### Interoperable corpora: Why would we want it and how can we achieve it?

Vera Demberg & Merel Scholman Universität des Saarlandes, Germany

Introduction to Discourse





- Discourse relations are semantic links between segments / arguments, e.g.: Hamsters turn into cannibals when they are put on a diet.
- Many discourse relations can be described in terms of logic
- ► In logic and semantics, P and Q are used to refer to statements

Here's a short intro to how P and Q can work:

- P & Q = The situation described in P holds and the situation described in Q holds (additive/temporal)
   I visited the Prague Castle.(P) I also went to the Charles Bridge.(Q)
- ▶  $\mathbf{P} \rightarrow \mathbf{Q} =$  The situation in P leads to the situation in Q (causal/conditional) *I am in Prague*,(*P*) so I tried Kulajda.(Q)
- P<X<sup>1</sup> & Q → ¬X (¬ X can be the same as Q) = The situation described in P causes the expectation of X but it leads to the unexpected situation described in Q. (concession) <u>Although</u> the cheese was rather strong,(P) / liked it.(Q)

<sup>&</sup>lt;sup>1</sup>A<B means A causes B

- Discourse relation frameworks aim to describe these links between P and Q using labels
- These frameworks are then used to annotate different corpora
- Examples are the Penn Discourse Treebank, Rhetorical Structure Theory, GraphBank
- Each framework makes different distinctions regarding to which relations can hold between P and Q, e.g.:

### Introduction



#### Table 1

Contentful conjunctions used to illustrate coherence relations.

| Cause–effect         | because; and so                                                                 |
|----------------------|---------------------------------------------------------------------------------|
| Violated expectation | although; but; while                                                            |
| Condition .          | if (then); as long as; while                                                    |
| Similarity           | and; (and) similarly                                                            |
| Contrast             | by contrast; but                                                                |
| Temporal sequence    | (and) then; first, second,; before; after; while                                |
| Attribution          | according to; said; claim that; maintain that; stated that                      |
| Example              | for example; for instance                                                       |
| Elaboration          | also; furthermore; in addition; note (furthermore) that; (for, in, on, against, |
|                      | with,) which; who; (for, in, on, against, with,) whom                           |
| Generalization       | in general                                                                      |

- It would be great if one could make use of all these corpora to investigate a specific research question
- However, the different distinctions made by frameworks makes comparison difficult
- In other words, the corpora are not interoperable
- ► Today, we will present a proposal to "translate" relation labels from one framework to another, so that researchers can make use of different corpora.
- Let's first look at two of the most well-known discourse annotated corpora to see why interoperability is an issue

Two large corpora and their frameworks
PDTB
RST

2 Use cases – What can we do with interoperable corpora?

Different frameworks are based on different sets of relations, e.g.,

- Grosz & Sidner (1986): 2 relations
- PDTB (2008): 43 relations
- RST-DT (2003): 78 relations
- Frameworks can also be different when adapted to different languages or modalities, e.g.,
  - ► RST Basque Treebank: different version of RST compared to RST-DT, includes other labels such as PREPARATION.
  - Prague Dependency Treebank: PDTB-style, but several changes have been made, e.g. the different conditional subtypes in PDTB have been merged into one type
  - ► Italian LUNA corpus: PDTB-style, but several labels have been introduced for spoken discourse, such as GOAL and speech-act labels

- This part of the lecture: focus on two of the largest English discourse-annotated corpora – PDTB & RST
- Mapping discussed the rest of the day is illustrated using these two frameworks
- So first, we briefly discuss both frameworks to make sure everybody is on the same page

- Penn Discourse Treebank (2008)
- Focus on low-level relations (within/between adjacent sentences), not on relations between relations
- Strong focus on discourse connectives
- Relations have two (and only two) arguments: Arg1 and Arg2
- Placement Arg2 depends on position of connective: 'Arg1 because Arg2', or 'Because Arg2, Arg1'

- Hierarchical set of relation labels
- Three levels:
- 1 Class level: 4 major semantic classes
- **2 Type** level: further refines the semantics of the class levels
- **§ Subtype** level: defines semantic contribution of each argument
- When an annotator is uncertain of fine-grained sense (subtype), s/he can choose higher level (type) → good for inter-annotator agreement

### PDTB – Hierarchy



TEMPORAL:

Arguments are temporally related (overlapping or ordered)

- John was singing while he was washing his apple.
   SYNCHRONOUS
- ► John washed his apple and then he ate it. Asynchronous.Precedence
- ► John ate his apple <u>after</u> he washed it. Asynchronous.Succession



CONTINGENCY: Event in one of the segments causally influences the other

- ► John was singing so his roommates left.
- John was singing because he wanted his roommates to leave.
   CAUSE.REASON
- John is manipulative <u>because</u> he sings in order to drive people away.

PRAGMATIC CAUSE

CAUSE, RESULT

If John likes singing, he should take lessons. CONDITION



COMPARISON:

Discourse relation that highlights differences between the situations

► John likes apples <u>but</u> Mary likes pears.



- Contrast
- ► <u>Although</u> John likes fruit, he doesn't like pears. CONCESSION.EXPECTATION
- ► John likes fruit, <u>but</u> he doesn't like pears. CONCESSION.CONTRA-EXPECTATION

### **PDTB** – **Expansion**

EXPANSION:

Events that "expand the discourse" (not temporal, causal, contrastive)

► John likes apples <u>and</u> Mary does too.

Conjunction

- ► John likes fruits. For example, he enjoys eating apples. INSTANTIATION
- ► John likes fruits. More specifically, he likes apples. RESTATEMENT.SPECIFICATION
- John doesn't eat vegetables. <u>Instead</u>, he eats a lot of fruit.

ALTERNATIVE. CHOSEN ALTERNATIVE

- John doesn't eat vegetables, except for when he's sick.
   EXCEPTION PDTB manual:
  - $\neg$  Arg1&Arg2 & $\neg$ Arg2 $\rightarrow$ Arg1



Use the subset of PDTB relations on the "mini manual" handout for this exercise. Write down the PDTB labels at the appropriate spot on the items handout.

- The student sometimes placed his jeans in the freezer overnight <u>because</u> ice-cold temperatures prevent dirty smells.
- **2** The beer was brewed with a chocolate extract. It <u>also</u> contains peppermint.
- Experts say such long hours for flight attendants are dangerous. For instance, tired attendants might not react quickly enough during an emergency.
- My mom ate bags of M&Ms while she was pregnant with me so chocolate is in my blood.
- S Rather than keep the loss a secret from the outside world, *Michelle blabs about it to a sandwich man while ordering lunch over the phone.*
- **(** They've been assured that the police doesn't have anything to do with the population count. Still, **a lot of people are afraid of counteractions.**

Original corpus:

English: Penn Discourse Treebank – Newspaper text, million words

Related corpora include:

- Chinese Discourse Treebank Newspaper text, 70K words
- Czech: Prague Discourse Treebank Newspaper text, 50K sentences
- English: Biomedical Discourse Relation Bank Biomedical articles, 112K words
- ▶ Eng, Tur, Deu, Por, Pol, Rus: TED-MDB TED talks, 6 texts
- Hindi Discourse Relation Bank Newspaper text, 400K words
- Italian: Luna Corpus Spoken dialog, 25K words
- Modern Standard Arabic: Leeds Arabic DTB Newspaper text, 166K words
- Turkish: METU-TDB Corpus Several written genres, 500K words

## Two large corpora and their frameworks PDTB RST

2 Use cases - What can we do with interoperable corpora?

- Rhetorical Structure Theory
- Original proposal: Mann and Thompson (1988)
- Developed for computer-based text generation
- Relations are formulated in terms of writer's intentions
- No strong focus on connectives like in PDTB
- Different versions available
- Version discussed here is developed by Carlson and Marcu (2003)

### RST – Relation labels (C&M 2003)

- Attribution: attribution, attribution-negative
- Background: background, circumstance
- Cause: cause, result, consequence
- **Comparison**: comparison, preference, analogy, proportion
- Condition: condition, hypothetical, contingency, otherwise
- Contrast: contrast, concession, antithesis
- Elaboration: elaboration-additional, elaboration-general-specific, elaboration-part-whole, elaboration-process-step, elaboration-object-attribute, elaboration-set-member, example, definition
- **Enablement**: purpose, enablement
- Evaluation: evaluation, interpretation, conclusion, comment
- **Explanation**: evidence, explanation-argumentative, reason
- Joint: list, disjunction
- Manner-Means: manner, means
- Topic-Comment: problem-solution, question-answer, statement-response, topic-comment, comment-topic, rhetorical-question
- Summary: summary, restatement
- Temporal: temporal-before, temporal-after, temporal-same-time, sequence, inverted-sequence
- Topic Change: topic-shift, topic-drift

Temporal labels in RST include the following:

John was singing while he was washing his apple.

TEMP.-SAME-TIME

John ate his apple <u>after</u> he washed it.

Temp.-after

John washed his apple and then he ate it.

TEMP.-BEFORE

John washed his apple. He recently started washing his apples before eating them.

Background

Causal labels in RST include the following:

- John was singing so his roommates left. CAUSE
   John's roommates left when he started singing. RESULT
   John and his roommates do not get along. They never spend time together. EVIDENCE
  - John was singing in order to drive his roommates away. PURPOSE

Constrastive labels in RST include the following:

- ► John likes apples but Mary likes pears. CONTRAST
- ► Although John likes fruit, he doesn't like pears. CONCESSION
- Although he doesn't eat many pears, John enjoys eating apples.

ANTITHESIS

Additive labels in RST include the following:

- ► John likes apples and John likes pears too. ELAB.-ADDITIONAL
- John likes fruits. More specifically, he likes apples.

ELAB.-GENERAL-SPECIFIC

► John likes fruits. For example, he enjoys eating apples. EXAMPLE

RST creates tree structures of texts

Procedure:

- Divide the text into units
- Examine each unit, and its neighbours. Is there a clear relation holding between them?
  - If yes, then mark that relation (e.g., Condition).
  - If not, the unit might be at the boundary of a higher-level relation. Look at relations holding between larger units (spans).
- S Continue until all the units in the text are accounted for.





Arrows point to the central part of the relation: the nucleus

- Arguments of RST relations are either nucleus or satellite
- Nucleus is central part of text, satellite is supportive of nucleus For example: Evidence relation (claim – argument):
  - Claim is more essential to the text than evidence
  - So claim is nucleus and evidence is satellite

- Arguments of RST relations are either nucleus or satellite
- Nucleus is central part of text, satellite is supportive of nucleus For example: Evidence relation (claim – argument):
  - Claim is more essential to the text than evidence
  - So claim is nucleus and evidence is satellite
- Writer's intentions are important: what does the writer want to achieve?
- Determining nuclearity can therefore rarely be done without taking the context of the relation into consideration

- Arguments of RST relations are either nucleus or satellite
- Nucleus is central part of text, satellite is supportive of nucleus For example: Evidence relation (claim – argument):
  - Claim is more essential to the text than evidence
  - So claim is nucleus and evidence is satellite
- Writer's intentions are important: what does the writer want to achieve?
- Determining nuclearity can therefore rarely be done without taking the context of the relation into consideration
- Connectives can change the nuclearity of very similar relations:
  - The earnings were fine and above expectations.N <u>Nevertheless</u>, Salomon's stock fell \$1.125 yesterday.S
  - Although the earnings were fine and above expectations, S Salomon's stock fell \$1.125 yesterday.N

Strong Nuclearity Principle:

When a relation holds between two spans of text (higher up in the tree), it should also hold between the nuclei of these spans.

Strong Nuclearity Principle:

When a relation holds between two spans of text (higher up in the tree), it should also hold between the nuclei of these spans.



 $\rightarrow \mathrm{Restatement}$  actually holds between the nucleus of the nucleus and the satellite of  $\mathrm{Restatement}$ 

Use the subset of RST relations on the handout for this exercise.

- The student sometimes placed his jeans in the freezer overnight <u>because</u> ice-cold temperatures prevent dirty smells.
- **2** The beer was brewed with a chocolate extract. It <u>also</u> contains peppermint.
- Experts say such long hours for flight attendants are dangerous. For instance, tired attendants might not react quickly enough during an emergency.
- My mom ate bags of M&Ms while she was pregnant with me so chocolate is in my blood.
- S Rather than keep the loss a secret from the outside world, *Michelle blabs about it to a sandwich man while ordering lunch over the phone.*
- **(6)** They've been assured that the police doesn't have anything to do with the population count. Still, **a lot of people are afraid of counteractions.**

Original corpus:

► English: RST Discourse Treebank – Newspaper text, 176K words

Related corpora include:

- Basque: RST Basque Treebank Abstracts, 15.5K words
- Chinese/Spanish Treebank Several written genres, parallel corpus, 100 texts
- Dutch RUG Corpus Several written genres, approx. 6K words
- ► German: Potsdam Commentary Corpus Newspaper text, 44K words
- Portuguese: BP RST Corpus Abstracts

• Difference in granularity (RST distinguishes many more labels than PDTB)

- Difference in granularity (RST distinguishes many more labels than PDTB)
- Difference in label names obscures similarities (PDTB's JUSTIFICATION vs. RST's EVIDENCE)

- Difference in granularity (RST distinguishes many more labels than PDTB)
- Difference in label names obscures similarities (PDTB's JUSTIFICATION vs. RST's EVIDENCE)
- Similarities in label names obscures differences (PDTB's CONTRAST vs. RST's COMPARISON)
  - PDTB CONTRAST: Most bond prices fell... Junk bond prices moved higher, <u>however.</u>
  - **2** RST COMPARISON: Instead of proposing a complete elimination of farm subsidies, <u>as</u> the earlier U.S. proposal did, ...
  - $\rightarrow$  RST manual: in COMPARISON relations, arguments are <u>not</u> in contrast.

- Difference in granularity (RST distinguishes many more labels than PDTB)
- Difference in label names obscures similarities (PDTB's JUSTIFICATION vs. RST's EVIDENCE)
- Similarities in label names obscures differences (PDTB's CONTRAST vs. RST's COMPARISON)
  - PDTB CONTRAST: Most bond prices fell... Junk bond prices moved higher, <u>however.</u>
  - **2** RST COMPARISON: Instead of proposing a complete elimination of farm subsidies, <u>as</u> the earlier U.S. proposal did, ...
  - $\rightarrow$  RST manual: in COMPARISON relations, arguments are <u>not</u> in contrast.

Interoperability of these frameworks could actually benefit the community greatly...



#### A few examples:

Query for a specific relation in multiple corpora = more data

Task: query for chosen\_alternative in German TED talks Not many instances of this relation in the corpus. We want to find more examples.

**Look at German RST-style corpus PCC:** annotated as **PREFERENCE** in RST *Rather than go there by air, I'd take the slowest train.* 

#### A few examples:

- Query for a specific relation in multiple corpora = more data
- Compare how discourse relations are marked in different modalities/genres (e.g., written vs. spoken corpus)

### Task: query for *so* in written/spoken corpora

so is used to mark  ${\rm RESULT}$  relations in PDTB (written). We want to find out which relations it marks in spoken discourse.

in Crible et al.'s unified taxonomy: possible labels include CONSEQUENCE, CONCLUSION, TOPIC-SHIFTING I've already had a meeting uhm an update meeting so the place hasn't burnt down or anything.

#### A few examples:

- Query for a specific relation in multiple corpora = more data
- Compare how discourse relations are marked in different modalities/genres (e.g., written vs. spoken corpus)
- Check how discourse relation is marked in another language

#### Task: How are causals marked in Dutch?

Find different markers that occur in PDTB's  $\operatorname{CAUSE}$  relations.

**Look at the Dutch CCR-style corpus DiscAn:** POSITIVE, CAUSAL relations *She went home early because she promised her husband she would.* "Ze kwam vroeg thuis omdat ze haar man beloofd had dat ze dat zou doen."

She arrived home late because I was already asleep. "Ze kwam laat thuis want ik sliep al."

#### A few examples:

- Query for a specific relation in multiple corpora = more data
- Compare how discourse relations are marked in different modalities/genres (e.g., written vs. spoken corpus)
- Check how discourse relation is marked in another language
- On a larger scale, compare how discourse relations are marked or distributed in one language vs. another

### Task: Looking at contrastive relations in English/French

How are contrastive and non-contrastive relations distributed in English/French?

in PDTB: look at COMPARISON class vs. other classes in Annodis: look at CONTRAST and ALTERNATION labels vs. other labels

- Given that there are so many differences between the frameworks, you have to know/study all the frameworks to identify the labels that are relevant for your work.
- Or is there an easier way to make these corpora interoperable?
- Different ways to create a mapping between frameworks:
  - One-to-one mapping
  - All-to-smallest common
  - All-to-decomposing features
- Let's look at these in more detail

### Interoperable corpora: One-to-one mapping

- Construct one-to-one mappings for each combination of frameworks:
  - For every label in a framework, find the best matching corresponding label in another framework.



- Previous efforts:
  - Benamara & Taboada (2015): RST SDRT
  - Chiarcos (2014): PDTB RST
- Drawback: many mappings necessary to map to all frameworks, e.g.
  - ▶ 3 mapping for 3 frameworks (F1-F2, F2-F3, F1-F3)
  - ▶ 6 mappings for 4 frameworks (+ F1-F4, F2-F4, F3-F4), etc...

## Interoperable corpora: All-to-smallest common mapping

Find set of common aspects between frameworks, map all relations to this set:



- Drawback: "smallest common" is probably very very small (2 distinctions: Y/N relation?)
- So we'd likely lose information

# Interoperable corpora: All-to-decomposed features mapping

Find common features of relation inventories, map all relations to their values for these features:



- Possible to easily add new frameworks by analysing the labels according to these features
- Labels can be underspecified for smaller inventories, so information will not be lost for bigger inventories.

Demberg, Scholman

## Interoperable corpora: All-to-decomposed features mapping

- In favour of decomposed features, because it preserves the most amount of information
- In the next lecture, we will discuss how to go about these dimensions