Incremental Tree-Adjoining Grammars

Vera Demberg

Cluster of Excellence "Multimodal Computing and Interaction" Universität des Saarlandes

Incremental Syntax and Semantics Seminar WS 2012/13

November 7th, 2012

Vera Demberg (Saarland University)

Incremental Processing with TAGs

Table of Contents

Reminder of Last Week's Materials

- 2) Tree-Adjoining Grammar
- Incremental TAG
 - The DVTAG Formalism
 - The PLTAG Formalism
- 4 The Incremental PLTAG Parser
- 5 Psycholinguistic Evaluation Results for Syntax
- Outlook to Semantics

Table of Contents

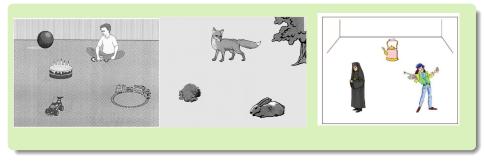
Reminder of Last Week's Materials

- Tree-Adjoining Grammar
- Incremental TAG
 - The DVTAG Formalism
 - The PLTAG Formalism
- 4 The Incremental PLTAG Parser
- 5 Psycholinguistic Evaluation Results for Syntax
- Outlook to Semantics

Reminder last week's materials

Evidence for incremental processing and even predictive processes

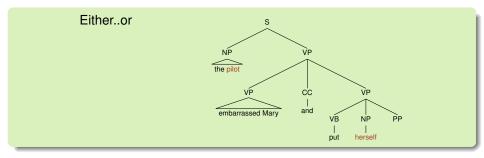
- Visual World and Eye-tracking
- Eye-tracking in Reading
- ERP / EEG



Reminder last week's materials

Evidence for incremental processing and even predictive processes

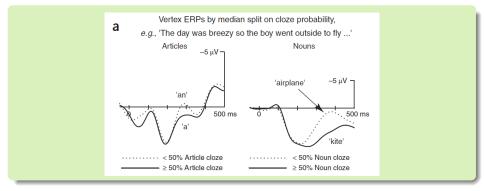
- Visual World and Eye-tracking
- Eye-tracking in Reading
- ERP / EEG



Reminder last week's materials

Evidence for incremental processing and even predictive processes

- Visual World and Eye-tracking
- Eye-tracking in Reading
- ERP / EEG



Reminder of last weeks experimental findings

Results and Conclusions:

- Processing is generally incremental (syntax and semantics)
- Evidence for syntactic connectedness at specific points in the sentence (c-command relation)
- People anticipate arguments
- They do not anticipate adjuncts

Question for next few sessions: How can we model incremental processing?

Reminder of last weeks experimental findings

Results and Conclusions:

- Processing is generally incremental (syntax and semantics)
- Evidence for syntactic connectedness at specific points in the sentence (c-command relation)
- People anticipate arguments
- They do not anticipate adjuncts

Question for next few sessions:

How can we model incremental processing?

Psycholinguistic Modelling

What is a cognitive model of language processing?

Input: words \Rightarrow Output: per word difficulty

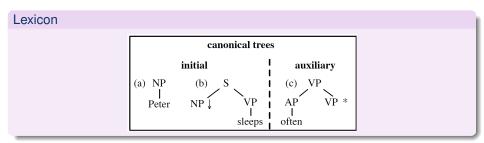
- Processing Model (parser)
- Linking Theory (relates the parsing process to processing difficulty), e.g.
 - quantifying the ease with which particular structures are constructed or accessed
 - quantify how long it takes to disambiguate between alternatives
 - information theoretic measure, e.g. surprisal / entropy

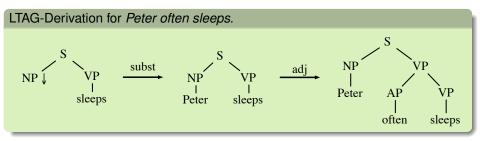
Table of Contents

Tree-Adjoining Grammar

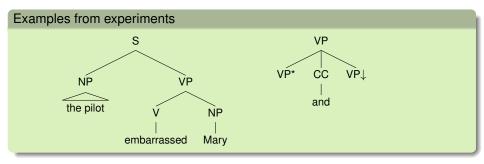
- Incremental TAG
 - The DVTAG Formalism
 - The PLTAG Formalism
- 4 The Incremental PLTAG Parser
- 5 Psycholinguistic Evaluation Results for Syntax
- Outlook to Semantics

Lexicalized Tree-Adjoining Grammar



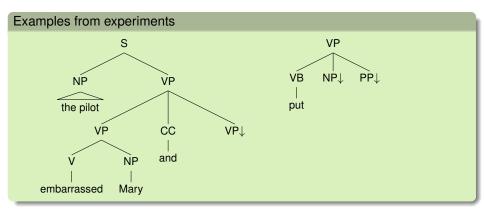


TAG has been argued to be a suitable grammar formalism, consider:



• TAG adjunction can model e.g. connectedness at herself.

TAG has been argued to be a suitable grammar formalism, consider:

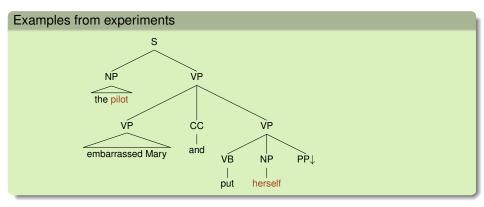


• TAG adjunction can model e.g. connectedness at herself.

Vera Demberg (Saarland University)

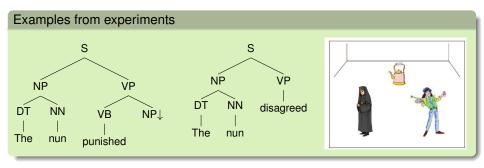
Incremental Processing with TAGs

TAG has been argued to be a suitable grammar formalism, consider:



• TAG adjunction can model e.g. connectedness at herself.

TAG has been argued to be a suitable grammar formalism, consider:



- TAG adjunction can model e.g. connectedness at herself.
- Subcategorization frames in elementary trees allow to account for simple prediction effects.

Vera Demberg (Saarland University)

Incremental Processing with TAGs

Table of Contents

Reminder of Last Week's Materials

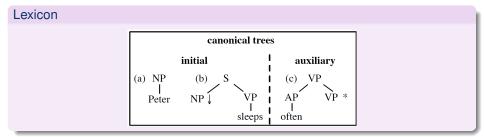
Tree-Adjoining Grammar

- Incremental TAG
 - The DVTAG Formalism
 - The PLTAG Formalism
- 4) The Incremental PLTAG Parser
- 5 Psycholinguistic Evaluation Results for Syntax

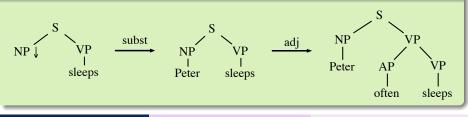
Outlook to Semantics

LTAG and strict incrementality

But LTAG is not incremental and does not allow for general connectedness.



LTAG-Derivation for Peter often sleeps.



Vera Demberg (Saarland University)

Incremental Processing with TAGs

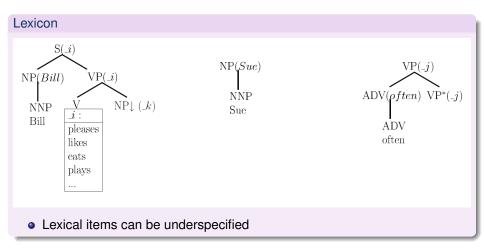
Suggestions for an incremental version of TAG.

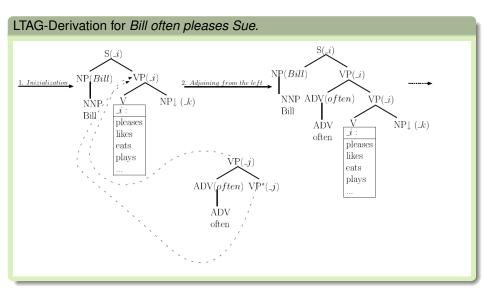
When is LTAG not incremental?

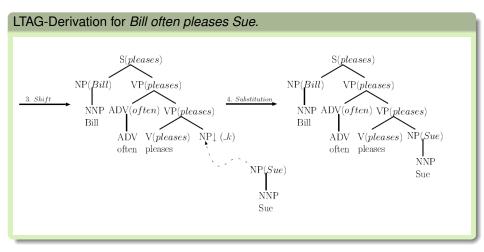
- if we have two or more dependents but no head
- if we have a grand-parent and a child, but not parent
- \Rightarrow so need to insert missing structure

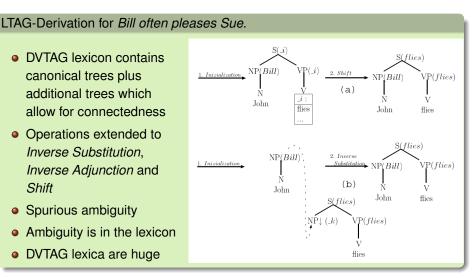
Versions of TAG that support full connectedness:

- Dynamic Version of TAG (DVTAG, Mazzei 2005)
- PsychoLinguistically motivated TAG (PLTAG, Demberg 2010)

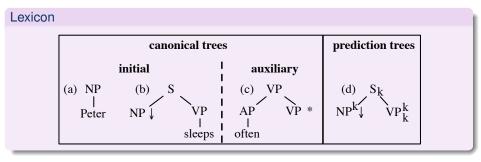


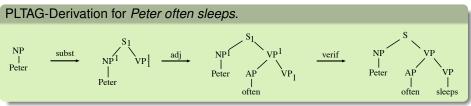






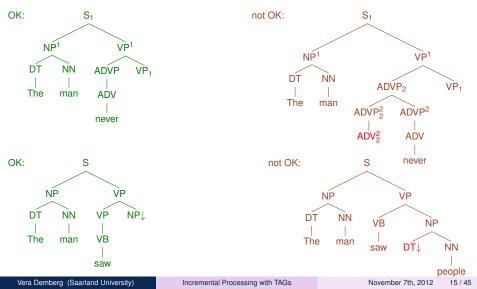
The PLTAG Formalism





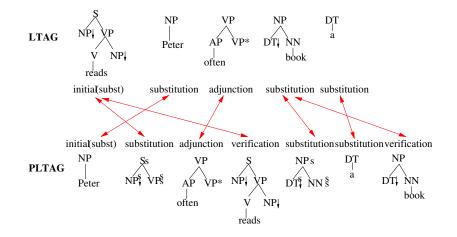
PLTAG – Valid Partial Derivations

Some examples of valid and invalid partial derivations.



The relationship between LTAG and PLTAG

Every LTAG derivation can be translated into an equivalent PLTAG derivation.



PLTAG and LTAG are equally expressive.

Vera Demberg (Saarland University)

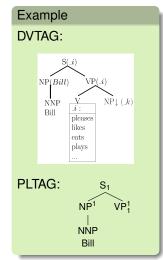
Both strongly equivalent to LTAG

- Both introduce new operations (inversed subst & adj, shift / verification)
- Prediction explicitly marked in PLTAG
- Prediction granularities differ
- PLTAG lexicon (7k + 3k templates) smaller than DVTAG lexicon (6m templates);
 (both automatically generated from PTB)
- Both formalisms support multi-anchored trees
- Parsing algorithm and broad coverage parser for PLTAG only.

- Both strongly equivalent to LTAG
- Both introduce new operations (inversed subst & adj, shift / verification)
- Prediction explicitly marked in PLTAG
- Prediction granularities differ
- PLTAG lexicon (7k + 3k templates) smaller than DVTAG lexicon (6m templates);
 (both automatically generated from PTB)
- Both formalisms support multi-anchored trees
- Parsing algorithm and broad coverage parser for PLTAG only.

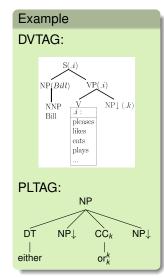
- Both strongly equivalent to LTAG
- Both introduce new operations (inversed subst & adj, shift / verification)
- Prediction explicitly marked in PLTAG
- Prediction granularities differ
- PLTAG lexicon (7k + 3k templates) smaller than DVTAG lexicon (6m templates);
 (both automatically generated from PTB)
- Both formalisms support multi-anchored trees
- Parsing algorithm and broad coverage parser for PLTAG only.

- Both strongly equivalent to LTAG
- Both introduce new operations (inversed subst & adj, shift / verification)
- Prediction explicitly marked in PLTAG
- Prediction granularities differ
- PLTAG lexicon (7k + 3k templates) smaller than DVTAG lexicon (6m templates); (both automatically generated from PTB)
- Both formalisms support multi-anchored trees
- Parsing algorithm and broad coverage parser for PLTAG only.

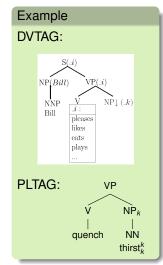


- Both strongly equivalent to LTAG
- Both introduce new operations (inversed subst & adj, shift / verification)
- Prediction explicitly marked in PLTAG
- Prediction granularities differ
- PLTAG lexicon (7k + 3k templates) smaller than DVTAG lexicon (6m templates);
 (both automatically generated from PTB)
- Both formalisms support multi-anchored trees
- Parsing algorithm and broad coverage parser for PLTAG only.

- Both strongly equivalent to LTAG
- Both introduce new operations (inversed subst & adj, shift / verification)
- Prediction explicitly marked in PLTAG
- Prediction granularities differ
- PLTAG lexicon (7k + 3k templates) smaller than DVTAG lexicon (6m templates);
 (both automatically generated from PTB)
- Both formalisms support multi-anchored trees
- Parsing algorithm and broad coverage parser for PLTAG only.



- Both strongly equivalent to LTAG
- Both introduce new operations (inversed subst & adj, shift / verification)
- Prediction explicitly marked in PLTAG
- Prediction granularities differ
- PLTAG lexicon (7k + 3k templates) smaller than DVTAG lexicon (6m templates);
 (both automatically generated from PTB)
- Both formalisms support multi-anchored trees
- Parsing algorithm and broad coverage parser for PLTAG only.



- Both strongly equivalent to LTAG
- Both introduce new operations (inversed subst & adj, shift / verification)
- Prediction explicitly marked in PLTAG
- Prediction granularities differ
- PLTAG lexicon (7k + 3k templates) smaller than DVTAG lexicon (6m templates);
 (both automatically generated from PTB)
- Both formalisms support multi-anchored trees
- Parsing algorithm and broad coverage parser for PLTAG only.

Discussion: Incremental TAG formalisms

- What is tree adjoining grammar?
 - Where's the grammar?
 - What are the standard TAG operations?
- Why is TAG suitable for modelling experimental results?
 - the pilot embarrassed Mary and put herself in an awkward situation
 - either..or
 - prediction of arguments but not adjuncts
- In how far does TAG not support incremental processing?
- What are the mechanisms in DVTAG and PLTAG to allow for incremental derivations?

Table of Contents

Reminder of Last Week's Materials

2) Tree-Adjoining Grammar

- Incremental TAG
 - The DVTAG Formalism
 - The PLTAG Formalism

The Incremental PLTAG Parser

5 Psycholinguistic Evaluation – Results for Syntax

Outlook to Semantics

Steps in Constructing the Parser

- Conversion of the Penn Treebank into PLTAG format
- 2 Lexicon Induction
- The Incremental Parsing Algorithm
- The Probability Model
- Parser Evaluation

Step 1: Treebank Conversion

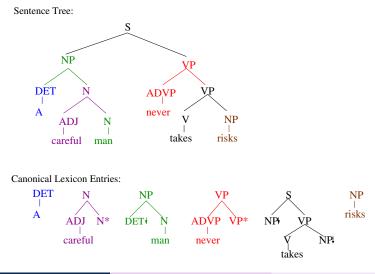
Converted Penn Treebank into TAG format [Xia et al. 2000]

- Head percolation table for determining how to cut up the tree into elementary trees [Magerman, 1994]
- **PropBank** [Palmer et al., 2003] for discriminating arguments and modifiers
- Noun phrase annotation for the Penn Treebank [Vadas & Curran, 2007]
- Multi-anchored trees (e.g. either... or, pick... up)

The resulting structure is less flat, contains head information and argument / modifier distinction.

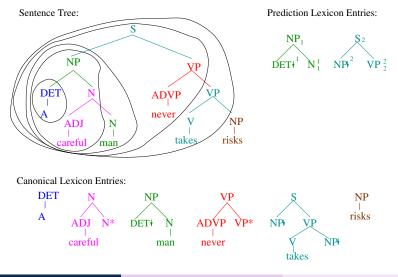
Step 2: Lexicon Induction

Creating the lexicon:

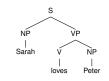


Step 2: Lexicon Induction

Creating the lexicon:

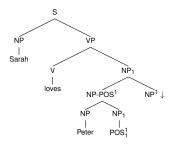


- Prediction trees are not lexicalized.
- So a parser could use infinitely many of them at any time.
- Our approach: only allow combination of prediction trees which have been observed in training.
- Left recursion?!
- People are not able to deal with infinite left recursion either.



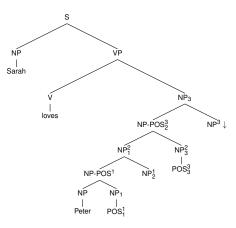
Sarah loves Peter

- Prediction trees are not lexicalized.
- So a parser could use infinitely many of them at any time.
- Our approach: only allow combination of prediction trees which have been observed in training.
- Left recursion?!
- People are not able to deal with infinite left recursion either.



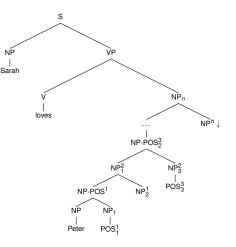
Sarah loves Peter's books.

- Prediction trees are not lexicalized.
- So a parser could use infinitely many of them at any time.
- Our approach: only allow combination of prediction trees which have been observed in training.
- Left recursion?!
- People are not able to deal with infinite left recursion either.



Sarah loves Peter's father's books.

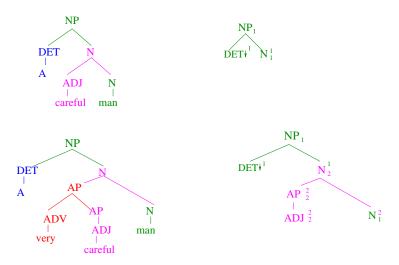
- Prediction trees are not lexicalized.
- So a parser could use infinitely many of them at any time.
- Our approach: only allow combination of prediction trees which have been observed in training.
- Left recursion?!
- People are not able to deal with infinite left recursion either.



Sarah loves Peter's father's neighbor's ... books.

Step 2: Lexicon Induction

Pre-combined prediction trees:



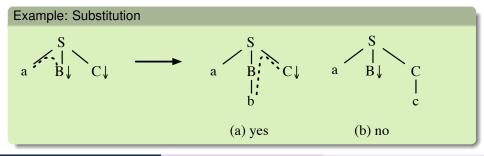
Step 3: The Parsing Algorithm

Requirements:

- Produce incremental and fully connected structures at every point in time
- Only produce valid PLTAG trees

Helpful Concept: Fringes

- tree can be described by its depth-first traversal
- only part of incremental tree is relevant at each step



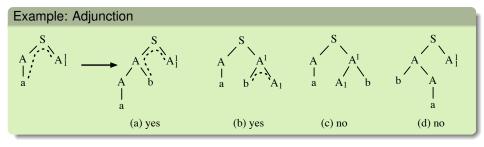
Step 3: The Parsing Algorithm

Requirements:

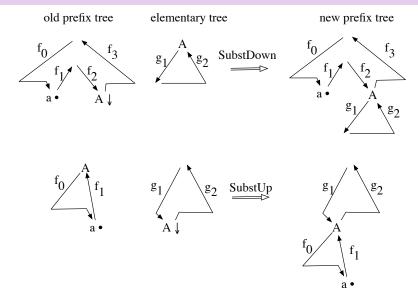
- Produce incremental and fully connected structures at every point in time
- Only produce valid PLTAG trees

Helpful Concept: Fringes

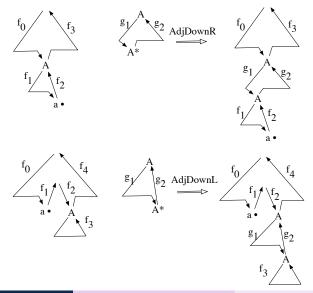
- tree can be described by its depth-first traversal
- only part of incremental tree is relevant at each step



Parsing Rules

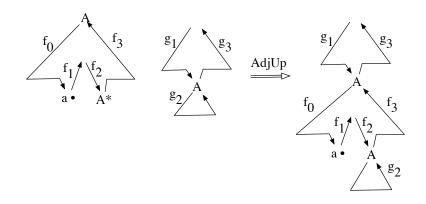


Parsing Rules



Vera Demberg (Saarland University)

Parsing Rules

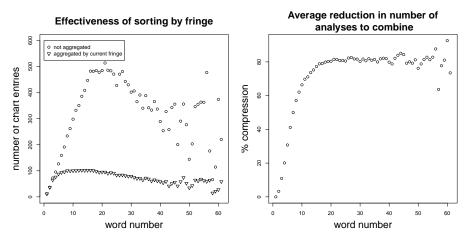


Step 3: The Parsing Algorithm (contd)

Efficiency – or how to get the parser to run for sentences with length > 3

- Trying out all prediction trees at each word is intractable. > 1000 prediction trees vs. average ambiguity of canonical trees \approx 50
- Introduce Supertagging for prediction trees.
 Parser only tries 20 most promising prediction trees.
- Beam Search
- Use of a chart (trees bundled by identical current fringes)

Effectiveness of Chart Parsing



(Statistics shown with beam search in use - without beam search, a much larger effect can be expected.)

Generative model (enables us to easily estimate surprisal)

 $\begin{array}{ll} \text{Substitution:} & \sum\limits_{\epsilon} P(\epsilon | \eta_{\beta}) = 1 \\ \text{Adjunction:} & \sum\limits_{\epsilon} P(\epsilon | \eta_{\beta}) + P(\textit{NONE} | \eta_{\beta}) = 1 \\ \text{Verification:} & \sum\limits_{\epsilon} P(\epsilon | \pi_{\beta}) = 1 \end{array}$

$$\begin{array}{lll} P(\varepsilon|\eta_{\beta}) &=& P(\tau_{\varepsilon}|\eta_{\beta}) \times P(\lambda_{\varepsilon}|\tau_{\varepsilon},\lambda_{\eta}) \\ P(\varepsilon|\pi_{\beta}) &=& P(\tau_{\varepsilon}|\pi_{\beta}) \times P(\lambda_{\varepsilon}|\tau_{\varepsilon},\lambda_{\pi_{\eta}}) \\ P(\eta_{\beta}) &=& P(\tau_{\eta},\lambda_{\eta},c_{\eta},n_{\eta},b_{\eta},a_{f},tm) \end{array}$$

based on [Chiang, 2000]

Explanation

Probabilities are normalized with respect to other elementary trees ε that can attach at node η in prefix tree β with the same operation.

elementary trees	ε	prefix tree	β	prediction trees	π
tree structures	τ	integration point node	η	a tree's head leaf	λ

Generative model (enables us to easily estimate surprisal)

 $\begin{array}{ll} \text{Substitution:} & \sum\limits_{\epsilon} P(\epsilon | \eta_{\beta}) = 1 \\ \text{Adjunction:} & \sum\limits_{\epsilon} P(\epsilon | \eta_{\beta}) + P(\textit{NONE} | \eta_{\beta}) = 1 \\ \text{Verification:} & \sum\limits_{\epsilon} P(\epsilon | \pi_{\beta}) = 1 \end{array}$

$$\begin{aligned} & \mathcal{P}(\boldsymbol{\varepsilon}|\boldsymbol{\eta}_{\beta}) &= \mathcal{P}(\boldsymbol{\tau}_{\varepsilon}|\boldsymbol{\eta}_{\beta}) \times \mathcal{P}(\boldsymbol{\lambda}_{\varepsilon}|\boldsymbol{\tau}_{\varepsilon},\boldsymbol{\lambda}_{\eta}) \\ & \mathcal{P}(\boldsymbol{\varepsilon}|\boldsymbol{\pi}_{\beta}) &= \mathcal{P}(\boldsymbol{\tau}_{\varepsilon}|\boldsymbol{\pi}_{\beta}) \times \mathcal{P}(\boldsymbol{\lambda}_{\varepsilon}|\boldsymbol{\tau}_{\varepsilon},\boldsymbol{\lambda}_{\boldsymbol{\pi}_{\eta}}) \\ & \mathcal{P}(\boldsymbol{\eta}_{\beta}) &= \mathcal{P}(\boldsymbol{\tau}_{\eta},\boldsymbol{\lambda}_{\eta},\boldsymbol{c}_{\eta},\boldsymbol{n}_{\eta},\boldsymbol{b}_{\eta},\boldsymbol{a}_{f},tm) \end{aligned}$$

elementary trees	3	prefix tree	β	prediction trees	π
tree structures	τ	integration point node	η	a tree's head leaf	λ

Step 4: Probability Model

Generative model (enables us to easily estimate surprisal)

Substitution: $\sum_{\alpha} P(\epsilon \eta_{\beta}) = 1$	
Adjunction: $\sum_{\alpha}^{\varepsilon} P(\varepsilon \eta_{\beta}) + P(NONE \eta_{\beta}) = 1$	$\beta: S + \epsilon: NP$
Verification: $\sum_{\alpha}^{\varepsilon} P(\varepsilon \pi_{\beta}) = 1$	NP VP Mary
$\begin{array}{lll} & \mathcal{E} \\ P(\varepsilon \eta_{\beta}) & = & P(\tau_{\varepsilon} \eta_{\beta}) \times P(\lambda_{\varepsilon} \tau_{\varepsilon},\lambda_{\eta}) \\ P(\varepsilon \pi_{\beta}) & = & P(\tau_{\varepsilon} \pi_{\beta}) \times P(\lambda_{\varepsilon} \tau_{\varepsilon},\lambda_{\pi_{\eta}}) \\ P(\eta_{\beta}) & = & P(\tau_{\eta},\lambda_{\eta},c_{\eta},n_{\eta},b_{\eta},a_{f},tm) \end{array}$	Paul V NP saw
based on [Chiang, 2000]	

Step 4: Probability Model

Generative model (enables us to easily estimate surprisal)

Substitution: $\sum_{\alpha} P(\epsilon \eta_{\beta}) = 1$	
Adjunction: $\sum_{\alpha}^{\varepsilon} P(\varepsilon \eta_{\beta}) + P(NONE \eta_{\beta}) = 1$	$\beta:$ S $+\epsilon:$ NP
Verification: $\sum\limits_{\epsilon}^{\epsilon} P(\epsilon \pi_{eta}) = 1$	NP VP Mary │ Paul V NP↓
$\begin{array}{lll} P(\varepsilon \eta_{\beta}) &=& P(\tau_{\varepsilon} \eta_{\beta}) \times P(\lambda_{\varepsilon} \tau_{\varepsilon},\lambda_{\eta}) \\ P(\varepsilon \pi_{\beta}) &=& P(\tau_{\varepsilon} \pi_{\beta}) \times P(\lambda_{\varepsilon} \tau_{\varepsilon},\lambda_{\pi_{\eta}}) \\ P(\eta_{\beta}) &=& P(\tau_{\eta},\lambda_{\eta},c_{\eta},n_{\eta},b_{\eta},a_{t},tm) \end{array}$	integration tree template τ_{η}
based on [Chiang, 2000]	

 $\begin{array}{c|c} \text{elementary trees} & \epsilon & \text{prefix tree} & \beta & \text{prediction trees} & \pi \\ \text{tree structures} & \tau & \text{integration point node} & \eta & \text{a tree's head leaf} & \lambda \end{array}$

Step 4: Probability Model

Generative model (enables us to easily estimate surprisal)

Substitution:	$\sum_{\alpha} P(\epsilon \eta_{\beta}) = 1$	
Adjunction:	$\sum_{\alpha}^{\varepsilon} P(\varepsilon \eta_{\beta}) + P(NONE \eta_{\beta}) = 1$	β : S + ϵ : NP
Verification:	$\sum_{\epsilon}^{c} P(\epsilon \pi_{\beta}) = 1$	NP VP Mary
$P(\epsilon \pi_{\beta}) = P(\epsilon \pi_{\beta})$	$\mathcal{P}(au_{arepsilon} \eta_{eta}) imes \mathcal{P}(\lambda_{arepsilon} au_{arepsilon}, rac{\lambda_{\eta}}{\lambda_{\eta}}) = \mathcal{P}(au_{arepsilon} \pi_{eta}) imes \mathcal{P}(\lambda_{arepsilon} au_{arepsilon}, \lambda_{\pi_{\eta}})$	Paul V NP↓ │ saw
$P(\eta_{\beta}) = I$	$P(\tau_{\mathfrak{\eta}},\lambda_{\mathfrak{\eta}},c_{\mathfrak{\eta}},n_{\mathfrak{\eta}},b_{\mathfrak{\eta}},a_{f},tm)$	integration tree lexeme λ_η

elementary trees	ε	prefix tree	β	prediction trees	π
tree structures	τ	integration point node	η	a tree's head leaf	λ

Step 4: Probability Model

Generative model (enables us to easily estimate surprisal)

Substitution: $\sum_{\alpha} P(\epsilon \eta_{\beta}) = 1$	
Adjunction: $\sum_{\alpha}^{\varepsilon} P(\varepsilon \eta_{\beta}) + P(NONE \eta_{\beta}) = 1$	β : S + ϵ : NP
Verification: $\sum_{\epsilon}^{\epsilon} P(\epsilon \pi_{\beta}) = 1$	NP VP Mary Paul V NP↓
$\begin{array}{lll} P(\epsilon \eta_{\beta}) &=& P(\tau_{\epsilon} \eta_{\beta}) \times P(\lambda_{\epsilon} \tau_{\epsilon},\lambda_{\eta}) \\ P(\epsilon \pi_{\beta}) &=& P(\tau_{\epsilon} \pi_{\beta}) \times P(\lambda_{\epsilon} \tau_{\epsilon},\lambda_{\pi_{\eta}}) \\ P(\eta_{\beta}) &=& P(\tau_{\eta},\lambda_{\eta},c_{\eta},n_{\eta},b_{\eta},a_{f},tm) \end{array}$	 saw integration node category <i>c</i> η

elementary trees	ε	prefix tree	β	prediction trees	π
tree structures	τ	integration point node	η	a tree's head leaf	λ

Step 4: Probability Model

Generative model (enables us to easily estimate surprisal)

Substitution: $\sum_{\alpha} P(\epsilon \eta_{\beta}) = 1$	
Adjunction: $\sum_{s}^{\varepsilon} P(\varepsilon \eta_{\beta}) + P(NONE \eta_{\beta}) = 1$	β: S:0
Verification: $\sum\limits_{\epsilon}^{\circ} P(\epsilon \pi_{eta}) = 1$	NP:1 VP:2
$\mathcal{P}(\epsilon \eta_{eta}) \;\; = \;\; \mathcal{P}(au_{\epsilon} \eta_{eta}) imes \mathcal{P}(\lambda_{\epsilon} au_{\epsilon},\lambda_{\eta})$	Paul V:21 NP:22↓
$P(arepsilon \pi_eta) \;\; = \;\; P(au_arepsilon \pi_eta) imes P(\lambda_arepsilon au_arepsilon, \lambda_{\pi_\eta})$	saw
$P(\eta_{\beta}) = P(\tau_{\eta}, \lambda_{\eta}, c_{\eta}, n_{\eta}, b_{\eta}, a_{f}, tm)$	integration node position n_{η}

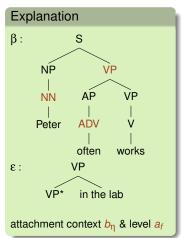
elementary trees	ε	prefix tree	β	prediction trees	π
tree structures	τ	integration point node	η	a tree's head leaf	λ

Generative model (enables us to easily estimate surprisal)

Substitution: Adjunction: Verification:

$$\begin{split} & \sum_{\epsilon} P(\epsilon | \eta_{\beta}) = 1 \\ & \sum_{\epsilon} P(\epsilon | \eta_{\beta}) + P(NONE | \eta_{\beta}) = 1 \\ & \sum_{\epsilon} P(\epsilon | \pi_{\beta}) = 1 \end{split}$$

$$\begin{array}{lll} \mathsf{P}(\varepsilon|\eta_{\beta}) &=& \mathsf{P}(\tau_{\varepsilon}|\eta_{\beta}) \times \mathsf{P}(\lambda_{\varepsilon}|\tau_{\varepsilon},\lambda_{\eta}) \\ \mathsf{P}(\varepsilon|\pi_{\beta}) &=& \mathsf{P}(\tau_{\varepsilon}|\pi_{\beta}) \times \mathsf{P}(\lambda_{\varepsilon}|\tau_{\varepsilon},\lambda_{\pi_{\eta}}) \\ \mathsf{P}(\eta_{\beta}) &=& \mathsf{P}(\tau_{\eta},\lambda_{\eta},c_{\eta},n_{\eta},b_{\eta},a_{f},tm) \end{array}$$



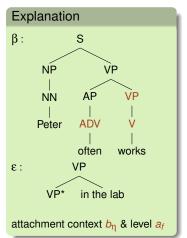
elementary trees	ε	prefix tree	β	prediction trees	π
tree structures	τ	integration point node	η	a tree's head leaf	λ

Generative model (enables us to easily estimate surprisal)

Substitution: Adjunction: Verification:

$$\begin{split} & \sum_{\epsilon} P(\epsilon | \eta_{\beta}) = 1 \\ & \sum_{\epsilon} P(\epsilon | \eta_{\beta}) + P(NONE | \eta_{\beta}) = 1 \\ & \sum_{\epsilon} P(\epsilon | \pi_{\beta}) = 1 \end{split}$$

$$\begin{array}{lll} P(\varepsilon|\eta_{\beta}) &=& P(\tau_{\varepsilon}|\eta_{\beta}) \times P(\lambda_{\varepsilon}|\tau_{\varepsilon},\lambda_{\eta}) \\ P(\varepsilon|\pi_{\beta}) &=& P(\tau_{\varepsilon}|\pi_{\beta}) \times P(\lambda_{\varepsilon}|\tau_{\varepsilon},\lambda_{\pi_{\eta}}) \\ P(\eta_{\beta}) &=& P(\tau_{\eta},\lambda_{\eta},c_{\eta},n_{\eta},b_{\eta},a_{t},tm) \end{array}$$



elementary trees	ε	prefix tree	β	prediction trees	π
tree structures	τ	integration point node	η	a tree's head leaf	λ

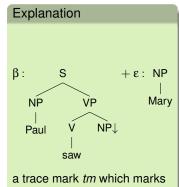
Generative model (enables us to easily estimate surprisal)

Substitution: Adjunction: Verification:

$$\begin{split} &\sum_{\epsilon} P(\epsilon | \eta_{\beta}) = 1 \\ &\sum_{\epsilon} P(\epsilon | \eta_{\beta}) + P(\textit{NONE} | \eta_{\beta}) = 1 \\ &\sum_{\epsilon} P(\epsilon | \pi_{\beta}) = 1 \end{split}$$

$$\begin{array}{lll} P(\varepsilon|\eta_{\beta}) &=& P(\tau_{\varepsilon}|\eta_{\beta}) \times P(\lambda_{\varepsilon}|\tau_{\varepsilon},\lambda_{\eta}) \\ P(\varepsilon|\pi_{\beta}) &=& P(\tau_{\varepsilon}|\pi_{\beta}) \times P(\lambda_{\varepsilon}|\tau_{\varepsilon},\lambda_{\pi_{\eta}}) \\ P(\eta_{\beta}) &=& P(\tau_{\eta},\lambda_{\eta},c_{\eta},n_{\eta},b_{\eta},a_{t},tm) \end{array}$$

based on [Chiang, 2000]



a trace mark *tm* which marks whether there is a trace at the beginning or end of the fringe

elementary trees	ε	prefix tree	β	prediction trees	π
tree structures	τ	integration point node	η	a tree's head leaf	λ

Parser Evaluation

Parser Performance:

Model	Prec	Recall	F-score	Cov
PLTAG parser				
Pred tree oracle	81.15	81.13	81.14	96.18
No gold POS	77.57	77.24	77.41	98.09

Comparison to other TAG parsers:

Model	incr		pred		F
Mazzei et al. (2007)	+		+		n/a
This work (gold POS)	+	+	+	+	79.4
Kato et al. (2004)	+	+		+	79.7
Shen and Joshi (2005)	(+)			+	(87.4)
Chiang (2000)				+	86.7

Parser Evaluation

Parser Performance:

Model	Prec	Recall	F-score	Cov
PLTAG parser				
Pred tree oracle	81.15	81.13	81.14	96.18
No gold POS	77.57	77.24	77.41	98.09

Comparison to other TAG parsers:

Model	incr	con	pred	impl	F
Mazzei et al. (2007)	+	+	+	_	n/a
This work (gold POS)	+	+	+	+	79.4
Kato et al. (2004)	+	+	_	+	79.7
Shen and Joshi (2005)	(+)	_	_	+	(87.4)
Chiang (2000)	_	_	_	+	86.7

Discussion on Incremental TAG parsing

- What difficulty arises in parsing from the prediction trees not being lexicalized?
- What's the problem with left recursion?
- Which measures were taken to make parsing tractable?
- In how far is incremental parsing more difficult / error-prone than non-incremental parsing?

The Linking Theory

Before I get to the linking theory, I will briefly introduce two theories of processing difficulty, that our processing theory is inspired by:

- Surprisal
- Dependency Locality Theory

Surprisal [Hale 2001, 2003; Levy, 2008]

"Forward-looking measure"

Key idea: Processing difficulty at $w_i \propto \text{amount of Surprisal at perceiving } w_i$

How to calculate surprisal:

• Calculate prefix probabilities:

$$pp_{w_n} = -log \sum_{T \in Trees} p(T|w_1 \dots w_n)$$

- Surprisal *s* of word w_n : $s_{w_n} = pp_{w_n} pp_{w_{n-1}}$
- [Hale 2001; Roark 2001, 2009; Levy 2008]

Explains Prediction Effects (either..or processing) and Anti-locality effects.

Surprisal [Hale 2001, 2003; Levy, 2008]

"Forward-looking measure"

Key idea: Processing difficulty at $w_i \propto \text{amount of Surprisal at perceiving } w_i$

How to calculate surprisal:

• Calculate prefix probabilities:

$$pp_{w_n} = -log \sum_{T \in Trees} p(T|w_1 \dots w_n)$$

- Surprisal *s* of word w_n : $s_{w_n} = pp_{w_n} pp_{w_{n-1}}$
- [Hale 2001; Roark 2001, 2009; Levy 2008]

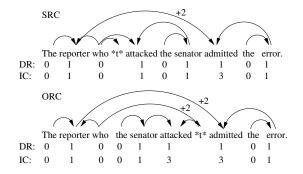
Explains Prediction Effects (either..or processing) and Anti-locality effects.

DLT – Integration Cost

"Backward looking measure"

Key idea: predicts difficulty based on

- heads and their dependents: integration cost occurs at heads of phrases
- discourse referents: number of DR between head and its dependent



Explains locality effects: SRC/ORC asymmetry, center embedding

Vera Demberg (Saarland University)

Comparison of DLT and Surprisal

Comparison

Surprisal: "forward-looking" difficulty caused by violated expectations DLT: "backward-looking" difficulty caused by long-distance integrations

Effects	Surprisal	DLT
Either-or Prediction	+	-
English Relative Clause	_	+
German Relative Clause	+	-
Facilitating Ambiguity	+	-
Storage Cost Effects	_	+
Center Embedding	NA	+

Conclusions:

• The two theories explain different parts of the data – can they be combined in a unified theory?

[Demberg & Keller, 2009, Cognition]

Step 5: The Linking Theory

Translates the PLTAG parser states into processing difficulty:

- Big changes in the probability distribution cause processing difficulty.
- Each of these predicted trees π has a time-stamp *t*.
- At verification time, the tree's nodes' decay *d* is calculated based on the time stamp (recently-accessed structures are easier to integrate).

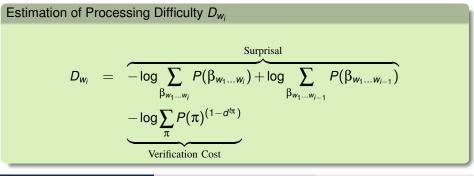


Table of Contents

Reminder of Last Week's Materials

- 2) Tree-Adjoining Grammar
- Incremental TAG
 - The DVTAG Formalism
 - The PLTAG Formalism
- 4 The Incremental PLTAG Parser
- 5 Psycholinguistic Evaluation Results for Syntax
 - Outlook to Semantics

Psycholinguistic Evaluation

Linking Theory translates the PLTAG parsing process into processing difficulty estimates:

- Based on parallel, probabilistic parsing with a generative model.
- Big changes in the probability distribution cause processing difficulty (surprisal).
- Long-distance dependencies as evident from verification of nodes which were predicted a long time ago, cause processing difficulty.

Evaluation of Processing Theory based on PLTAG

- Broad-Coverage Evaluation on Dundee Corpus
- Psycholinguistic Case Studies

The Dundee Corpus

Dundee eye-tracking corpus [Kennedy et al. 2003]

- ca. 51.000 words of British newspaper articles (from The Independent)
- 10 subjects

Broad-Coverage Evaluation on Dundee Corpus

	Prediction	Theory				
Duedieteu						
Predictor	Coef	Sig				
Intercept	230.31	***				
WordLength	3.93	***				
WordFrequency	-8.92	***				
PrevWordFreq	-4.53	***				
PrevWordFixated	-30.96	***				
LaunchDistance	-0.88	***				
LandingPosition	70.34	***				
WordNoInSentence	-0.14	***				
BigramProb	-3.06	***				
PredictTheory	0.38	**				
WordLength:Freq	-1.44	***				
WordLength:Posit	23.06	***				
*p < 0.05, **p < 0.01, ***p < 0.001						

Broad-Coverage Evaluation on Dundee Corpus

	Prediction Theory				
Predictor	Coef	Sig			
Intercept	230.31	***			
WordLength	3.93	***			
WordFrequency	-8.92	***			
PrevWordFreq	-4.53	***			
PrevWordFixated	-30.96	***			
LaunchDistance	-0.88	***			
LandingPosition	70.34	***			
WordNoInSentence	-0.14	***			
BigramProb	-3.06	***			
PredictTheory	0.38	**			
StructSurprisal					
LexicalSurprisal					
WordLength:Freq	-1.44	***			
WordLength:Posit	23.06	***			
* <i>p</i> < 0.05, ** <i>p</i> < 0.01, *** <i>p</i> < 0.001					

Broad-Coverage Evaluation on Dundee Corpus

	Predictior	Theory	Structural	Surprisal	Lexical Surprisal		
Predictor	Coef	Sig	Coef	Sig	Coef	Sig	
Intercept	230.31	***	230.44	***	230.43	***	
WordLength	3.93	***	3.99	***	3.97	***	
WordFrequency	-8.92	***	-8.88	***	-8.89	***	
PrevWordFreq	-4.53	***	-4.50	***	-4.53	***	
PrevWordFixated	-30.96	***	-30.95	***	-30.94	***	
LaunchDistance	-0.88	***	-0.88	***	-0.88	***	
LandingPosition	70.34	***	70.38	***	70.37	***	
WordNoInSentence	-0.14	***	-0.14	***	-0.14	***	
BigramProb	-3.06	***	-2.99	***	-3.03	***	
PredictTheory	0.38	**					
StructSurprisal			0.21				
LexicalSurprisal					-0.02		
WordLength:Freq	-1.44	***	-1.38	***	-1.39	***	
WordLength:Posit	23.06	***	22.98	***	23.00	***	
*n < 0.05 **n < 0.01 ***n < 0.001							

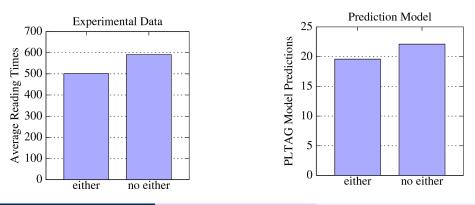
p < 0.05, p < 0.01, p < 0.01

Either..or processing

Evaluation on 48 sentences from experiment by [Staub and Clifton, 2006].

Example sentences:

Peter read either a book or an essay in the school magazine. Peter read a book or an essay in the school magazine.



Summary PLTAG Syntax Modelling

PLTAG syntax:

- Models incrementality and prediction at syntax level
- Successfully replicates patterns observed in naturalistic data
- as well as psycholinguistic experiments

Table of Contents

Reminder of Last Week's Materials

- 2) Tree-Adjoining Grammar
- Incremental TAG
 - The DVTAG Formalism
 - The PLTAG Formalism
- 4 The Incremental PLTAG Parser
- 5 Psycholinguistic Evaluation Results for Syntax

Outlook to Semantics

Vera Demberg (Saarland University)

Limitations of syntax-only PLTAG model

But with syntax only, can't explain

• anticipatory eye movements in Den Hasen frisst gleich der Fuchs.

Most garden path sentences, e.g. The horse raced past the barn fell.

Example: Semantic plausibilty affects syntax The doctor <u>sent</u> for the patient arrived. The flowers <u>sent</u> for the patient arrived.

Vera Demberg (Saarland University)

Incremental Processing with TAGs

Limitations of syntax-only PLTAG model

But with syntax only, can't explain

• anticipatory eye movements in Den Hasen frisst gleich der Fuchs.

Most garden path sentences, e.g. The horse raced past the barn fell.

Example: Semantic plausibility affects syntax

The doctor sent for the patient arrived.

The flowers sent for the patient arrived.

Vera Demberg (Saarland University)

Incremental Processing with TAGs

Incremental Semantics

Desired properties of semantics for PLTAG:

- simultaneous construction of syntax and semantics
- reflect the incrementality of the syntax
- direct syntax-semantics interface
- semantics that are useful in combination with some form of compositional distributional semantics, so we can calculate e.g. semantic surprisal