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NLG Evaluation

• Evaluating NLG systems is hard.
‣ gold standard not meaningful

‣ task-based evaluations expensive

• Motivations for GIVE:
‣ cheap task-based evaluation

‣ focus on situated, real-time communication



Instruction giving in virtual worlds

‣ Task: Generate real-time instructions that help user perform 
some task in a virtual environment.

‣ Use for end-to-end evaluation of NLG systems.



Matchmaker

NLG
system

Evaluation

‣ User and NLG system can be in different places.

‣ Can perform “web experiments”!



Related Applications

Pedestrian navigation Task instructions
(“Apollo 13”)

“In vitro” human-robot interaction



GIVE-1

• For the first installment of the challenge:
‣ pilot experiment character

‣ discrete virtual worlds

• Timeline:
‣ announced in March 2008

‣ distributed software to participants in May 2008

‣ Internet-based evaluation Nov 2008 to Feb 2009

‣ data analysis and report writing until March 2009

‣ results presented at ENLG in Athens, March 2009



GIVE website



Game client



Questionnaire



Participating Systems

• Proof-of-concept system: Compute domain 
plan, realize plan actions one by one.

• Austin: Optimized version of this system 
(improved paths; some aggregation).

• Madrid: Emphasis on inferring and 
exploiting “hidden” aspects of world, such 
as rooms, corners, etc.



Participating Systems (2)

• Union College: Emphasis on navigation 
instructions, switches between landmark-
based and path-based modes.

• Twente: Emphasis on adaptation to user’s 
ability to understand instructions.

• Twente Warm/Cold system: only says 
“warmer”, “colder”, etc.; intended to 
maximize entertainment.



Results

(Connections in 24-hour window on 20 Nov 08)



Results

(Connections in 24-hour window on 20 Nov 08)

Collected 1143 valid games
over 3-month period



Results: Timeline
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Results: Objective measures
A M T U W

task
success

40% 71% 35% 73% 18%

A A
B B

C

instructions

83.2 58.3 121.2 80.3 190.0

A
B B

C
D

steps

103.6 124.3 160.9 117.5 307.4

A A
B B

C
D

actions

11.2 8.7 14.3 9.0 14.3

A A
B

C C

seconds

129.3 174.8 207.0 175.2 312.2

A
B B

C
D

Figure 1: Objective measures by system. Task success is reported as the per-
centage of successfully completed games. The other measures are reported as
the mean number of instructions/steps/actions/seconds, respectively. Letters
group indistinguishable systems; systems that don’t share a letter were found
to be significantly different with p < 0.05.

Differences are significant
if two systems don’t share
a letter.

Lower letters are better.



Results: Subjective measures
A M T U W

overall

4.9 4.9 4.3 4.6 3.6
A A A

B B
C

choice of
words

4.2 3.8 4.1 3.7 3.5
A A

B B
C C C

referring
expressions

3.4 3.9 3.7 3.7 3.5
A A A

B B B B

navigation
instructions

4.6 4.0 4.0 3.7 3.2
A

B B B
C

timing

78% 62% 60% 62% 49%
A

B B B
C C

friendliness

3.4 3.8 3.1 3.6 3.1
A A A
B B B

A M T U W

task
difficulty

4.3 4.3 4.0 4.3 3.5
A A A A

B

goal clarity
4.0 3.7 3.9 3.7 3.3
A A A A

B

play again 2.8 2.6 2.4 2.9 2.5
A A A A A

instruction
clarity

4.0 3.6 3.8 3.6 3.0
A A A

B B B
C

instruction
helpfulness

3.8 3.9 3.6 3.7 2.9
A A A A

B

informativity
46% 68% 51% 56% 51%

A
B B B B

Figure 1: Subjective measures by system. Informativity and timing are reported
as the percentage of successfully completed games. The other measures are re-
ported as the mean rating received by the players. Letters group indistinguish-
able systems; systems that don’t share a letter were found to be significantly
different with p < 0.05.

overall on 1-7 scale;
timing, informativity “just right” vs. not;
all others on 1-5 scale.



Summary: GIVE

• GIVE-1 was largest evaluation effort for 
NLG systems in terms of users, ever.

• Evaluated 5 systems, which emphasized 
different aspects. Significant differences, 
consistent with lab experiment.

• Simple systems work surprisingly well.



GIVE-2

• Mostly like GIVE-1, but:
‣ continuous worlds

‣ improved evaluation measures

• Development phase started in August.

• Evaluation phase is Feb - Apr 10.

• Presentation of results in July 10 at INLG.



Structure of GIVE software
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Writing a GIVE NLG system

• Derive a Java class from the abstract class 
give.nlgserver.NlgSystem in the GIVE API.

• Write a configuration file that tells the 
GIVE NLG server where to find your NLG 
system.

• Start the GIVE NLG server and point your 
Matchmaker to it.



The class NlgSystem

abstract public class NlgSystem {
  abstract public void connectionEstablished(QuestionnaireData preQuestionnaire) 
                              throws NlgServerException;

  abstract public void connectionDisconnected();

  abstract public void handleStatusInformation(Position playerPosition,
      Orientation playerOrientation, List<String> visibleObjects)
      throws NlgServerException;

  abstract public void handleAction(Atom actionInstance, List<Formula> updates)
                              throws NlgServerException;

  abstract public void handleDidNotUnderstand()
                              throws NlgServerException;
}

That’s it!



Methods you can use

• void send(String s): Send the string s to the 
client to be displayed.

• List<Atom> getPlan(List<Formula> goals): Get 
a plan that leads from current state to goals.

• getWorld(), getDiscretizer(): Get current world 
and discretizer.

• see: http://give-challenge.kenai.com/apidocs/

http://give-challenge.kenai.com/apidocs/
http://give-challenge.kenai.com/apidocs/


Configuring the NLG server
<?xml version="1.0"?>

<nlgserver port="3001" simultaneous-instances="1" web-port="8081">
  <nlg-system 
       class="edu.union.give2.simplenlgservernolandmarks.ExampleNlgSystem" />

  <planner style="sgplan" executable="/home/koller/sgplan-522-mac" />
</nlgserver>

(example-nlgsystem-config.xml in Demo Servers distribution)

Then start the NLG server:

$ java -jar target/give2-example-nlgserver-1.0.2-jar-with-dependencies.jar 
    example-nlgsystem-config.xml

GIVE NLG server, version null
Reading configuration from example-nlgsystem-config.xml...
NLG system class: edu.union.give2.simplenlgservernolandmarks.ExampleNlgSystem
[Server 20:20:02.699] Listening on port 3001



Compiling a GIVE NLG system

• We use the Maven build tool for GIVE-2.

• Maven’s perspective on building stuff:
‣ declarative configuration file

‣ convention about directory structure

‣ download libraries automatically when needed

• The last point makes it very convenient for 
GIVE.



Maven directory structure

myproject/
  pom.xml        -- the central configuration file
  /src
    /main        -- source code that gets compiled into Jar files
      /java      -- Java source code
      /javacc    -- JavaCC source code (parse generator)
      /resources -- any other files that will be included in Jar files
      ...
    /test        -- source code for unit tests
      /java      -- ... written in Java
      /groovy    -- ... written in Groovy
      ...
  /target        -- compiled classes and Jar files (created by Maven)



A pom file (important bits)

    <groupId>edu.union</groupId>
    <artifactId>give2-example-nlgserver</artifactId>
    <name>give2-example-nlgserver</name>
    <version>1.0.2</version>

(see a demo server pom file for the rest)

Identify your project name and version:

<dependency>
   <groupId>de.saar.penguin</groupId>
   <artifactId>give2-nlgserver</artifactId>
   <version>[1.9.1,)</version>
</dependency>

Tell Maven to include the NLG server library:

(you can include further dependencies if you like)



A pom file (important bits)

<plugin>
  <groupId>org.apache.maven.plugins</groupId>
  <artifactId>maven-assembly-plugin</artifactId>
  <configuration>
    <descriptorRefs>
      <descriptorRef>jar-with-dependencies</descriptorRef>
    </descriptorRefs>
    <archive>
      <manifest>
        <mainClass>give.nlgserver.NlgServer</mainClass>
      </manifest>
    </archive>
  </configuration>
</plugin>

Configure build tools:

(see a demo server pom file for the rest)



Running Maven

• Compile all classes, build a Jar file 
containing just your classes, install:
   mvn install

• Build executable Jar file with your classes 
and all libraries:
   mvn assembly:assembly

• Delete all compiled files:
   mvn clean



Collaborating with others

• So far, you have primarily written code by 
yourself.  This project is different.

• Tools for collaborating with other developers:
‣ Revision control software: Mercurial

‣ Bug tracking, discussions, Wiki: FogBugz

‣ Code reviews

‣ Project management approach: Scrum

Thank you, Fog Creek Software!
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Version control systems

• One central repository; each user has their 
own working copy.

• Repository to WC: update
WC to repository: commit

• VC system tries to merge changes; if 
impossible, a merge conflict is signalled and 
has to be resolved manually by user.



We use Mercurial

• ... because that’s what our hosting service 
provides.

• A decentralized system: You can use the 
central repository, but you don’t have to.

• Get info and a client at
http://mercurial.selenic.com/

• Most prominent alternative: Subversion.

http://mercurial.selenic.com
http://mercurial.selenic.com


Using Mercurial

• Clone a repository:
  hg clone http://hg-scm.org/hello my-hello

• After editing your WC, transfer changes 
back to network repository:
  hg commit
  hg push

• Get updates from network repository:
  hg pull -u
  hg merge

http://hg-scm.org/hello
http://hg-scm.org/hello


Mercurial: The model
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Learning about Mercurial

• Mercurial can be a bit tricky to understand, 
but there are tons of tutorials on the Web.

• Try it out!



Other tools

• Issue tracking software:
‣ database of bugs and improvements that the team 

wants to work on

‣ ideally, each issue (or “case” in FogBugz) assigned to 
one developer

‣ with estimate of how much time it will take

• Discussion groups and Wiki.

• Start using them as much as you like!



Maintaining code quality

• Unit tests:
‣ small bits of code that test whether small pieces of your 

program work individually

‣ see e.g.  http://tinyurl.com/8bneq

• Code reviews:
‣ each major piece of code needs to be approved by 

some other developer before being added to repository

‣ see e.g. http://tinyurl.com/yk7spmt

http://www.extremeprogramming.org/rules/unittests.html
http://www.extremeprogramming.org/rules/unittests.html


Managing the software project

• I’d like to try out the Scrum software 
project management approach:
http://en.wikipedia.org/wiki/Scrum_(development)

• You’re the team; each of you gets to be 
Scrum Master for one sprint; I’m the 
Product Owner.

• I encourage you to try collaboration tools 
like testing and reviewing as needed.

http://en.wikipedia.org/wiki/Scrum_(development
http://en.wikipedia.org/wiki/Scrum_(development


Homework (I)

• Write a tiny GIVE system of your own.
‣ it needs to do something simple that goes beyond the 

dummy NLG system

‣ it needs to contain at least one new class

‣ it needs to compile with “mvn install assembly:assembly”

‣ add it to the central Mercurial repository

‣ email me where it is by Wednesday 4pm, so I can try it 
out before the next class

• You can use any programming language you 
like. Be aware of Java, Scala, Groovy, Jython.



Homework (II)

• Learn more about collaboration tools.
‣ create and resolve a case in FogBugz

‣ team up with a friend and play around with the code 
review tool

‣ write a simple class with a unit test, and get Maven to 
run the unit test

‣ post in the FogBugz discussion group and/or wiki

• Our FogBugz site is there for you; feel free 
to explore and use it!


