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Children’s Sensitivity to Lexical Categories

Look, this i
- ! Point to Zav

1

® Gelman & Taylor'84: 2-year-olds treat names not followed by a
determiner (e.g. “Zav”) as a proper name, and interpret them as
individuals (e.g., the animal-like toy).




Children’s Sensitivity to Lexical Categories

Look, this is a zav!
v ! Point to the zav

® Gelman & Taylor'84: 2-year-olds treat names followed by a
determiner (e.g. “the zav”) as a common name, and interpret them
as category members (e.g., the block-like toy).



e Children form lexical categories gradually and over time

® Nouns and verb categories are learned by age two, but adjectives
are not learned until age six

e Child language acquisition is bounded by memory and
processing limitations

® Child category learning is unsupervised and incremental

e Highly extensive processing of data is cognitively implausible
e Natural language categories are not clear cut

® Many words are ambiguous and belong to more than one category

® Many words appear in the input very rarely



e Children might use different information cues for learning
lexical categories

e perceptual cues (phonological and morphological features)
® semantic properties of the words
e distributional properties of the local context each word appears in

e Distributional context is a reliable cue

® Analysis of child-directed speech shows abundance of consistent
contextual patterns (Redington et al., 1998; Mintz, 2003)

® Several computational models have used distributional context to
induce intuitive lexical categories (e.g. Schutze 1993, Clark 2000)



e The majority of the existing models categorize word types in
an iterative, batch process

® E.g. Brown’92, Schitze’93, Redington et al’'98

® |Incremental clustering models
® Cartwright & Brent’'97

® Use word groups to extract templates from sentences, then use a
MDL approach to merge word groups together

® Fvaluated on artificially generated input
® Parisien et al’08

® A Bayesian clustering model with a bootstrapping module;
categories are revised periodically

® Very sensitive to context features, and computationally extensive
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Computational Models of Lexical
Category Induction

® Hierarchical clustering sock
le.g., Schutze’93, Redington et al’98] shoe
cat
e Start from a cluster per word
® merge two most similar dog
clusters in each iteration
man
boy —

oirl  —



Computational Models of Lexical
Category Induction

e (Cluster optimization

shoe
le.g., Brown’92, Clark’00] cat
\ dog

boy

® partition vocabulary
into non-overlapping clusters

gir| ’
® optimize clusters according SOC
to an information theoretic
man
measure



Computational Models of Lexical
Category Induction

® |Incremental clustering models

( Cartwright & Brent’97, Parisien et al’08, Chrupala & Alishahi’10)

® Fach word usage is processed one at a time

® |tis added to the most similar existing cluster, or a new cluster is

created
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e A Bayesian model of lexical category induction

® Word usages are categorized based on similarity of their content
and context to the existing categories

® Best cluster is selected by maximizing the conditional
probability of each cluster for the current usage:

P(k)P(F|k)
P(F)

BestCluster(F') = argmax P(k|F') —= x P(k)P(F|k)
k
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e The model replicates the order of acquisition of different
categories as observed in children
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® The model predicts that using previous category labels will
improve the overall performance
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Case Study: Alishahi & Chrupala (2009)

® An incremental clustering algorithm:

1. Each word usage is put into a new category
2. The most similar category to the new one is found

I. If the similarity i1s above a certain threshold
Ow, the two clusters are merged

IT.The most similar category to the newly merged
one is found

i. If the similarity is above a certain
threshold 6¢c, the two clusters are merged
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Representation of Word Categories

e \Word usage: a vector of content and context features:

-2 -

0O 1

2

“want to put them on”

e A lexical category is a cluster of word usages

o

-2=want

-1=to

O=put

1=them

2=0n

1

1

1

1
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® (Category: the mean of the distribution vectors of its members

-2=want

-2=have

-1=to

0=go

0=sit

0=show

0=send

1=it
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0.75

1

0.25

0.25

0.25

0.25

0.5

® The similarity between two categories: dot product of their vectors

14



® Most of the models treat POS tags as gold-standard

® FEvaluate learned categories based on how well they match POS
categories

® Instead, they use the categories in a variety of tasks

® Word prediction from context

® Inferring semantic properties of novel words based on the
context they appear in

e They compare the performance in each task against a POS-
based implementation of the same task
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She slowly --- the road
I had --- for lunch

e Task: predicting a missing (target) word based on its context

® This task is non-deterministic (i.e. it can have many answers), but
the context can significantly limit the choices

¢ Human subjects have shown to be remarkably accurate at
using context for guessing target words (Gleitman’90, Lesher'02)
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Word Prediction Using Categories

Test item:

-2

want t

0 1 2
put |1

Categorize*

-2

0 1 2

for content feature

Ranked word list

Reciprocal rank

of the target word:
1/4
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Word Prediction - POS Categories

n v n:prop

put them on the table look

v pro prep detnv

have her hair_brushed—
VvV pro n part

there is a spider
adv:loc v det n

Labelled Data Noun Category Feature Representation
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Inferring Word Semantic Properties

I had ZAV for lunch

e Task: guessing the semantic properties of a novel word based
on its local context

e Children and adults can guess (some aspects of) the meaning

of a novel word from context (Landau & Gleitman’85, Naigles & Hoff-
Ginsberg’95)
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Test item:

Inferring Semantic Properties

Categorlze

Semantic feature for
target word position

original target word:

0
() 'for lunch i soup
¢ Semantic
vector

4 :
entity

object
substance
matter

food
edible

p
substance

food
edible
liquid
meal
soup

N 7

Similarity Measure
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e Finer-grained lexical categories seem more suitable for
some tasks than traditional POS categories

e Standardized applications are needed to evaluate and compare
lexical categories induced by different unsupervised methods

® When categorizing words, do children pay attention to
semantic cues as well?

e Computational investigation: include the semantic features of
words into a category learning model, and evaluate the
performance

¢ \What about other cues? (E.g., phonological and
morphological features)
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® Moving from fixed forms (e.g. ‘apple’) to derivational forms

play - plays, played, playing

I, you, admire - “I admire you”

e Morphology and syntax

® In all languages, the formation of words and sentences follows
highly regular patterns

® How are the regulations and exceptions represented?

e The study and analysis of language production in children
reveals common and persistent patterns
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® Observed U-shaped learning curves in children

Imitation: an early phase of conservative language use
Generalization: general regularities are applied to new forms
Overgeneralization: occasional misapplication of general patterns

Recovery: over time, overgeneralization errors cease to happen

e |ack of

® Children do not receive reliable corrective feedback from parents

to help them overcome their mistakes (Marcus, 1993)
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Case Study: Learning English Past Tense

® The problem of English past tense formation:

® Regular formation: stem + ‘ed’

® Irregulars do show some patterns
® No-change: hit - hit

® \owel-change: ring - rang, sing - sang

e Over-regularizations are common: goed

® These errors often occur after the child has already produced the
correct irregular form: went

® \What causes the U-shaped learning curve?
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A Symbolic Account of English Past Tense

® Dual-Route Account (Pinker, 1991): two qualitatively different
mechanisms

Output past tense

List of exceptions Regular route
(Associative memory) (Rule-based)

® Prediction: Input stem

® Errors result from transition from rote learning to rule-governed

® Recovery occurs after sufficient exposure to irregulars
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A Connectionist Account of Learning
English Past Tense

® A connectionist model (Plunkett & Marchman, 1993)

Output units: phonological features of past tense

0

hidden units

A

Input units: phonological features of the stem

® Properties:

® Farly in training, the model shows tendency to overgeneralize; by
the end of training, it exhibits near perfect performance

® U-shaped performance is achieved using a single learning
mechanism, but depends on sudden change in the training size
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A Hybrid, Analogy-based Account

e A rational model of learning past tense based on the ACT-R
architecture (Taatgen & Anderson, 2002)

® Declarative memory chunks represent past tenses, both as a goal
and as examples

PAST-TENSE-GOAL23 PAST-TENSE-GOAL23
TSA PAST TSA PAST
OF WALK OF WALK
STEM NIL STEM WALK
SUFFIX NIL SUFFIX ED
goal to determine accomplished goal,
past tense of walk stored in the memory
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A Hybrid, Analogy-based Account

e The analogy strategy is implemented by two production
rules, based on simple pattern matching:

RULE ANALOGY-FILL-SLOT
IF the goal has an empty suffix slot
AND there i1s an example in which suffix has a wvalue
THEN set the suffix of the goal to the suffix value of
the example

RULE ANALOGY-COPY-A-SLOT
IF the goal has an empty stem slot and the of slot has a
certain value
AND in the example the values of the of and stem slots are
equal
THEN set the stem to the value of the of slot
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Equation

Description

Activation
A = B + context + noise

Base-level activation
B(n)=log Y (t — 1) °

Retrieval time
Time = Fe

Expected outcome
Expected outcome = P,G — C, + noise

The activation of a chunk has three parts: base-level activation,
spreading activation from the current context and noise. Since
spreading activation is a constant factor in the models discussed,
we treat activation as if it were just base-level activation.

n is the number of times a chunk has been retrieved from
memory, and #; represents the time at which each of these
retrievals took place. So, the longer ago a retrieval was, the less
it contributes to the activation. d is a fixed ACT-R parameter
that represents the decay of base-level activation in declarative
memory.

Activation determines the time required to retrieve a chunk. A is
the activation of the chunk that has to be retrieved, and F and f
are fixed ACT-R parameters. Retrieval will only succeed as long
as the activation is larger than retrieval threshold 7, which is
also a fixed parameter.

Expected outcome is based on three quantities, the estimated
probability of success of a production rule (P), the estimated
cost of the production rule (C), and the value of the goal (G).
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A Hybrid, Analogy-based Account

e ACT-R’s production rule mechanism learns new rules by
combining two rules that have fired consecutively into one:

RULE LEARNED-REGULAR-RULE

IF the goal is to find the past tense of a
word and slots stem and suffix are empty

THEN set the suffix slot to ED and set the

stem slot to the word of which you want the
past tense
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A Hybrid, Analogy-based Account
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Innateness of Language

e Central claim: humans have innate knowledge of language

e Assumption: all languages have a common structural basis

e Argument from the Poverty of the Stimulus (Chomsky 1965)

® |inguistic experience of children is not sufficiently rich for
learning the grammar of the language, hence they must have
some innate specification of grammar

e Assumption: knowing a language involves knowing a grammar

e Universal Grammar (UQG)

® A set of rules which organize language in the human brain
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