Dialogue Systems

Cooperative Response Generation in Dialogue

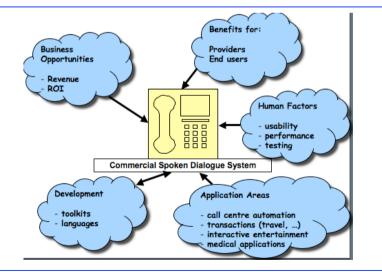
Introduction

Ivana Kruijff-Korbayova

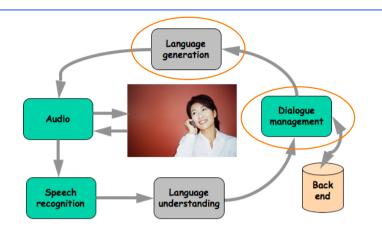

• Emerging interdisciplinary area since the early 1990s

- integration of speech technology, natural language processing, AI, dialogue / communication theory, human factors, ...
- scientific / academic based research
- commercially driven R&D
- achievements and challenges

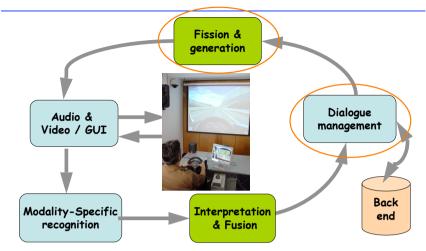
Ivana Kruijff-Korbayová: Cooperative Response Generation


Ivana Kruijff-Korbayová: Cooperative Response Generation

Dialogues System Research


Ivana Kruijff-Korbayová: Cooperative Response Generation

Dialogue System Industry


Ivana Kruijff-Korbayová: Cooperative Response Generation

Typical Pipeline Architecture

Ivana Kruijff-Korbayová: Cooperative Response Generation

Typical Pipeline Architecture (Multimodal)

Ivana Kruijff-Korbayová: Cooperative Response Generation

Dialogue Management

Task complexity

• Finite state systems

- Sequence of predefined steps (dialogue script)

- Frame-based systems (form-filling)
 - Task represented as a set of slots to fill (frame, template)

• Agent-based systems

- Joint problem solving by collaborating agents

Output Generation

- Canned text
- Template-based
- Concept-to-text/speech ("deep generation")
 - Content selection
 - Utterance planning
 - Surface realization
 - Speech synthesis

Key Issues

- Collaboration
 - Gricean maxims
- Initiative
- Grounding and error recovery

Collaboration

- Communication is a joint activity: agents collaborate to establish and achieve their goals
- Cooperative Principle (Grice)
 - Make your contribution such as is required, at the stage at which it occurs, by the accepted purpose or direction of the talk exchange in which you are engaged
 - Maxims of Conversation
 - Maxim of quality
 - Maxim of quantity
 - Maxim of relevance
 - Maxim of manner
- Neither agent can accomplish the task alone
 - --> joint goals, mixed initiative
- Need mutual understanding

--> grounding

Ivana Kruijff-Korbayová: Cooperative Response Generation

Ivana Kruijff-Korbayová: Cooperative Response Generation

Initiative

- · Who is in control of the dialogue progression?
 - Being the one who's talking does not necessarily mean being in control, e.g., just answering a question
 - Dialogue initiative vs. task initiative
- · Basically, two models:
 - Fixed initiative model (one participant in control)
 - System-initiative: can drive dialogue as wanted by prompting user, but may be unnatural and inconvenient for user
 - User initiative: can do what wants when wants, but difficult for system, because it doesn't know what is coming
 - Mixed initiative model (either participant can assume initiative, depending on knowledge, skills, situation, etc.)
 - Typical in human-human conversation
 - System needs to decide when/whether to take initiative, e.g.
 - "overanswering"
 - avoiding or recovering from dead-ends

Grounding

(Clark 1996)

- Principle of (joint) closure: Agents performing a (joint) action require (CG) evidence, sufficient for current purposes, that they have succeeded in performing it
- · Levels of interpretation: channel, signal, proposition, intention
- The optimal evidence isn't usually the strongest, most economical and most timely evidence possible, for that may be too costly.
- Positive grounding feedback:
 - Continued attention
 - Relevant next contribution
 - Acknowledgement (nod or "continuer", e.g., uh-huh, yeah; or assessment, e.g., that's great)
 - Demonstration (by paraphrasing, reformulating or cooperatively completing)
 - Display (verbatim repetition)

Verification Strategies in Systems

- Immediate explicit feedback (and verification request)
 - S: Where do you want to go?
 - U: Hamburg.
 - S: Traveling to Hamburg. (OK?)
 - U: Yes.
 - S: When do you want to go?
- Immediate "implicit" feedback by incorporating material to be grounded in the next system turn (see if user accepts or protests)
 - S: Where do you want to go?
 - U: Hamburg.
 - S: And when do you want to go to Hamburg?
- Delayed explicit feedback by summarizing at task end
 - ..
 - S: So. Traveling from Saarbrücken to Hamburg on Monday June 6
- ...

Ivana Kruijff-Korbayová: Cooperative Response Generation

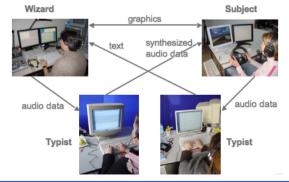
More Key Issues

- Global and local structure, sub-dialogues
- Style, Personality
- Influence of context
 - Intonation
 - Referring expressions
 - Indirectness
- Alignment
- Adaptivity (tailoring)

Ivana Kruijff-Korbayová: Cooperative Response Generation

Local Coherence

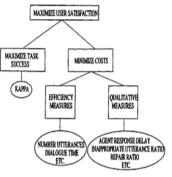
S: What is the patient's sex?


U: Female with severe nipple discharge

- S: What is the patient's age?
- U: Fifty five
- S: Is the discharge bilateral?
- U: No
- S: What is the patient's sex?
 - U: Female with severe nipple discharge
 - S: Is the discharge bilateral?
 - U: No
 - S: What is the patient's age?
 - U: Fifty five

[Milward&Beveridge 2003]

Development Methodology


- Requirement Specification
 - Analysis of human-human dialogues
 - Wizard-of-Oz experiments (simulations) to gather user behavior samples and test design ideas in early stages of development
 - + e.g., the TALK project WOZ experiment setup:

Ivana Kruijff-Korbayová: Cooperative Response Generation

Development Methodology

- Usability Evaluation
 - PARADISE framework
 - [Walker et al. 1997]:
 - Maximize user satisfaction through maximizing task success while minimizing dialogue costs
 - User satisfaction (surveys)
 - Objective measures:
 - Task success (in terms of filling a set of slots)
 - Dialogue costs:
 - » Efficiency, e.g., no. of turns and time
 - » qualitative phenomena, e.g., no. of
 - inappropriate utterances or repairs • Performance function: relative contribution of objective factors to user satisfaction
 - Questionnaires, questionnaires

Deployment Platforms

- PC
 - GoDIS
 - Circuit-Fix-It Shop, TRIPS/TRAINS
 - Autotutor, Why-Atlas, BE&E, PACO ...
- Telephone
 - Philips Train Timetable System, Deutsche Bahn info, ...
 - It-Spoke weather
- Embedded voice systems
 - HAL (Home Automated Living), D'Homme project
- In-car voice or multimodal systems
 BMW navigation, TALK project: MP3 player
- PDA, tablet PCs, next generation phones
 - MATCH, SmartKom
- Embodied agents
 - REA, SAM, MRE, ...
- Robots
 - WITAS
 - MEL, BIRON, COSY and CogX system, Companions

Ivana Kruijff-Korbayová: Cooperative Response Generation

Ivana Kruijff-Korbayová: Cooperative Response Generation

Applications

- Speech interfaces to devices, e.g., TV, lamps, heating, washer, MP3 player, navigation system, ...
- Speech interfaces to databases, e.g., TV, MP3 player, timetable info(train, flight, ...), restaurants, movie info, stock-exchange info, soccer results, weather forecast, ...
 - Philips, DBahn, ItSpoke Weather, MATCH
- · Expert systems / decision support, collaborative agents
 - TRAINS/TRIPS, WITAS
- Educational systems, e.g.,
 - Tutoring language, math, physics, electric circuits, ...
 AutoTutor
 - Communication skills (e.g., story-telling or -listening systems)
 SAM, LISTEN, MRE
 - Decision skills
 - MRE
- Conversational or entertainment systems
 - MEL, REA, Companions

Key Issues for the Future

- Pervasive systems
 - distributed dialogues: shifts between dialogue situations
 - concurrent dialogues: multitasking (co-ordination, synchronisation, redundancy)
 - interaction model needs to be predominantly event-based (external events, opportunistic)
- Adaptivity:
 - Systems need to be dynamically adaptive in a number of different ways: to the
 environments in which they are used (modality), to their user's preferences and
 needs (personalisation), to changes in task and context, to interaction progress.
- · Ability to learn:
 - Systems need to be able to learn from interactions with users in order to provide an optimally usable interface that matches the current environment and user.
- Standardization:
 - There is a need for a common set of standards to support re-usability for developers and to support usability for the users of spoken dialogue systems, e.g. constraining vs. open-ended prompts, explicit vs. implicit verification.

Reading

- D. Jurafsky and J. Martin (2000): Speech and Language Processing, Chapters 19 and 20.
- McTear (2002): Spoken Dialogue technology. In ACM Surveys. pp. 1-80.

Ivana Kruijff-Korbayová: Cooperative Response Generation