IF! the goal has an empty suffix slot
AND there is an example in which suffix has a value 
THEN! set the suffix of the goal to the suffix value of 
the example

RULE ANALOGY-COPY-A-SLOT 
IF! the goal has an empty stem slot and the of slot has a

  certain value 
AND in the example the values of the of and stem slots are 
equal
THEN! set the stem to the value of the of slot
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Hahn and Nakisa (2000) model, the network is trained on a partial vocabulary and is tested
on the rest of it. The model did very well on unknown words, being correct 81% of the
time. This indicates that information is contained within the phonological structure of the
word, enabling the model to often guess the right inflection correctly. Nevertheless the
model does not learn to apply the -s default rule. Instead, Hahn and Nakisa challenge the
Marcus et al. (1995) claim that German has a default rule at all. The fact remains though,
that German speakers use the -s suffix much more often than their model.

2. The ACT-R architecture

The basic theoretical foundation of the ACT-R architecture is rational analysis (Ander-
son, 1990). According to rational analysis, each component of the cognitive system is
optimized with respect to demands from the environment, given its computational limita-
tions. The main components in ACT-R are a declarative (fact) memory and a production
(rule) memory. To avoid confusion with grammatical rules, we will refer to rules in
production memory with production rules. ACT-R is a so-called hybrid architecture, in
the sense that it has both symbolic and sub-symbolic aspects. We will introduce these
components informally. Table 1 provides a formal specification of some critical aspects of
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Table 1
ACT-R equationsa

Equation Description

Activation
A ¼ B1 context1 noise The activation of a chunk has three parts: base-level activation,

spreading activation from the current context and noise. Since
spreading activation is a constant factor in the models discussed,
we treat activation as if it were just base-level activation.

Base-level activation
BðtÞ ¼ log

Pn
j¼1 ðt2 tjÞ2d n is the number of times a chunk has been retrieved from

memory, and tj represents the time at which each of these
retrievals took place. So, the longer ago a retrieval was, the less
it contributes to the activation. d is a fixed ACT-R parameter
that represents the decay of base-level activation in declarative
memory.

Retrieval time
Time ¼ Fe2fA Activation determines the time required to retrieve a chunk. A is

the activation of the chunk that has to be retrieved, and F and f
are fixed ACT-R parameters. Retrieval will only succeed as long
as the activation is larger than retrieval threshold t , which is
also a fixed parameter.

Expected outcome
Expected outcome ¼ PpG2 Cp 1 noise Expected outcome is based on three quantities, the estimated

probability of success of a production rule (P), the estimated
cost of the production rule (C), and the value of the goal (G).

a These equations are simplified versions of the original Anderson and Lebiere (1998) equations.



• ACT-R’s production rule mechanism learns new rules by 
combining two rules that have fired consecutively into one:
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RULE LEARNED-REGULAR-RULE 

IF!the goal is to find the past tense of a 
word and slots stem and suffix are empty 

THEN! set the suffix slot to ED and set the 
stem slot to the word of which you want the 
past tense
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errors made with irregular verbs, which can be either an error of non-inflection or over-
regularization. All errors on regular verbs are errors of non-inflection; therefore, since the
proportion of errors is one minus the proportion of correct inflections, it is omitted from
the graph. It is usually hard to detect errors of non-inflection in actual data, because only in
contexts where it is clear that a past tense should have been used (like in “Yesterday Daddy
go…”) can the error be recognized. The data are usually plotted like in Fig. 3b, where
overregularization equals the number of correct responses on irregular verbs divided by
the sum of correct irregulars and irregulars inflected regularly.

The results show U-shaped learning, at least when they are plotted in the same way as
the data usually are (Fig. 3b). The downward slope coincides with the learning of the
regular rule. At this point in the simulation the model has not memorized all irregular past
tenses yet at a level that they can be retrieved without errors. If it fails to retrieve an
irregular past tense it will use one of the regular rules, producing overregularization. The
regular rules may also win the competition with the retrieve production rule because of the
stochastic noise, so the model will not even try to retrieve an irregular past tense. A third
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Fig. 3. Results of the model. (a) Proportions of responses by the model over time. Incorrect regulars are not
indicated since these are all “Regular not inflected”. (b) Overregularization of the model as it is usually plotted:
overregularization is equal to (irregular correct)/(irregular correct1 irregular regularized), and regular mark rate
equals (regular correct)/(regular correct1 regular incorrect).



Innateness of Language

• Central claim: humans have innate knowledge of language

• Assumption: all languages have a common structural basis

• Argument from the Poverty of the Stimulus (Chomsky 1965)

• Linguistic experience of children is not sufficiently rich for 
learning the grammar of the language, hence they must have 
some innate specification of grammar

• Assumption: knowing a language involves knowing a grammar

• Universal Grammar (UG)

•  A set of rules which organize language in the human brain 
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