Head-driven Phrase Structure Grammar – III Grammatikformalismen (SS 2013)

Yi Zhang

Department of Computational Linguistics
Saarland University

July 2nd, 2013

Long Distance Dependencies

- Long Distance Dependencies are also called unbounded dependency constructions in HPSG literature
- Strong UDCs, or filler-gap constructions: an overt constituent in a nonargument position that can be thought of as strongly associated with (or filling) the gap or trace
- Weak UDCs: no overt filler in a nonargument position; a constituent in an argument position that is interpreted as co-referential with the trace

Examples of Unbounded Dependency Constructions

Strong UDCs

- (1) Kim₁, Sandy loves ₁. (topicalization)
- (2) I wonder [who₁ Sandy loves ₁]. (wh-question)
- (3) This is the politician [who₁ Sandy loves _₁]. (wh-relative clause)
- (4) It's Kim [who₁ Sandy loves _₁]. (it-cleft)
- (5) [What₁ Kim loves _₁] is Sandy. (pseudocleft)

Weak UDCs

- (6) I bought it₁ for Sandy to eat _₁. (purpose infinitive)
- (7) Sandy₁ is hard to love _₁. (tough construction)
- (8) This is the politician₁ [Sandy loves $_{-1}$]. (relative clause)
- (9) It's Kim₁ [Sandy loves _₁]. (it-cleft)

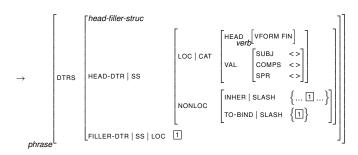
Filler-Gap Constructions

- nonlocal has two features: INHERITED and TO-BIND, both have feature SLASH and a set local as their values
- For the analysis of strong UDCs, the following lexical entry is assumed for the trace

 The contents of the INHER|SLASH set are passed up the tree via the NONLOCAL feature principle (to be introduced)

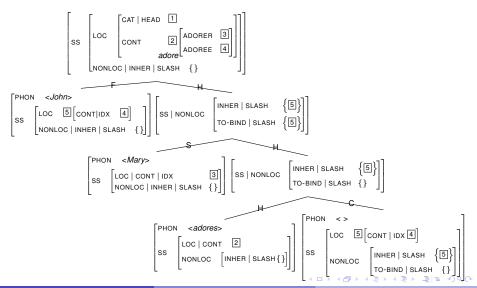
NONLOCAL Feature Principle

NONLOCAL feature principle


In a headed phrase, for each nonlocal feature $F \in \{SLASH, QUE, REL\}$, the value of SYNSEM|NONLOCAL|INHERITED|F is the set difference of the union of the values on all the daughters and the value of SYNSEM|NONLOCAL|TO-BIND|F on the HEAD-DTR

$$ph \begin{bmatrix} DTRS & head\text{-struc} \end{bmatrix} \rightarrow \begin{bmatrix} SS \mid NONLOC \mid INHERITED \mid F & 1 \cup 2 - 3 \\ \\ DTRS & \begin{bmatrix} HEAD\text{-}DTR \mid SS \mid NONLOC & \begin{bmatrix} INHERITED \mid F & 1 \\ TO\text{-}BIND \mid F & 3 \end{bmatrix} \\ \\ NONHEAD\text{-}DTR \mid SS \mid NONLOC \mid INHERITED \mid F & 2 \end{bmatrix}$$

• In this lecture we are only focusing on the SLASH feature


Head-Filler Schema

To fill the gap with the constituent in nonargument location (filler), an extra ID schema is needed

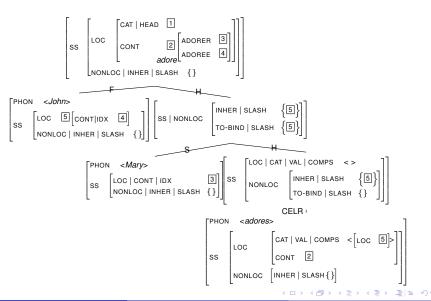
- The LOCAL value of the trace will be token identical to the LOCAL value of the filler
- The TO-BIND|SLASH value of the head daughter is freely instantiated

An Example of Filler-Gap Construction

Some Remarks on Trace-based Analysis

- Traces are introduced as place-holders to the dislocated constituent
- The trace puts its LOCAL value in INHER|SLASH, which will be later bound to the LOCAL value of the filler
- Notice that as a subpart of the filler's LOCAL value, syntactic and semantic constraints are satisfied via unification
- The use of empty categories (e.g. signs corresponding to empty strings in the sentences) is controversial

Traceless Extraction


Instead of relying on an empty lexical item (trace), we can assume that the heads are SLASHed via lexical rules

Complement Extraction Lexical Rule (CELR)

$$\begin{bmatrix} \text{SS} & \begin{bmatrix} \text{LOC} \mid \text{CAT} \mid \text{VAL} \mid \text{COMPS} & < ... & \begin{bmatrix} \text{LOC} & \boxed{1} \end{bmatrix} ... > \\ \text{NONLOC} \mid \text{INHER} \mid \text{SLASH} & \boxed{2} \text{ set(local)} \end{bmatrix} \end{bmatrix} \mapsto \begin{bmatrix} \text{SS} & \begin{bmatrix} \text{LOC} \mid \text{CAT} \mid \text{VAL} \mid \text{COMPS} & < ... > \\ \text{NONLOC} \mid \text{INHER} \mid \text{SLASH} & \boxed{2} \cup \left\{ \boxed{1} \right\} \end{bmatrix} \end{bmatrix}$$

A synsem is removed from the head's COMPS list, and its local value is added to the head's INHER'SLASH

Traceless Extraction (Example)

Subject Extraction

- The CELR only allows extraction from complement positions
- What about the following sentences?
 - (10) Who adores John?
 - (11) Who₁ does Kim think _₁ adores John?
- The first sentence can be just treated as ordinary head-subject structures (no evidence of wh-movement, no auxiliary insertion)
- The second sentence contains an unbounded dependency, and needs a lexical rule allowing subject extraction

Subject Extraction (Cont.)

Subject Extraction Lexical Rule (SELR)

```
\begin{bmatrix} \text{SS} \mid \text{LOC} \mid \text{CAT} \mid \text{VAL} \mid \text{COMPS} & < \dots \\ & \begin{bmatrix} \text{LOC} \mid \text{CAT} & \begin{bmatrix} \text{VAL} \mid \text{SUBJ} & < > \\ \text{MARKING} & \text{unmarked} \end{bmatrix} \end{bmatrix} \dots > \end{bmatrix} \mapsto \begin{bmatrix} \text{SS} & \begin{bmatrix} \text{LOC} \mid \text{CAT} \mid \text{VAL} \mid \text{SUBJ} & < \begin{bmatrix} \text{LOC} & \boxed{1} \end{bmatrix} > \end{bmatrix} \dots > \\ \text{NONLOC} \mid \text{INHER} \mid \text{SLASH} & \left\{ \boxed{1} \right\} \end{bmatrix} \end{bmatrix}
```

- SELR allows subject extraction, but only out of unmarked embedded clauses (Fixed Subject Condition (Bresnan 1972)), disallowing the following sentence
 - (12) * Who₁ does Kim think that $_{-1}$ adores John?
- Note that SELR applies to the matrix verb ("think" in the given example)

Subject Extraction Example

The sign for "think" before and after the application of SELR are sketched here

$$\begin{bmatrix} \mathsf{PHON} & <\mathsf{think}> \\ \mathsf{SS} \mid \mathsf{LOC} \mid \mathsf{CAT} \mid \mathsf{VAL} & \begin{bmatrix} \mathsf{SUBJ} & <\mathsf{NP} > \\ \mathsf{COMPS} & <\mathsf{S[unmarked]} > \end{bmatrix} \end{bmatrix} \mapsto \\ \begin{bmatrix} \mathsf{PHON} & <\mathsf{think}> \\ \\ \mathsf{SS} & \begin{bmatrix} \mathsf{LOC} \mid \mathsf{CAT} \mid \mathsf{VAL} & \begin{bmatrix} \mathsf{SUBJ} & <\mathsf{NP} > \\ \mathsf{COMPS} & <\mathsf{VP} \Big[\dots \mid \mathsf{SUBJ} & <\Big[\mathsf{LOC} & \boxed{1} \Big] > \Big] > \end{bmatrix} \\ \\ \mathsf{NONLOC} \mid \mathsf{INHER} \mid \mathsf{SLASH} & \Big\{ \boxed{1} \Big\} \end{aligned}$$

Try to work out the complete analysis using SELR by yourself!

Adjunct Extraction

- Extraction of adjuncts is subject to complicated semantic and pragmatic restrictions, but grammatical examples do seem to exist:
 - (13) Kim thinks Mary has adored John for 10 years.
 - (14) [For how many years]₁ does Kim think Mary has adored John _₁?

Adjunct Extraction Lexical Rule (AELR)

$$\begin{bmatrix} \text{SS | LOC} & \begin{bmatrix} \text{CAT | VAL | COMPS} & < \dots & 1 \end{bmatrix} \text{S[SS | LOC | CONT | 2]} \dots > \\ & & & & & & \\ \text{CONT | SOA-ARG} & \boxed{2} & & & \\ \end{bmatrix} \end{bmatrix} \mapsto \begin{bmatrix} \text{LOC | CONT | SOA-ARG} & \boxed{3} & & \\ & & & & & \\ \text{NONLOC | INHER | SLASH} & \left\{ \begin{bmatrix} \dots & | \text{MOD} & \boxed{1} \\ \dots & | \text{CONT} & \boxed{3} \end{bmatrix} \right\} \end{bmatrix} \end{bmatrix}$$

Again, AELR applies on the matrix verb ("think")

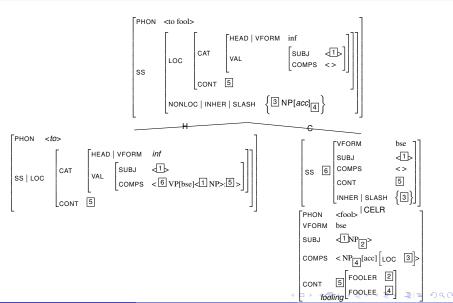
Tough Constructions

The following examples illustrate another type of UDC:

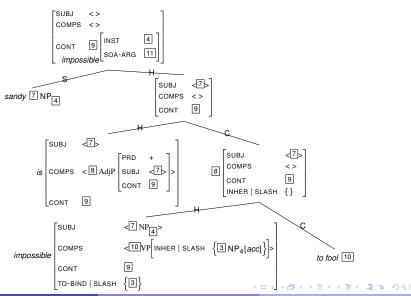
- (15) Sandy₁ is impossible (for anyone) to fool _1.
- (16) Sandy₁ is impossible to imagine people succeeding in fooling _₁.

These cases differ from the UDCs we have seen so far in two ways:

- There is no (syntactic) filler. The gaps in both sentences are coindexed with Sandy, but Sandy is the subject of "is", and receives a semantic role for "impossible".
- Tough constructions are licensed by a particular class of lexical items
 - adjectives like tough, easy, nice
 - nouns like (a) pleasure, (a) bother
 - verbs like cost, take


Tough Constructions (Cont.)

The words involved in TOUGH constructions are assumed to subcategorize for SLASHed infinitival VP complements:


```
\begin{bmatrix} \text{PHON} & < \text{impossible} > \\ & & \begin{bmatrix} & & \\ & \text{CAT} & \begin{bmatrix} \text{NPD} & + \\ & & \text{SUBJ} & < \text{NP} \end{bmatrix} > \\ & & & \text{COMPS} & < \text{PP} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \text{SUBJ} & < \text{NP} \end{bmatrix} > \begin{bmatrix} \text{NP} & + \\ & & \text{COMPS} & < \text{PP} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \text{NP} & + \\ & & \text{COMPS} & < \text{PP} \end{bmatrix} \begin{bmatrix} \text{NP} & + \\ & & \text{NONLOC} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \text{Impossible} & \text{INST} & 1\\ & & \text{SOA-ARG} & 4 \end{bmatrix}
\begin{bmatrix} \text{NONLOC} & | \text{TO-BIND} & | \text{SLASH} & \{2\} \} \end{bmatrix}
```

! Note the slight notational inconsistency here: SLASH take a set of *local* values instead of *synsem*s

Tough Constructions (Cont.)

Tough Constructions (Cont.)

References I

Pollard, C. J. and Sag, I. A. (1994).

Head-Driven Phrase Structure Grammar.

University of Chicago Press, Chicago, USA.