Language Acquisition:

Computational Modeling

Afra Alishahi, Heiner Drenhaus

Fall 2010, Winter 2011 Computational Linguistics and Phonetics Saarland University

What is Computational Modeling of Human Language Acquisition?

- Human language acquisition
 - Identify processes and mechanisms involved in learning language
 - Detect common behavioural patterns among children
- Computational modeling
 - Simulate a cognitive process via computational tools and techniques
 - Use the model to explain the observed human behaviour
- Computational modeling of human language acquisition
 - Develop computational simulations of the process of human language acquisition

Computational Modeling of Human Language Acquisition

- Using computational methods for modeling cognitive processes of language learning enables us to
 - study these processes through simulation
 - evaluate the plausibility of existing theories of language learning and understanding
 - explain the observed human behavior during the process of learning and using a natural language
 - predict behavioral patterns that have not yet been experimentally investigated

Various Aspects of Language Acquisition

- Word segmentation: extract words from the speech stream
- Phonology: acquire the sound system of the language, and the correct form of each word
- Word meaning: map each word form to the concept it represents in the outer world
- Morphology: learn the regularities governing the structure of each word form
- Syntax: combine words and construct well-formed sentences
- Semantics: interpret the (relational) meaning of a phrase or sentence
- Pragmatics and discourse: use context to augment the meaning

The Focus of this Course

- Word segmentation: extract words from the speech stream
- Phonology: acquire the sound system of the language, and the correct form of each word
- Word meaning: map each word form to the concept it represents in the outer world
- Morphology: learn the regularities governing the structure of each word form
- Syntax: combine words and construct well-formed sentences
- Semantics: interpret the (relational) meaning of a phrase/sentence
- Pragmatics and discourse: how context attributes to meaning

Part I

General Issues

Characteristics of Human Language Acquisition

- Children learn to speak a language fluently at a young age
- Their linguistic knowledge is robust in the face of noise and incomplete data
- Speakers of the same language agree on grammaticality
- Humans are also flexible and creative when using language
- They face limitations on processing resources
- They learn and process language incrementally

Main Questions

- Representation of the linguistic knowledge
 - How is the knowledge organized in mind and brain?
 - Separate areas for representing different types of knowledge?
 - What is innate, what is learnable?

- Acquisition of the linguistic knowledge
 - Are different types of knowledge acquired in order?
 - What are the processes involved in language learning?

Language Modularity

- Representation of the linguistic knowledge
 - How is the knowledge organized in mind and brain?
 - Separate areas for representing different types of knowledge?
 - What is innate, what is learnable?

- Acquisition of the linguistic knowledge
 - Are different types of knowledge acquired in order?
 - What are the processes involved in language learning?

Modularity of Mind

- What is the architecture of the brain?
- Highly modular architecture (e.g., Fodor'83)
 - Each task (including language) is performed by domain-specific, encapsulated and autonomous modules
 - Interaction between these modules is minimal
- Functionalist approach (e.g., Sperber'94, Pinker'97)
 - Modules are defined by the specific operations they perform on the information they receive
- Many variations in between (e.g., Coltheart'99, Barrett & Kurzban'06)

Modularity of Language

- How is language related to other cognitive abilities?
- Highly modular architecture
 - Language is handled by a highly specific "mental organ" or "language faculty"
 - Evidence from studies of the Specific Language Impairment (SLI): language is isolated from other cognitive processes
- Functional approach
 - Language is represented and processed using the same generalpurpose skills which underly other cognitive tasks
 - Evidence from Visual World Paradigm: language and other modules (e.g. vision, gesture) interact at process level

What is a Module?

- Do distinct modules exist within the language processor?
 - E.g. word segmentation, lexical development, syntax
- How to define a module:
 - Representational autonomy: each module has its own representational framework, but learning mechanisms are similar
 - Procedural autonomy: different mechanisms are involved in the acquisition of each aspect, but representations are shared
- The modularity debate is highly interleaved with nativism, or language innateness

Language Learnability

- Representation of the linguistic knowledge
 - How is the knowledge organized in mind and brain?
 - Separate areas for representing different types of knowledge?
 - What is innate, what is learnable?

- Acquisition of the linguistic knowledge
 - Are different types of knowledge acquired in order?
 - What are the processes involved in language learning?

Learnability and Nativism

- The Innateness Hypothesis (IH):
 - Humans have innately specified knowledge in several areas
 - Humans' innate abilities of language are domain-specific
 - I.e., highly detailed linguistic knowledge
- Localization:
 - Processing language is localized to specific regions of brain
- Innateness is <u>not</u> the same as localization

Dual Approach to Studying Language

- Linguistics: focus on "competence"
 - Representational frameworks which precisely and parsimoniously formalize a natural language according to adult speakers
- Psycholinguistics: focus on "performance"
 - process of learning and using a language by children and adults
- The Competence Hypothesis
 - Weak competence: people recover representations that are isomorphic to those of linguistic theories
 - Strong competence: people directly use grammatical knowledge and principles of linguistic theories

How to Approach these Questions?

- Language modularity and learnability have been discussed for decades
- The debate must ultimately be settled by neurological evidence, but for now we have
 - indirect evidence from psycholinguistics on how language is learned as used
 - insight from computational simulation of the plausible mechanisms of language acquisition

Experimental Investigation

- Controlled experimental studies of language
 - One aspect or property of a task or stimuli is manipulated, and other factors are held constant (controlled)
 - The effect of the manipulated condition is investigated among a large group of subjects
- Advantages
 - Isolate different language-related factors in the stimuli
 - Examine significance of the impact of each factor on the process
- Limitations
 - Only the the input (and not the process) can be manipulated
 - Each subject has a different learning history

Computational Simulation

- Computational models require detailed specification of the input properties and the processing mechanism
- Methodological advantage:
 - Explicit assumptions: all bias or constraint on the characteristics of the input data and learning mechanism are specified
 - Controlled input: researcher has full control over the input that the model receives in its life time
 - Observable behaviour: impact of every factor in the input or the learning process can be directly studied in the output
 - Testable predictions: novel situations or combinations of data can be simulated

Computational Language Acquisition

- We use computational modeling of human language acquisition for
 - suggesting cognitively plausible formalisms for representing linguistic knowledge
 - developing algorithms that can acquire knowledge of language from exposure to linguistic data
 - explaining the observed patterns and predicting new ones in the experimental data

Marr's Levels of Modeling

- Theories provide a high-level characterization of a process
- Marr's (1982) 3 levels of describing cognitive processes
 - Computational: what knowledge is computed
 - Algorithmic: how computation takes place
 - Implementation: how algorithms are realized in brain
- A computational model must specify, and be evaluated based on the level it attempts to simulate a process

What if the Model is Flawed?

stated at computational level

built at algorithmic level, therefore details of processing have to be specified

Cognitive Plausibility

• Realistic input data

- Make realistic assumptions about the actual properties of the data available to children, e.g. noise, no negative evidence
- Language-independent strategies
 - Do not rely on learning techniques that only work for some languages, e.g. exploiting fixed word order
- Memory and processing limitations
 - Avoid unrealistically computation-heavy algorithms, e.g. remembering every sentence or processing data iteratively
- Incrementality
 - Process every piece of data when received

What to Expect from a Model

- A computational model can, at best
 - show that certain types of knowledge can be learned from certain types of input
 - suggest that a particular mechanism/algorithm is plausible due to the behavioural patterns it yields
- Computational cognitive models should conform to psychological plausibility criteria
 - At computational level, a cognitive model must make realistic assumptions about the properties of input
 - At algorithmic and implementation level, a model should conform to incrementality and processing limitations

Modeling Frameworks

• Symbolic models

- rule-based, computationally well-understood, transparent with respect to their linguistic basis
- Connectionist models
 - inspired by the structure of brain: distributed representations of the input, output, and linguistic knowledge
- Probabilistic models
 - transparent linguistic basis, combined with experience-based learning and inference mechanisms
- Hybrid models
 - a combination of the above approaches, e.g. a symbolic representation of linguistic knowledge paired with a probabilistic learning mechanism

Symbolic Modeling

- Explicit formalization of the representation and processing of language through a symbol processing system
 - Linguistic knowledge
 - A set of symbols and their propositional relation
 - Learning and processing mechanism
 - Processing and updating knowledge via general rules or schemas, and under certain constraints
 - Each rule is augmented by a list of exceptions, i.e. tokens for which the rule is not applicable

Symbolic Modeling - Example

- Context Free Grammar (CFGs)
 - A symbolic formalism for representing grammatical knowledge of language

English Past Tense

Rule:	Vpast -> Vroot + "ed"
Exceptions:	go \rightarrow went, put \rightarrow put,

Connectionist Modeling

- Inspired by simple neuronal processing in the brain
 - Linguistic knowledge
 - Distributed activation patterns over many neurons, and the strength of connections between them
 - Learning and processing mechanism
 - A neuron receives, processes and passes signals to other neurons
 - Connection weights between neurons change over time to improve the performance of the model in certain tasks
 - Cognitive processes
 - Large numbers of neurons perform basic computations in parallel

Connectionist Modeling - Example

Probabilistic Models

- Apply Probability Theory on previous language exposure
 - Linguistic knowledge
 - Weighted information units that reflect bias or confidence based on previous observations
 - Learning mechanism
 - Principled algorithms for weighting and combining evidence to form hypotheses that explain data best

- Bayesian modeling
 - Inference on observed data to infer the probability of a hypothesis

Bayesian Inference

• Bayes' rule: break down complex probabilities into ones that are easier to compute

• Find the hypothesis *i* that maximizes P(i|e)

Hybrid Models

- A combination of the techniques and formalisms from different frameworks
- Example:
 - a symbolic rule-based representation, where each rule is augmented with a probability value indicating its applicability
 - English past-tense formation rules:

Rule 1:	$Vpast \rightarrow Vroot + "ed"$	probability: 0.7
Rule 2:	$Vpast \rightarrow Vroot$	probability: 0.08
• • •	• • •	• • •

Evaluation of Computational Models

- Cognitive models cannot be solely evaluated based on their accuracy in performing a task
 - The behavior of the model must be compared against observed human behavior
 - The errors made by humans must be replicated and explained
- Evaluation of cognitive models depends highly on experimental studies of language

Language Acquisition Models: Evaluation

- What humans know about language can only be estimated/ evaluated through how they use it
 - Language processing and understanding
 - Language production
- Analysis of child production data yields valuable clues
 - Developmental patterns such as error and recovery
- Comprehension experiments reveal biases and preferences
 - knowledge sources that children exploit, and their biases towards linguistic cues

Language Production Data

- CHILDES database (MacWhinney, 1995)
 - An ever-growing collection of the recorded interactions (text, audio, video) between children and their parents

@Languages: 2 en CHI Adam Target Child, URS Ursula Bellugi Investigator, MOT Mother, ... 3 @Participants: @ID: enlbrownlCHII3;1.26lmalelnormallmiddle classlTarget Childll 4 5 @ID: enlbrownlPAUIIIIBrotherII 6 @ID: enlbrownlMOTIIIIMotherII 9 @Date: 30-AUG-1963 @Time Duration: 10:30-11:30 10 11 *CHI: one busses. 12 112IQUANT 210IROOT 312IPUNCT 14 ***URS**: one. 110IROOT 211IPUNCT 17 *CHI: two busses. 112IOUANT 210IROOT 312IPUNCT 20 *CHI: three busses. 22 112IOUANT 210IROOT 312IPUNCT

Experimental Methods

- Online methodologies
 - Reading time studies: measure relative processing difficulties
 - Eye-tracking studies: Monitor gaze as people hear a spoken utterance; anticipatory eye-movements reflect interpretation
 - Visual world paradigm: monitor subjects' eye movements to visual stimuli as they listen to an unfolding utterance
- Offline methodologies
 - Preferential looking studies: monitor infants' preferences of certain scene depictions based on linguistic stimuli
 - Act-out scenarios: describe an event and ask the child to act it out using a set of toys and objects
 - Elicitation tasks: persuade the child to describe an event or action

Reading Times

• Reading the whole sentence

The man held at the station was innocent

• Self-paced reading, central presentation

isthebliebt

• Self-paced reading, moving window

The man held at the station was innocent

Eye-tracking

Preferential-looking Studies

• Monitor infants' preference of visual stimuli based on linguistic stimuli

Preferential-looking Studies

• Monitor infants' preference of visual stimuli based on linguistic stimuli

Neuroscientific Methods

Syntactic and semantic processes are partially revealed by activation patterns in brain

• Electroencephalography (EEG)

"The spoilt child throw(s) the toy on the ground" • Semantic Anomaly: N400