
Generating Instructions in
Virtual Environments

Session 3: GIVE in practice; tool support

Alexander Koller
29 October 2009

NLG Evaluation

• Evaluating NLG systems is hard.
‣ gold standard not meaningful

‣ task-based evaluations expensive

• Motivations for GIVE:
‣ cheap task-based evaluation

‣ focus on situated, real-time communication

Instruction giving in virtual worlds

‣ Task: Generate real-time instructions that help user perform
some task in a virtual environment.

‣ Use for end-to-end evaluation of NLG systems.

Matchmaker

NLG
system

Evaluation

‣ User and NLG system can be in different places.

‣ Can perform “web experiments”!

Related Applications

Pedestrian navigation Task instructions
(“Apollo 13”)

“In vitro” human-robot interaction

GIVE-1

• For the first installment of the challenge:
‣ pilot experiment character

‣ discrete virtual worlds

• Timeline:
‣ announced in March 2008

‣ distributed software to participants in May 2008

‣ Internet-based evaluation Nov 2008 to Feb 2009

‣ data analysis and report writing until March 2009

‣ results presented at ENLG in Athens, March 2009

GIVE website

Game client

Questionnaire

Participating Systems

• Proof-of-concept system: Compute domain
plan, realize plan actions one by one.

• Austin: Optimized version of this system
(improved paths; some aggregation).

• Madrid: Emphasis on inferring and
exploiting “hidden” aspects of world, such
as rooms, corners, etc.

Participating Systems (2)

• Union College: Emphasis on navigation
instructions, switches between landmark-
based and path-based modes.

• Twente: Emphasis on adaptation to user’s
ability to understand instructions.

• Twente Warm/Cold system: only says
“warmer”, “colder”, etc.; intended to
maximize entertainment.

Results

(Connections in 24-hour window on 20 Nov 08)

Results

(Connections in 24-hour window on 20 Nov 08)

Collected 1143 valid games
over 3-month period

Results: Timeline

0

37,5

75,0

112,5

150,0

N
o

v
 7

D
e
c
 1

J
a
n

 1

F
e
b

 1

F
e
b

 5

games per day
German

press release

US
press release

posted to
SIGGEN list

covered by
Chinese blog

Results: Objective measures
A M T U W

task
success

40% 71% 35% 73% 18%

A A
B B

C

instructions

83.2 58.3 121.2 80.3 190.0

A
B B

C
D

steps

103.6 124.3 160.9 117.5 307.4

A A
B B

C
D

actions

11.2 8.7 14.3 9.0 14.3

A A
B

C C

seconds

129.3 174.8 207.0 175.2 312.2

A
B B

C
D

Figure 1: Objective measures by system. Task success is reported as the per-
centage of successfully completed games. The other measures are reported as
the mean number of instructions/steps/actions/seconds, respectively. Letters
group indistinguishable systems; systems that don’t share a letter were found
to be significantly different with p < 0.05.

Differences are significant
if two systems don’t share
a letter.

Lower letters are better.

Results: Subjective measures
A M T U W

overall

4.9 4.9 4.3 4.6 3.6
A A A

B B
C

choice of
words

4.2 3.8 4.1 3.7 3.5
A A

B B
C C C

referring
expressions

3.4 3.9 3.7 3.7 3.5
A A A

B B B B

navigation
instructions

4.6 4.0 4.0 3.7 3.2
A

B B B
C

timing

78% 62% 60% 62% 49%
A

B B B
C C

friendliness

3.4 3.8 3.1 3.6 3.1
A A A
B B B

A M T U W

task
difficulty

4.3 4.3 4.0 4.3 3.5
A A A A

B

goal clarity
4.0 3.7 3.9 3.7 3.3
A A A A

B

play again 2.8 2.6 2.4 2.9 2.5
A A A A A

instruction
clarity

4.0 3.6 3.8 3.6 3.0
A A A

B B B
C

instruction
helpfulness

3.8 3.9 3.6 3.7 2.9
A A A A

B

informativity
46% 68% 51% 56% 51%

A
B B B B

Figure 1: Subjective measures by system. Informativity and timing are reported
as the percentage of successfully completed games. The other measures are re-
ported as the mean rating received by the players. Letters group indistinguish-
able systems; systems that don’t share a letter were found to be significantly
different with p < 0.05.

overall on 1-7 scale;
timing, informativity “just right” vs. not;
all others on 1-5 scale.

Summary: GIVE

• GIVE-1 was largest evaluation effort for
NLG systems in terms of users, ever.

• Evaluated 5 systems, which emphasized
different aspects. Significant differences,
consistent with lab experiment.

• Simple systems work surprisingly well.

GIVE-2

• Mostly like GIVE-1, but:
‣ continuous worlds

‣ improved evaluation measures

• Development phase started in August.

• Evaluation phase is Feb - Apr 10.

• Presentation of results in July 10 at INLG.

Structure of GIVE software

3D Client

NLG Server

Matchmaker

Structure of GIVE software

3D Client

NLG Server

Matchmaker
connection

Structure of GIVE software

3D Client

NLG Server

Matchmaker
connection

connection

Structure of GIVE software

3D Client

NLG Server

Matchmaker

in
st

ru
ct

io
ns

up
da

te
s a

bo
ut

 e
ve

nt
s

connection

connection

Structure of GIVE software

3D Client

NLG Server

Matchmaker

in
st

ru
ct

io
ns

up
da

te
s a

bo
ut

 e
ve

nt
s

connection

connection

game log

Structure of GIVE software

3D Client

NLG Server

Matchmaker

Database

in
st

ru
ct

io
ns

up
da

te
s a

bo
ut

 e
ve

nt
s

connection

connection

game log

Structure of GIVE software

3D Client

NLG Server

Matchmaker

Database

in
st

ru
ct

io
ns

up
da

te
s a

bo
ut

 e
ve

nt
s

connection

connection

game log

questionnaire

Structure of GIVE software

3D Client

NLG Server

Matchmaker

Database

in
st

ru
ct

io
ns

up
da

te
s a

bo
ut

 e
ve

nt
s

connection

connection

game log

questionnaire

w
eb interface

etc.

Structure of GIVE software

3D Client

NLG Server

Matchmaker

Database
NLG

System

in
st

ru
ct

io
ns

up
da

te
s a

bo
ut

 e
ve

nt
s

connection

connection

game log

questionnaire

w
eb interface

etc.

Structure of GIVE software

3D Client

NLG Server

Matchmaker

Database
NLG

System

in
st

ru
ct

io
ns

up
da

te
s a

bo
ut

 e
ve

nt
s

connection

connection

game log

questionnaire

w
eb interface

etc.

you
are here

Writing a GIVE NLG system

• Derive a Java class from the abstract class
give.nlgserver.NlgSystem in the GIVE API.

• Write a configuration file that tells the
GIVE NLG server where to find your NLG
system.

• Start the GIVE NLG server and point your
Matchmaker to it.

The class NlgSystem

abstract public class NlgSystem {
 abstract public void connectionEstablished(QuestionnaireData preQuestionnaire)
 throws NlgServerException;

 abstract public void connectionDisconnected();

 abstract public void handleStatusInformation(Position playerPosition,
 Orientation playerOrientation, List<String> visibleObjects)
 throws NlgServerException;

 abstract public void handleAction(Atom actionInstance, List<Formula> updates)
 throws NlgServerException;

 abstract public void handleDidNotUnderstand()
 throws NlgServerException;
}

That’s it!

Methods you can use

• void send(String s): Send the string s to the
client to be displayed.

• List<Atom> getPlan(List<Formula> goals): Get
a plan that leads from current state to goals.

• getWorld(), getDiscretizer(): Get current world
and discretizer.

• see: http://give-challenge.kenai.com/apidocs/

http://give-challenge.kenai.com/apidocs/
http://give-challenge.kenai.com/apidocs/

Configuring the NLG server
<?xml version="1.0"?>

<nlgserver port="3001" simultaneous-instances="1" web-port="8081">
 <nlg-system
 class="edu.union.give2.simplenlgservernolandmarks.ExampleNlgSystem" />

 <planner style="sgplan" executable="/home/koller/sgplan-522-mac" />
</nlgserver>

(example-nlgsystem-config.xml in Demo Servers distribution)

Then start the NLG server:

$ java -jar target/give2-example-nlgserver-1.0.2-jar-with-dependencies.jar
 example-nlgsystem-config.xml

GIVE NLG server, version null
Reading configuration from example-nlgsystem-config.xml...
NLG system class: edu.union.give2.simplenlgservernolandmarks.ExampleNlgSystem
[Server 20:20:02.699] Listening on port 3001

Compiling a GIVE NLG system

• We use the Maven build tool for GIVE-2.

• Maven’s perspective on building stuff:
‣ declarative configuration file

‣ convention about directory structure

‣ download libraries automatically when needed

• The last point makes it very convenient for
GIVE.

Maven directory structure

myproject/
 pom.xml -- the central configuration file
 /src
 /main -- source code that gets compiled into Jar files
 /java -- Java source code
 /javacc -- JavaCC source code (parse generator)
 /resources -- any other files that will be included in Jar files
 ...
 /test -- source code for unit tests
 /java -- ... written in Java
 /groovy -- ... written in Groovy
 ...
 /target -- compiled classes and Jar files (created by Maven)

A pom file (important bits)

 <groupId>edu.union</groupId>
 <artifactId>give2-example-nlgserver</artifactId>
 <name>give2-example-nlgserver</name>
 <version>1.0.2</version>

(see a demo server pom file for the rest)

Identify your project name and version:

<dependency>
 <groupId>de.saar.penguin</groupId>
 <artifactId>give2-nlgserver</artifactId>
 <version>[1.9.1,)</version>
</dependency>

Tell Maven to include the NLG server library:

(you can include further dependencies if you like)

A pom file (important bits)

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <configuration>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 </descriptorRefs>
 <archive>
 <manifest>
 <mainClass>give.nlgserver.NlgServer</mainClass>
 </manifest>
 </archive>
 </configuration>
</plugin>

Configure build tools:

(see a demo server pom file for the rest)

Running Maven

• Compile all classes, build a Jar file
containing just your classes, install:
 mvn install

• Build executable Jar file with your classes
and all libraries:
 mvn assembly:assembly

• Delete all compiled files:
 mvn clean

Collaborating with others

• So far, you have primarily written code by
yourself. This project is different.

• Tools for collaborating with other developers:
‣ Revision control software: Mercurial

‣ Bug tracking, discussions, Wiki: FogBugz

‣ Code reviews

‣ Project management approach: Scrum

Thank you, Fog Creek Software!

Version control systems

Fo
o.

ja
va

Developer A Developer B

Version control systems

Fo
o.

ja
va

Developer A Developer B

Fo
o.

ja
va

Version control systems

Fo
o.

ja
va

Developer A Developer B

Fo
o.

ja
va

Fo
o.

ja
va

Version control systems

Fo
o.

ja
va

Developer A Developer B

Fo
o.

ja
va

Fo
o.

ja
va

Fo
o.

ja
va

Version control systems

Fo
o.

ja
va

Developer A Developer B

Version control systems

Fo
o.

ja
va

Developer A Developer B

Fo
o.

ja
va

Version control systems

Fo
o.

ja
va

Developer A Developer B

Fo
o.

ja
va

Fo
o.

ja
va

Version control systems

Fo
o.

ja
va

Developer A Developer B

Fo
o.

ja
va

Fo
o.

ja
va

Fo
o.

ja
va

Version control systems

Fo
o.

ja
va

Developer A Developer B

Fo
o.

ja
va

Fo
o.

ja
va

Fo
o.

ja
va?

Version control systems

Fo
o.

ja
va

Developer A Developer B

Repository

Version control systems

Fo
o.

ja
va

Developer A Developer B

Repository

Fo
o.

ja
va

commit

Version control systems

Fo
o.

ja
va

Developer A Developer B

Repository

Fo
o.

ja
va

commit

Fo
o.

ja
va

update

Version control systems

Fo
o.

ja
va

Developer A Developer B

Fo
o.

ja
va

Repository

Fo
o.

ja
va

commit

Fo
o.

ja
va

update

Version control systems

Fo
o.

ja
va

Developer A Developer B

Fo
o.

ja
va

Fo
o.

ja
va

Repository

Fo
o.

ja
va

commit

Fo
o.

ja
va

update

Version control systems

Fo
o.

ja
va

Developer A Developer B

Fo
o.

ja
va

Fo
o.

ja
va

Repository

Fo
o.

ja
va

commit

Fo
o.

ja
va

updateFo
o.

ja
va

co
mmit

Version control systems

Fo
o.

ja
va

Developer A Developer B

Fo
o.

ja
va

Fo
o.

ja
va

Repository

Fo
o.

ja
va

commit

Fo
o.

ja
va

updateFo
o.

ja
va

co
mmit

update

Fo
o.

ja
va

Version control systems

Fo
o.

ja
va

Developer A Developer B

Fo
o.

ja
va

Fo
o.

ja
va

Repository

Fo
o.

ja
va

commit

Fo
o.

ja
va

updateFo
o.

ja
va

co
mmit

update

Fo
o.

ja
va

Fo
o.

ja
va

Version control systems

Fo
o.

ja
va

Developer A Developer B

Fo
o.

ja
va

Fo
o.

ja
va

Repository

Fo
o.

ja
va

commit

Fo
o.

ja
va

updateFo
o.

ja
va

co
mmit

update

Fo
o.

ja
va

Fo
o.

ja
va

Fo
o.

ja
va

Version control systems

• One central repository; each user has their
own working copy.

• Repository to WC: update
WC to repository: commit

• VC system tries to merge changes; if
impossible, a merge conflict is signalled and
has to be resolved manually by user.

We use Mercurial

• ... because that’s what our hosting service
provides.

• A decentralized system: You can use the
central repository, but you don’t have to.

• Get info and a client at
http://mercurial.selenic.com/

• Most prominent alternative: Subversion.

http://mercurial.selenic.com
http://mercurial.selenic.com

Using Mercurial

• Clone a repository:
 hg clone http://hg-scm.org/hello my-hello

• After editing your WC, transfer changes
back to network repository:
 hg commit
 hg push

• Get updates from network repository:
 hg pull -u
 hg merge

http://hg-scm.org/hello
http://hg-scm.org/hello

Mercurial: The model

repositories

working copies

serveryour computer

Mercurial: The model

repositories

working copies

clone

serveryour computer

Mercurial: The model

repositories

working copies

clone

serveryour computer
up

da
te

co
m

m
it

Mercurial: The model

repositories

working copies

clone

serveryour computer
up

da
te

co
m

m
it

push

pull

Mercurial: The model

repositories

working copies

clone

serveryour computer
up

da
te

co
m

m
it

push

pull

clone

Mercurial: The model

repositories

working copies

clone

serveryour computer
up

da
te

co
m

m
it

push

pull

clone

up
da

te

co
m

m
it

Mercurial: The model

repositories

working copies

clone

serveryour computer
up

da
te

co
m

m
it

push

pull

clone

up
da

te

co
m

m
it

push

pull

Learning about Mercurial

• Mercurial can be a bit tricky to understand,
but there are tons of tutorials on the Web.

• Try it out!

Other tools

• Issue tracking software:
‣ database of bugs and improvements that the team

wants to work on

‣ ideally, each issue (or “case” in FogBugz) assigned to
one developer

‣ with estimate of how much time it will take

• Discussion groups and Wiki.

• Start using them as much as you like!

Maintaining code quality

• Unit tests:
‣ small bits of code that test whether small pieces of your

program work individually

‣ see e.g. http://tinyurl.com/8bneq

• Code reviews:
‣ each major piece of code needs to be approved by

some other developer before being added to repository

‣ see e.g. http://tinyurl.com/yk7spmt

http://www.extremeprogramming.org/rules/unittests.html
http://www.extremeprogramming.org/rules/unittests.html

Managing the software project

• I’d like to try out the Scrum software
project management approach:
http://en.wikipedia.org/wiki/Scrum_(development)

• You’re the team; each of you gets to be
Scrum Master for one sprint; I’m the
Product Owner.

• I encourage you to try collaboration tools
like testing and reviewing as needed.

http://en.wikipedia.org/wiki/Scrum_(development
http://en.wikipedia.org/wiki/Scrum_(development

Homework (I)

• Write a tiny GIVE system of your own.
‣ it needs to do something simple that goes beyond the

dummy NLG system

‣ it needs to contain at least one new class

‣ it needs to compile with “mvn install assembly:assembly”

‣ add it to the central Mercurial repository

‣ email me where it is by Wednesday 4pm, so I can try it
out before the next class

• You can use any programming language you
like. Be aware of Java, Scala, Groovy, Jython.

Homework (II)

• Learn more about collaboration tools.
‣ create and resolve a case in FogBugz

‣ team up with a friend and play around with the code
review tool

‣ write a simple class with a unit test, and get Maven to
run the unit test

‣ post in the FogBugz discussion group and/or wiki

• Our FogBugz site is there for you; feel free
to explore and use it!

