Memory: A two-component model

• The most influential model by Atkinson and Shiffrin (1968)
 • Long-term Memory (LTM)
 • Short-term Memory (STM)

• The flow of information

environment ➔ a temporary short-term storage system ➔ a more durable long-term memory

 also serves as a working memory

• Working memory: a workplace
 • structures and processes used for temporary storage and manipulation of information

• Short-term memory: short-term storage of information
Memory: A two-component model

• Evidence from neuropsychology
 • Damage to the medial temporal lobe
 • Impaired capacity for new learning
 • Performance on STM tasks unaffected
 • Conduction aphasia patients -> a specific deficit in STM

• A Paradox

Problems in STM (functions as a working memory) ➔ Problems in LTM ➔ Problems in a wide range of other complex cognitive tasks
Working Memory: A three component model

- To tackle this paradox ...
 - Divide the unitary WM into three separable components

A visual subsystem for storage and manipulation
An attentional system that controls behavior
A temporary verbal-acoustic storage system
The Visuospatial Sketchpad

• A visual subsystem of working memory
 • Function:
 - Less relevant to language disorders

Visuospatial Sketchpad

Spatial information
Visual information
Kinesthetic information

integration

Unified representation stored and manipulated
• An unexpected role in comprehension
 • Grammatical capacity of people with Williams syndrome
 • Preserved verbal skills
 • Impaired visuospatial processing
 • Subjects: 3 groups
 • WS: Williams Syndrome
 • TD: typically developing children
 • MLD: Minimal Learning Disability
 • Procedure: present sentences
 • with/without spatial term
 • Task: find the corresponding picture from 4
The Central Executive

- The attentional control of working memory
 - Effect on language processing

- Executive Processes determine Working Memory Span
 - Robust predictor for Wide range of complex Cognitive Skills
 - Influence on Reading Comprehension and Learning
The Phonological Loop

• Two subcomponents

<table>
<thead>
<tr>
<th>Phonological loop</th>
<th>Temporary storage system</th>
<th>Subvocal rehearsal system</th>
</tr>
</thead>
</table>

Hold memory traces over seconds, decay unless refreshed by ...

Maintain information & Register visual information (item can be named)

• Evidence for subvocal
 • Subvocal -> Retention depend on acoustic phonological characteristics
 • Easy: B, W, Y, K, R, X
 • Hard: T, C, V, D, B, G
 • Easy: pit, day, cow, sup, pen
 • Hard: man, cat, map, cab, can
The Phonological Loop

• Evidence for rehearsal \(<-\) the Word Length effect
 • Present 5-word sequences
 • Require immediate serial recall
 • Number of syllable ↑, Performance ↓
 • Less rehearsal

• Wiped out by utterance of a sequence of irrelevant sounds
 • Output delay held consistent

• Retention through rehearsal blocked
The Phonological Loop

Neuroanatomical basis

• Evidence for separable storage and rehearsal systems

 • Lesions and neuroimaging Studies
 • Brodmann area 44: storage
 • Broca’s area (Brodmann area 6 and 40): subvocal rehearsal
 • Activation principally in the left hemisphere
The Phonological Loop
Functional significance

• What biological function is served by the system?
 • STM deficits -> few problems in daily life

• Hypothesis: facilitate the acquisition of language
 • Subject: patient with pure phonological STM deficit
 • Task:
 • (1) acquisition of the vocabulary of an unfamiliar foreign language
 • 8 items of Russian vocabulary (e.g., rose – svieti)
 • (2) learning to associate pairs of unrelated words in native language
 • e.g., horse - castle
 • Result: normal in (2), but completely failed in (1)
 • Conclusion: A useful aid in learning new words
The Phonological Loop
Functional significance

• What biological function is served by the system?
 • STM deficits -> few problems in daily life

 • Hypothesis: facilitate the acquisition of language
 • Extend the findings:

 • Confined to second language learning
 • Acquisition of native language?

• Variables that impair the phonological loop
 - Disrupt
 - Foreign language learning
 - Paired associate learning in native language
The Phonological Loop
Native language acquisition

• The phonological loop and native language acquisition
 • Follow-up: tests of verbal memory

A group of children with a specific language impairment (SLI)
• Mean age: 8 years
• Nonverbal intelligence: normal
• Language development: delay of 2 years

• A particular deficit in sound mimicry
 • the capacity to hear and repeat nonwords
- The phonological loop and native language acquisition
 - Follow-up: a developed nonword repetition test

A group of normal children
- Mean age: 8 years
- Nonverbal intelligence: matched
- Language development: normal

A group of children with a specific language impairment (SLI)
- Mean age: 8 years
- Nonverbal intelligence: normal
- Language development: delay of 2 years

A group of younger children
- Mean age: 6 years
- Nonverbal intelligence: normal
- Language development: matched

- SLI group: 4 years behind the age & 2 years behind the language development
 - Deficit <- impairment in the phonological storage component
The Phonological Loop
Native language acquisition

- Investigation within normal children
 - Groups of 4 year olds & 5 year olds
 - Measuring ...
 - Nonword repetition
 - Nonverbal intelligence
 - Vocabulary
 - Clear association between nonword repetition and vocabulary
 - Phonological loop facilitates native language acquisition

- Correlation ≠ Causation
 - Rich vocabulary facilitates acquisition of new words?
• Investigation within normal children
 • Evidence for the primacy of phonological storage
 • Cross-lagged correlation
 • Relate vocabulary and nonword repetition between 4 and 5
The Phonological Loop
An alternative view

• An alternative view
 • Phonological storage
 • merely a reflection of deeper phonological processing problems

• A model by Brown and Hulme (1996)
 • No role for phonological storage
 • Emphasize on the role of existing language habits in facilitating vocabulary learning
• Evidence for the alternative view
 • An important study by Gathercole (1995)
 • For any nonword, some sequences are harder than others
 • Easier: resemble English words (e.g., stirple, blonterstaping)
 • Harder: unfamiliar phoneme sequences (e.g., kipser, perplisteronk)
 • Follow-up study
 • Influence of existing language habits on current nonword repetition performance
The Phonological Loop
An alternative view

• One way of explaining this pattern of results ...
 • Phonological loop
 • divided into separate storage and articulatory components
 • Highly appropriate in retrospect
 • If storage dominated by habits ...
 • new items swamped by old items -> new learning hindered by habits
 • Articulatory output impacted by habits
 • enhance repetition of familiar phoneme sequences
The Phonological Loop
An alternative view

• Evidence for the explanation
 • A series of studies by Gathercole et al.
 • Subjects: children who might have articulatory difficulties
 • Procedure: children hear 2 sequences of words or nonwords
 • E.g., *dog, pen, hat, tip* -- *dog, hat, pen, tip*
 • Task: identical or changed
 Performance with word sequences vs. Performance with nonword sequences
 • Result: the lexicality effect disappeared
 • Familiarity of phoneme sequences
 • Conclusion: **Existing language habits** -- impact on output and rehearsal
Conclusion

- **Working Memory ...**
 - A temporary storage system
 - Implications for language processing
 - Disorders impact on language processes
 - Deficits within the phonological loop or other aspects
 - Serious impair language processing

- The interface between working memory and language
 - Continue to be fruitful
Questions

• Word length effect?
 • Long words take longer to recall?
 • How is the phonological information stored?
 • What’s the unit of phonological information?

• How is the written language processed in working memory exactly?
 • How is the visual information registered by the subvocal rehearsal system utilized?
 • How is stored visual information integrated with phonological information?
 • How does the visuospatial sketchpad integrate with phonological loop?