LFG Grammatikformalismen Sommer Semester 2010

Antske Fokkens

Department of Computational Linguistics Saarland University

17 November 2009

Outline

1 Introduction

2 F-structures

- Motivation
- Formal properties of f-structures
- grammatical functions in LFG
- well-formedness conditions

3 C-structure

4 Syntactic Correspondences

4 A N

Outline

1 Introduction

2 F-structures

- Motivation
- Formal properties of f-structures
- grammatical functions in LFG
- well-formedness conditions

3 C-structure

4 Syntactic Correspondences

A (10) A (10) A (10)

Lexical Functional Grammar, Introduction

- Developed in the late 70s by Joan Bresnan and Ron Kaplan
- LFG brings scholars from different fields together:
 - Theoretical linguists
 - Descriptive, typological linguists
 - Computational linguistics
- Main ideas:
 - A formal system to model human speech (fits in the tradition of generative grammar)
 - Psychological plausibility: the formalism should be able to represent a native speaker's syntactic knowledge appropriately
 - Strong typological basis: analyses should capture cross-linguistic similarities

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Main levels of representation

A Lexical Functional Grammar represents expressions in (minimally) two levels of representation:

- **constituent structure** (c-structure):
 - a tree which represents phrase structure configurations
 - it indicates the superficial arrangements of the words in the sentence, i.e. it serves as an input for the phonological interpretation of the string
 - languages differ radically on a c-structure level
- **functional structure** (f-structure):
 - an attribute-value matrix represents surface grammatical functions, i.e. traditional syntactic relations such as subject, object, complement and adjunct
 - It serves as the sole input to the semantic component
 - languages are similar on a f-structure level

Lexical Functional Grammar

- LFG is lexical because of the assumption that words and lexical items are as important in providing grammatical information as syntactic elements
- LFG is functional because grammatical information is represented by lexical functions (f-structure), rather than by phrase structure configurations

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Outline

1 Introduction

2 F-structures

- Motivation
- Formal properties of f-structures
- grammatical functions in LFG
- well-formedness conditions

3 C-structure

4 Syntactic Correspondences

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

F-structure: motivation

- Assumption: for any language functional syntactic concepts such as subject and object are relevant
- The f-structure can represent what languages have in common in wide-spread phenomena, no matter how radically different languages may be on the surface

e.g. passives

The f-structure can capture some universal properties of language

e.g. the Keenan-Comrie Hierarchy for relative clauses: SUBJ > DOBJ > IOBJ > OBL > GEN > OCOMP

- A language may sets its border for acceptable and unacceptable relative clauses anywhere on the hierarchy: those elements above the boundary can be relativized.
- Processing becomes more difficult when going down the hierarchy

• • • • • • • • • • • •

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

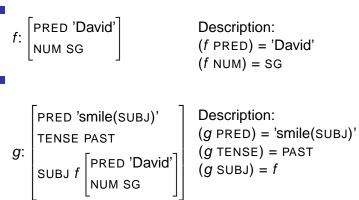
An example of an F-structure

Example: the f-structure of *I* saw the girl:

SUBJ	PRED PERS NUM		-
TENSE	L PAST	L	
PRED	'see⟨(↑SUBJ),(↑OBJ)⟩'		
OBJ	PRED	_	/
	DEF	+	
	PERS		
	NUM	SG	_

A (1) > 4

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions


Formal properties of F-structures

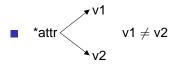
- An F-structure is a finite set of pairs of attributes and values
- An F-structures attributes may be
 - A: atomic symbols, e.g. SUBJ, OBJ, PRED
- An F-structures values may be:
 - A: atomic symbols, e.g. SG, 1, +, PAST
 - S: semantic forms, e.g. 'girl', 'see<(↑SUBJ)(↑ OBJ)>'
 - F: f-structures
- F-structures are defined by the following recursive domain equation:
 - $\mathsf{F}=(\mathsf{A}\rightarrow {}_f\;\mathsf{F}\cup\mathsf{A}\cup\mathsf{S})$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Formal properties of f-structures

Examples of simple F-structures

Description: (f PRED) = 'David'(f NUM) = SG


Description:

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

A Functional structure

- Mathematically, the f-structure can be is seen as a function from attributes to values, hence its name
- A function assigns a unique value to its argument
- In other words:

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

F-structure values (additional possibilities)

The value of an attribute can be a set:

$$\begin{bmatrix} \text{attr1} & \text{v1} \\ \text{attr2} & \left\{ \text{v2,v3} \right\} \end{bmatrix} \text{ e.g. we: } \begin{bmatrix} \text{PRED} & \text{'pro'} \\ \text{PERS} & \left\{ \text{H,S} \right\} \\ \text{NUM} & \text{PL} \end{bmatrix}$$

The value of an attribute can be hybrid:

Г

4 A N

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

symbols and semantic forms

- Symbols are unbroken strings of alphanumeric characters

 the choice of symbols belongs to a particular theory of
 linguistics
- Semantic forms are special: the single quotes around semantic form values indicate that this form is unique. E.g. each instance of the word *girl* is a uniquely instantiated occurrence of the semantic form 'girl'

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Some Linguistic terminology (Bresnan 1982)

- an attribute-value pair where the value is a symbol is called a feature
- an attribute-value pair where the value is an f-structure is called a grammatical function
- an attribute whose value is a semantic form is called a semantic feature

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Attributes with the same values

- Two attributes within the same f-structure can have the same value
- This can be represented in several ways:

$$\begin{bmatrix} ATTR1 & \begin{bmatrix} A1 & V1 \end{bmatrix} \\ ATTR2 & \begin{bmatrix} A1 & V1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} ATTR1 & \begin{bmatrix} A1 & V1 \end{bmatrix} \\ ATTR2 & \begin{bmatrix} A1 & V1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} ATTR2 & \end{bmatrix} \begin{bmatrix} ATTR2 & 1 \end{bmatrix}$$

Note:

Semantic forms are unique: two instances of 'lion' in a sentence does not necessarily mean two attributes have the same value: co-indexation is required

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Grammatical functions in LFG

LFG proposes the following inventory of grammatical functions, which is universally available:

- SUBJect
- OBJect
- OBJ $_{\theta}$
- COMP
- XCOMP
- OBLique_θ
- ADJunct
- XADJunct

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Governable grammatical functions (regierbare Funktionen)

- SUBJ, OBJ, XCOMP, COMP, OBJ_θ and OBL_θ are governed or subcategorized for by the predicate, hence the name governable grammatical functions
- ADJ and XADJ modify the phrase they appear in, but they are not subcategorized for by the predicate. The term modifiers applies to these functions

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

The value of ADJ and XADJ

In principle, there is no limit to the number of modifiers that can appear within a phrase: the value of the ADJ or XADJ feature is the set of all modifiers that are present, e.g. David smiled quietly (yesterday):

 $\begin{bmatrix} SUBJ & [PRED 'David'] \\ PRED 'smile < (\uparrow SUBJ) >' \\ ADJ & \left\{ \begin{bmatrix} PRED 'Quietly' \end{bmatrix} \right\} \end{bmatrix} \begin{bmatrix} SUBJ & [PRED 'David'] \\ PRED 'smile < (\uparrow SUBJ) >' \\ ADJ & \left\{ \begin{bmatrix} PRED 'quietly' \end{bmatrix} \right\} \end{bmatrix} \begin{bmatrix} SUBJ & [PRED 'David'] \\ PRED 'smile < (\uparrow SUBJ) >' \\ ADJ & \left\{ \begin{bmatrix} PRED 'quietly' \end{bmatrix} \right\} \end{bmatrix}$

Typically, the values of governable functions are not sets

(日)

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Subcategorization

A semantic form may contain an argument list, next to its semantic predicate name, e.g.

- 'smile<(↑ SUBJ)>'
- 'see<(↑ SUBJ), (↑ OBJ)>'
- 'give<(↑ SUBJ), (↑ OBJ), (↑ OBJ2)>'
- Note that lexical items select for grammatical functions (not for NPs, CP, etc)

How to make sure that subcategorization requirements are fulfilled?

 \rightarrow well-formedness constraints on the f-structure: completeness and coherence

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Principle of completeness

- The principle of completeness requires that all governable functions present in the argument list of a semantic form must be present in the f-structure
- This excludes ungrammatical expressions such as

 \rightarrow the object is missing: incomplete f-structure!

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Principle of Completeness: definition

Local Completeness

An f-structure is **locally complete** iff it contains all the governable functions that its predicate governs

Completeness

An f-structure is **complete** iff it is locally complete and all its subsidiary f-structures are locally complete

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Principle of Coherence

- The principle of coherence requires that all governable functions present in the f-structure are also present in the argument list of the predicate
 - This excludes ungrammatical examples such as

→ the OBJ *the flower* is not governed by the predicate: incoherent f-structure!

4 A N

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Principle of Coherence: definition

Local Coherence

An f-structure is **locally coherent** iff all the governable functions it contains are governed by its predicate

Coherence

An f-structure is **coherent** iff it is locally coherent and all its subsidiary f-structures are locally coherent

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

Principle of Consistency (uniqueness)

- The principle of consistency states what we have already seen in the f-structures formal properties: an attribute has a unique value
- It excludes ungrammatical examples such as
 - David smile

→ 'David' is singular, but the verb form states that the subject's number is plural: inconsistent f-structure!

definition: An f-structure is consistent iff all attributes have at most one value

Motivation Formal properties of f-structures grammatical functions in LFG well-formedness conditions

F-structures, recap I

- F-structures represent the grammatical relations of expressions
- Languages are similar on this level: allows to explain cross-linguistic properties of phenomena
- Formally, an f-structure is a set of attribute-value pairs
- LFG posits a universal inventory of grammatical functions (where we distinguish governable functions and modifiers (among other properties))
- F-structures must be
 - complete
 - coherent
 - consistent

Outline

1 Introduction

2 F-structures

- Motivation
- Formal properties of f-structures
- grammatical functions in LFG
- well-formedness conditions

3 C-structure

4 Syntactic Correspondences

A (10) F (10)

Constituent structure

- The constituent structure represents the organization of overt phrasal syntax
- It provides the basis for phonological interpretation
- Languages are very different on the c-structure level

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Constituency

Why constituency?

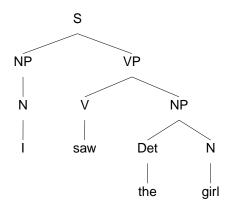
- Example the dachshund is barking
- → Observations by Noam Chomsky:
 - The same sequence of categories may appear in more than one environment e.g. *David petted the dachshund*
 - Such sequences can be replaced by the same sequence with additional modifiers the black dachshund is barking, David petted the black dachshund
 - → constituents capture the intuitions that certain sequences form phrasal units (e.g. *the dachshund*), and others do not (e.g. *petted the*)
 - → constituents simplify linguistic description: distribution can be defined for a phrase, and need not be defined for each individual sequence of words
- What is a constituent?

Image: A math a math

How to identify constituents?

There are several tests to identify constituents:

- Distribution: can the sequence occur in a variety of other sentence positions?
- Questions: is the sequence an answer to who, what, how, where?
- Scrambling: can the sequence be topicalized? Appear in the first position of a verb-second language?
- Non-separability: are there elements that may not be inserted in the sequence?


Properties of c-structures

- C-structures are conventional phrase structure trees: they are defined in terms of syntactic categories, terminal nodes, dominance and precedence
- They are determined by a context free grammar that describes all possible surface strings of the language

Introduction F-structures C-structure

Syntactic Correspondences

Example of a c-structure

æ

イロト イヨト イヨト イヨト

Properties of a tree (Kaplan 1995)

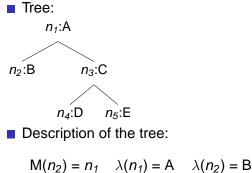
A tree consists of:

- N: a set of nodes
- $\blacksquare M: N \to N$

a mother function M that takes nodes into nodes

 $\blacksquare \ < \subseteq \mathsf{N} \mathsf{ x} \mathsf{ N}$

a partial ordering <


 $\ \lambda \colon \mathsf{N} \to \mathsf{L}$

Nodes are related by a labeling function λ that takes nodes into some finite labeling set L

LFG admits only nontangled trees:

For any nodes n_1 and n_2 , if $M(n_1) < M(n_2)$, then $n_1 < n_2$

Description of a tree

$$M(n_2) = n_1 \quad \lambda(n_1) = R \quad \lambda(n_2) = D$$

$$M(n_3) = n_1 \quad \lambda(n_3) = C \quad n_2 < n_3$$

$$M(n_4) = n_3 \quad \lambda(n_4) = D \quad M(n_5) = n_3$$

$$\lambda(n_5) = E \quad n_4 < n_5$$

Antske Fokkens

E

Outline

1 Introduction

2 F-structures

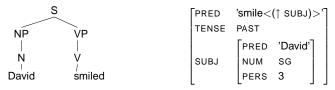
- Motivation
- Formal properties of f-structures
- grammatical functions in LFG
- well-formedness conditions

3 C-structure

4 Syntactic Correspondences

< 67 ▶

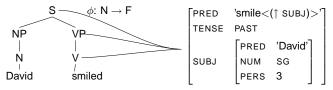
- **→ → →**


structural correspondences

- C-structures and f-structures represent different properties of an utterance
- How can these structures be associated properly to a particular sentence?
- Words and their ordering carry information about the linguistic dependencies in the sentence
- This is represented by the c-structure (licensed by a CFG)
- LFG proposes simple mechanisms that maps between elements from one structure and those of another: correspondence functions
- A function *φ* allows to map c-structures to f-structures *φ*: N → F

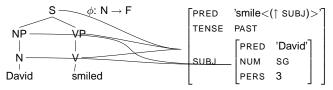
・ 同 ト ・ ヨ ト ・ ヨ

Mapping from c- to f-structure: The head convention


Consider the following example:

- The head convention states that a phrase inherits its functional properties and requirements from its head: a constituent structure phrase and its head map to the same f-structure
- S, VP and V thus map to the same f-structure

Mapping from c- to f-structure: The head convention


Consider the following example:

- The head convention states that a phrase inherits its functional properties and requirements from its head: a constituent structure phrase and its head map to the same f-structure
- S, VP and V thus map to the same f-structure

Mapping from c- to f-structure: The head convention

Consider the following example:

- The head convention states that a phrase inherits its functional properties and requirements from its head: a constituent structure phrase and its head map to the same f-structure
- S, VP and V thus map to the same f-structure

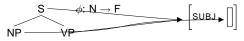
Annotating PS-rules: heads

- Consider the following rule to expand VP to V $VP \rightarrow V$
- We express the fact that VP and V have the same f-structure by annotating the V-node:

$$\mathsf{P} o \mathsf{V} \ \phi(\mathsf{M}(n)) = \phi(n)$$

ν

I


This equation indicates that the f-structure of the mothernode of V (\u03c6(M(n))) is equal to the node of V (\u03c6(n))

An alternative notation:

$$VP \rightarrow V$$

 $\uparrow = \downarrow$

Annotating PS-rules: grammatical functions

Consider the following example:

Here the NP bears the SUBJ function

The following phrase structure rule carries the additional information to derive the correct f-structure:

$$\mathsf{S} o \operatorname{\mathsf{NP}}_{(\phi(\mathsf{M}(n)) \text{ SUBJ})=\phi(n)} \begin{array}{c} \mathsf{VP} \\ \phi(\mathsf{M}(n)) = \phi(n) \end{array}$$

An alternative notation:

$$S \rightarrow NP \qquad VP \ (\uparrow SUBJ) = \downarrow \quad \uparrow = \downarrow$$

Lexical Entries

In lexical entries, information about the item's f-structure is represented in the same way as in c-structures:

smiled V (
$$\uparrow$$
 PRED) = 'smile<(\uparrow SUBJ)>
(\uparrow TENSE) = PAST

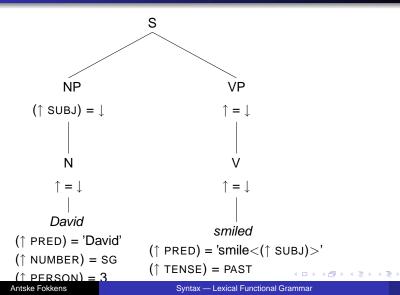
The equivalent phrase structure rule:

$$V \rightarrow smiled$$

(† PRED) = 'smile<(† SUBJ)>'
(† TENSE) = PAST

A (B) > A (B) > A (B)

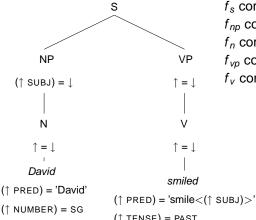
An example analysis: David smiled


We assume the following annotated PS-rules:

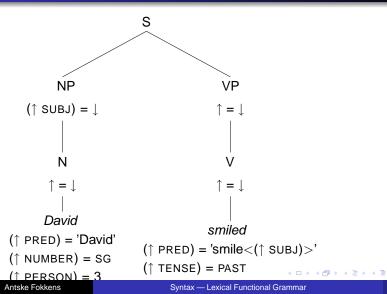
$$S \rightarrow NP \quad VP \\ (\uparrow SUBJ) = \downarrow \uparrow = \downarrow \\ VP \rightarrow V \\ \uparrow = \downarrow \\ NP \rightarrow N \\ \uparrow = \downarrow$$

and the following lexical entries

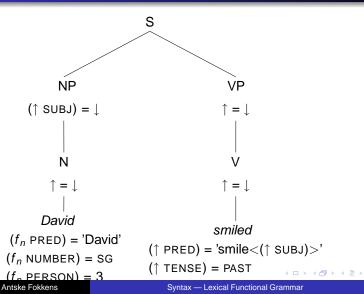
A (10) > A (10) > A


Analysis of David smiled

42/48

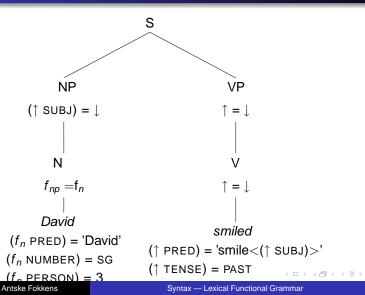

Instantiating the f-description of the sentence

In order to get the functional description of the sentence, we associate each node with an f-structure:


 f_s corresponds to node S f_{np} corresponds to node NP f_n corresponds to node N f_{vp} corresponds to node VP f_v corresponds to node V

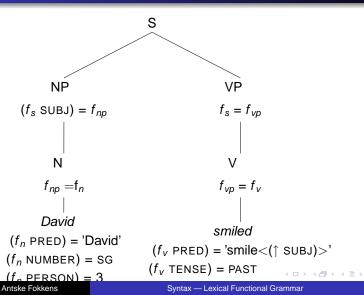
References of ↑ and ↓

44/48


References of \uparrow and \downarrow

44/48

- E


References of \uparrow and \downarrow

44/48

- E

References of ↑ and ↓

44/48

< ∃⇒

The functional description

The tree on the previous slide provides the following functional description:

```
(f_s \text{ SUBJ}) = f_{np}

f_{np} = f_n

(f_n \text{ PRED}) = 'David'

(f_n \text{ NUMBER}) = \text{SG}

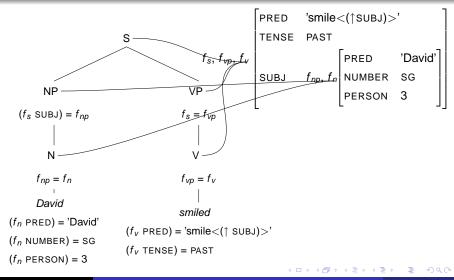
(f_n \text{ PERSON}) = 3

f_s = f_{vp}

f_{vp} = f_v

(f_v \text{ PRED}) = '\text{smile} < (\uparrow \text{SUBJ}) > '

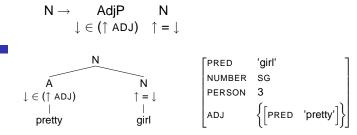
(f_v \text{ TENSE}) = \text{PAST}
```


4 A N

The functional description

The tree on the previous slide provides the following functional description:

$(f_s \text{ SUBJ}) = f_{np}$		PRED	'smile<(↑SUBJ)>	.,
$f_{np} = f_n$		TENSE	PAST	
$(f_n \text{ PRED}) = 'David'$ $(f_n \text{ NUMBER}) = SG$	f_s, f_{vp}, f_v		PRED	'David'
$(f_n \text{ PERSON}) = 3$		SUBJ	f_{np}, f_n NUMBER PERSON	SG
$f_s = f_{vp}$			PERSON	3
$f_{\nu p} = f_{\nu}$		L	L	Γr
$(f_v \text{ PRED}) = \text{'smile} < (\uparrow \text{SUBJ}) > \text{'}$				
$(f_v \text{ TENSE}) = \text{PAST}$				


David smiled: f- and annotated c-structure

Antske Fokkens

Adjuncts

- The attribute ADJ takes a set as its value
- The c-structure/f-structure correspondance rule expresses membership to a set as follows:

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Bibliography I

- Bresnan, Joan (2000). Lexical Functional Syntax. Blackwell Publishers: Malden, USA/Oxford UK.
- Dalrymple, Mary, Ron M. Kaplan, John T. Maxwell III and Annie Zaenen (eds.). (1995) *Formal Issues in Lexical-Functional Grammar*. CSLI Publications: Palo Alto, USA.
- Dalrymple, Mary (2001). Lexical Functional Grammar. Academic Press: San Diego, USA/London, UK.
- Kaplan, Ron (1995). The formal architecture of Lexical-Functional Grammar. In: Dalrymple et al. (1995).
- Kordoni, Valia (2008a). Syntactic Theory Lectures 5. Course slides.
- Schneider, Gerold (1998). A Linguistic Comparison of Constituency, Dependency and Link Grammar. Lizentiatsarbeit, Institut für Informatik der Universität Zürich.

http://www.ifi.unizh.ch/cl/study/lizarbeiten/lizgerold.pdf.