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Computational semantics is the branch of computational linguistics that is
concerned with the development of methods for processing meaning informa-
tion. Because a computer system that analyzes natural language must be able
to deal with arbitrary real-world sentences, computational semantics faces a
number of specific challenges related to the coverage of semantic construction
procedures, the efficient resolution of ambiguities, and the ability to compute
inferences. After initial successes with logic-based methods, the mainstream
paradigm in computational semantics today is to let the computer automati-
cally learn from corpora. In this article, we present both approaches, compare
them, and discuss some recent initiatives for combining the two.

1. Introduction

In this article, we give an overview of the state of the art in computational
semantics, i.e. the branch of computational linguistics that deals with the
processing of meaning information. The goal of computational linguistics is
to develop methods for the automatic analysis and generation of natural lan-
guage. Ultimately, it aims at creating computer systems that approximate
the language skills of an average human speaker. But there are also more
immediate and tangible real-world applications, including, for instance, in-
formation extraction systems that acquire content for a relational database
from large-scale collections of business reports; spoken-language or multi-
modal interfaces that enable the convenient interaction of users with infor-
mation systems (e.g., interfaces to healthcare websites or interactive museum
guides); or machine translation systems that transfer text or speech input
from a source language to a target language. All of these applications re-
quire some amount of semantic processing, although not necessarily at a
very fine level of detail.
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The task of semantic processing can generally be decomposed into two
subproblems, namely the problem of computing a formal representation of
the meaning of an expression (the semantic construction problem) and the
task of determining the relation between such formal representations (the
inference problem). Inference is required, for instance, when a question-
answering system determines whether an answer candidate in a document
collection actually answers a given question, or when an automatic summa-
rization system must figure out to which extent two sentences describe the
same event (and can therefore be compressed into one).

The classical approach to computational semantics uses some form of
first-order or higher-order logic for the formal semantic representations and
some form of Montague Grammar-style process for semantic construction,
and solves the inference problem using programs called theorem provers,
which can test logic formulas for entailment. This tradition of computational
semantics shares its formal and conceptual framework with the mainstream
of semantic research in linguistics and the philosophy of language (which we
will refer to as “theoretical semantics” in this article). It strongly benefits
from the wealth and detail of earlier research in these disciplines.

However, there are a number of challenges that are specific to computa-
tional semantics and call for different methods. The aim of computational
semantics is to implement human language skills in computer systems – at
least partially, in concrete applications. The methods that are used for this
must therefore be cast into precisely formalized algorithms. One crucial as-
pect that drives the development of new approaches is that these algorithms
must be efficient, even in the face of the massive ambiguity that arises in
real-world sentences. Second, the computer systems used in computational
semantics must be able to process any arbitrary sentence or discourse that
can arise in the respective application scenario. The system must have wide
coverage with respect to semantic construction, and it must also have access
to the appropriate large-scale knowledge bases that can support the infer-
ences that are necessary for the task at hand. It is hard to achieve all of
these goals at once.

The history of computational semantics is defined by attempts to handle
these problems, and we will outline some of the most prominent approaches
in this article. The classical logic-based approach, which we discuss in Sec-
tion 2., has made great progress in terms of processing efficiency, but still
falls short of practical usability in terms of coverage and performance on
the disambiguation task. As a consequence, computational semantics ex-
perienced a fundamental paradigm shift around the turn of the century;
current mainstream research focuses on statistical models of word and sen-
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tence meaning (Section 3.). These models have much better coverage, at the
expense of the level of detail, precision, and conceptual clarity of the seman-
tic representations. We conclude with an outlook on some novel directions
of research, which are aimed at comparing and integrating the worlds of
logical and statistical methods (Section 4.).

2. Computational semantics in the logical framework

Computational approaches to semantic analysis must deal with two issues.
First, they must be able to determine a formal semantic representation for
a given input expression; in the case of ambiguity, they also must be able
to choose the contextually appropriate reading. This is called the semantic
construction problem. Second, they must be able to relate different meaning
representations to each other to detect equivalence, entailment or inconsis-
tency between different sentences. This is the inference problem. Analogous
problems occur in natural language generation.

Early research in artificial intelligence (AI) focused on approaches to
these problems that were largely disconnected from linguistics. One influ-
ential approach was Conceptual Dependency theory (Schank 1975). Seman-
tic representation was done without logic: Word meanings were encoded
as graphs made up of a limited number of uninterpreted atomic concepts
and relations (partly inspired by Fillmore’s (1968) role semantics). From
these, sentence representations were constructed by merging smaller graphs
into larger ones using a collection of graph rewriting rules. The approach
worked to some extent for sentences and texts expressing simple assertive
information. However, it did not generalize easily to more complex types of
information involving cardinality, quantification, negation, modality, condi-
tional and temporal relations. These were modeled by simply attaching tags
to graph edges.

Modern computational semantics started with the use of logics with well-
defined model-theoretic interpretations, following the Montagovian revolu-
tion in theoretical semantics. This allowed the use of principled inference
rules that were justified by soundness and completeness with respect to the
model theory. Over the years, a logic-based “standard model” of computa-
tional semantics emerged: A semantic representation in first-order or higher-
order logic is computed compositionally based on a syntactic analysis, and
meaning relations between expressions of language are implemented using
standard inference engines for logic. We refer the reader to the textbook by
Blackburn & Bos (2005) for details about the standard model. Below, we
sketch some of the most important methods in this paradigm.
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NP:
λP∀x. man(x) → P(x)

every man

NP:
λQ∃y. woman(y) ∧ Q(y)

a woman

V:
λyλx. love(y)(x)

loves

VP:
λx∃y. woman(y) ∧ love(y)(x)

S:
∀x. man(x) → (∃y. woman(y) ∧ love(y)(x))

Figure 108.1: A Montague-style derivation of a semantic representation for
the sentence “Every man loves a woman.”

2.1. Semantic construction

Compositional semantics. In the early 1970s, Richard Montague pre-
sented a framework for a strictly compositional interpretation of natural-
language sentences in terms of type theory, including a formal treatment
of quantifier scope (Montague 1973). His work not only provided the basis
for modern semantic theory, but has also had great influence on the de-
velopment of computational semantics. “Standard model” computational
semantics takes it as given that we can assign lambda terms to lexicon en-
tries, combine them by traversing the parse tree bottom-up, and compute
lambda terms for larger phrases compositionally out of those for smaller
phrases, using functional application and beta reduction. An abbreviated
example for the derivation of one reading of the sentence “every man loves
a woman” is shown in Fig. 108.1.

Montague’s original framework was based on an idiosyncratic version of
categorial grammar. Computational linguists mostly used the formalism of
unification grammar, i.e., phrase-structure grammar extended with feature
unification, when they first started developing large-scale grammars in the
1980s. Unification grammars such as LFG (Dalrymple et al. 1995) and
HPSG (Pollard & Sag 1994) offered an elegant and simple way to compute
predicate-argument structures by filling the argument positions of a head
with the semantic contributions of its complements using unification (see e.g.
Pereira & Shieber 1987). These methods were later extended to cover more
complex problems in semantic construction (Dalrymple 1999; Copestake,
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Lascarides & Flickinger 2001).

Dynamic semantics. A number of “non-local” semantic phenomena turned
out to be challenging for compositional semantic construction methods. For
instance, anaphoric expressions establish coreferential links with antecedents
at arbitrarily distant positions in the discourse; ellipsis requires us to copy
parts of the antecedent’s semantics into the target representation. Further-
more, structural ambiguities, e.g. of quantifier scope, undermine the tidy
parallelism of syntactic and semantic structure posited by Montague Gram-
mar.

In order to represent anaphora and, to some extent, ellipsis, the use of
Discourse Representation Theory (DRT; Kamp 1981; Kamp & Reyle 1993;
see article 37 Discourse Representation Theory) has enjoyed much atten-
tion in computational semantics. DRT conceives of meaning not in terms of
truth conditions, but as context-change potential; in its standard version, it
models the anaphoric potential of a text through a set of discourse referents,
which are a constitutive part of the semantic representation. Dynamic Pred-
icate Logic (Groenendijk & Stokhof 1991; see article 38 Dynamic semantics)
is a closely related formalism that enables a compositional model-theoretic
interpretation of anaphora. However, standard DRT employs a top-down,
non-compositional algorithm for semantic construction. Computational ap-
plications typically combine DRS representations with higher-order logic and
lambda abstraction, in order to enable a surface compositional derivation
of DRSes, such as Compositional DRT (Muskens 1995) and Lambda-DRT
(Kohlhase, Kuschert & Pinkal 1996).

A second issue is that computational applications for processing anaphora
cannot skirt the issue of identifying the antecedent of an anaphoric expres-
sion in a given text. The possible antecedents are restricted by the hard
accessibility constraints of DRT to some degree; they can be narrowed down
further by modeling focusing mechanisms based on the global structure of
the discourse (Grosz & Sidner 1986; Grosz, Joshi & Weinstein 1995; Asher &
Lascarides 2003; see article 75 Discourse anaphora, accessibility, and modal
subordination for more on the theoretical aspects). However, these sys-
tematic approaches to anaphoric reference leave many cases of referential
ambiguity unresolved. The development of methods for coreference resolu-
tion, which link phrases in a given discourse that refer to the same entity,
is an active field of research in computational linguistics (see e.g. Ng 2010;
Stede 2011).
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Quantifier storage approaches. One non-local aspect of semantic con-
struction that has received particular attention in computational semantics
is scope ambiguity. From a perspective of theoretical linguistics, the ba-
sic problem of semantic construction for sentences with scope ambiguities
was essentially solved by the Quantifier Raising (QR) operation in Mon-
tague Grammar. However, QR-based approaches cannot be used effectively
in computational semantics because the development of efficient parsing al-
gorithms becomes very complicated, and it is inconvenient to develop large
grammars. A second major challenge for a computational treatment of scope
is that the number of readings quickly becomes very large as the sentence
grows longer, and the algorithm must still remain efficient even when this
happens. Algorithms for semantic construction can differ by a huge degree
in this respect; recent underspecification-based methods can perform tasks
that used to be completely infeasible (requiring years of computation time
for one sentence) in milliseconds.

A first step towards removing the reliance on QR was quantifier stor-
age, which was first proposed by Cooper (1983) and then refined by Keller
(1988). The key idea in Cooper Storage was to replace Montague’s treat-
ment of scope ambiguity by a storage technique for quantifiers: Nodes in a
(phrase-structure) syntax tree are assigned structured semantic representa-
tions, consisting of content (a λ-expression of appropriate type) and quan-
tifier store (a set of λ-expressions representing noun phrase meanings). As
the parse tree is traversed bottom-up, noun phrases may either be applied
in situ to form new content; for the example sentence “every man loves a
woman,” this leads to narrow scope for the object, in essentially the same
way as in the Montague-style derivation of Fig. 108.1. Alternatively, we
may move the content into the quantifier store at any NP node (as shown
at the node for “a woman” in Fig. 108.2) and then retrieve an item from
the store and apply it to the content at the sentence node. This enables the
non-deterministic derivation of different scope readings of a sentence from a
surface-oriented phrase-structure grammar analysis.

A related approach was proposed by Hobbs & Shieber (1987) first, and
later generalized to Quasi-Logical Form (QLF; Alshawi & Crouch 1992),
which became a central part of SRI’s Core Language Engine (CLE; Alshawi
1990): During parsing, preliminary semantic representations (QLFs) are
built up, which contain the quantifier representations in the argument posi-
tions of their main predicate. In a second step, rewrite rules on the QLFs
move quantifiers to their appropriate position, leaving a variable behind to
bring about proper binding. For the above example, this system would first
derive the QLF term love(〈every, x,man〉, 〈some, y,woman〉), from which it
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NP:
〈λP∀x. man(x) → P(x), ∅〉

every man

NP:
〈λQ∃y. woman(y) ∧ Q(y), ∅〉

⇒ 〈x1, {〈λQ∃y. woman(y) ∧ Q(y)〉1}〉

a woman

V:
〈λyλx. love(y)(x), ∅〉

loves

VP:
〈λx. love(x1)(x), {〈λQ∃y. woman(y) ∧ Q(y)〉1}〉 

S:
〈∀x. man(x) → love(x1)(x), {〈λQ∃y. woman(y) ∧ Q(y)〉1}〉

⇒ 〈∃y. woman(y) ∧ (∀x. man(x) → love(y)(x)), ∅〉

Figure 108.2: A Cooper Storage derivation for the second reading of the
sentence “Every man loves a woman.”

would derive the two readings in Fig. 108.1 and Fig. 108.2 by either scoping
〈every, x,man〉 over love first and then 〈some, y,woman〉 over the result, or
vice versa.

Underspecification. As grammars grew larger in order to extend their
coverage of free text, a further problem emerged. In a sentence with multiple
scope ambiguities, the number of readings can grow exponentially with the
number of quantifiers or other scope-bearing operators (such as negations
or modal operators) in the sentence. The following sentence from Poesio
(1994), which has (5!)2 = 14400 readings in which each quantifier and modal
operator takes scope in its own clause alone, illustrates this problem. In
practice, the problem is even worse because large-scale grammars tend to
make generalizing assumptions (e.g., that all noun phrases take scope) that
can cause innocent-looking sentences to be assigned millions of readings.

(1) A politician can fool most voters on most issues most of the time, but
no politician can fool every voter on every single issue all of the time.

The standard approach to handling massive ambiguity like this in large-
scale grammars today is underspecification. Underspecification approaches
derive a compact representation of all readings from the syntactic analysis,
and proceed to single specific readings only by need, and after irrelevant
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∃y

∧

woman(y)

∀x

→

man(x)

love(y)(x)

  

∀x

→

man(x) ∃y

∧

woman(y) love(y)(x)

∀x

→

man(x)

∃y

∧

woman(y)

love(y)(x)

(a) (b) (c)

Figure 108.3: A dominance graph for “every man loves a woman” (a), along
with the two trees it describes (b,c).

readings have been filtered out by inferences. Most underspecification ap-
proaches that are used in practice specify the parts from which a semantic
representation is supposed to be built, plus constraints that govern how the
parts may be combined. For instance, the dominance graph (Egg, Koller &
Niehren 2001; Althaus et al. 2003) for the earlier example sentence “every
man loves a woman” is shown in Fig. 108.3a. The parts of this graph may
be combined in all possible ways that respect the dotted dominance edges,
yielding the two trees in Fig. 108.3b,c. These trees represent the semantic
representations that we also derived in Fig. 108.2.

Most modern large-scale grammars use underspecification in one form or
another. HPSG grammars use Minimal Recursion Semantics (MRS, Copes-
take et al. 2005). The Glue Logic system used by many LFG grammars (Dal-
rymple 1999) can be seen as an underspecification approach as well; note
that some recent LFG grammars also use a simpler rewriting mechanism
for semantic construction (Crouch & King 2006). Underspecification-based
semantic construction algorithms have also been defined for Tree Adjoin-
ing Grammars (Kallmeyer & Romero 2008; Gardent 2003). Hole Semantics
(Blackburn & Bos 2005) is a particularly easy-to-understand underspecifi-
cation formalism. The algorithmic foundations of underspecification have
been worked out particularly well for dominance graphs, into which MRS
and Hole Semantics can be translated. Dominance graphs also support pow-
erful inference algorithms for efficiently reducing the set of possible readings
without even computing them (Koller & Thater 2010). For more information
about underspecification, we refer to article 24 Semantic underspecification
in this handbook.

One popular grammar formalism in computational linguistics that fol-
lows the original Montagovian program more directly is Combinatory Cat-
egorial Grammar (Steedman 2000; Bos et al. 2004). CCG is a variant of
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categorial grammar, with which it shares a very elegant and direct map-
ping of syntactic to semantic representations. Although this forces CCG
into modeling semantic ambiguities as syntactic ambiguities, CCG can still
be parsed efficiently by representing both kinds of ambiguity together in a
parse chart.

2.2. Inference

The major added value of logic as a representational framework in com-
putational linguistics is its suitability for the development of provably cor-
rect inference procedures. Because logical deduction is backed by the truth-
conditional concept of logical entailment, it is possible to define under what
conditions a deduction system is sound and complete, and to develop such
systems. This is crucial when we model the processes which people perform
when interpreting or producing an utterance – e.g., deriving relevant im-
plicit information from the utterance’s semantic interpretation, integrating
meaning information into their knowledge, or reducing ambiguity by the
exclusion of inconsistent interpretations.

For first-order predicate logic, theorem provers – that is, computer pro-
grams that test formulas for validity or unsatisfiability – have become effi-
cient enough to support the practical application of deduction systems. The-
oretically, first-order logic is undecidable; but theorem provers, which were
originally designed for mathematical applications, have nonetheless achieved
an impressive average performance on standard tasks. Currently, a variety
of highly efficient off-the-shelf theorem provers are available which can be
used as general purpose inference engines for natural language processing
(Riazanov & Voronkov 2002; Hillenbrand 2003); there are also tools called
model builders which can test a formula for satisfiability and build satisfy-
ing models for them (McCune 1998; Claessen & Sörensson 2003). There has
been some research on theorem provers for dynamic logics, such as DRT (van
Eijck, Hegueiabehere & O Nuallain 2001; Kohlhase 2000), but these provers
have not been engineered as thoroughly as standard first-order provers, and
it is more efficient in practice to translate dynamic logic into static logic and
use the standard tools (Bos 2001). One example for an end-to-end system
of the “standard model”, involving semantic construction and the use of
first-order theorem provers, is Bos & Markert (2005).

It is known that first-order logic is not expressive enough to represent
genuinely higher-order or intensional phenomena in natural language, such
as embedding under propositional attitudes. Some researchers have directly
applied theorem provers for higher-order logic (e.g., Andrews & Brown 2006)
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to natural-language inference tasks; see e.g. Gardent & Konrad (2000). How-
ever, higher-order theorem provers are much less efficient in practice than
first-order provers. To compensate for this restriction, computational se-
mantics has a strong tendency towards avoiding higher-order constructs,
choosing first-order analyses in the case that semantic theory offers them as
an option, and sometimes even using first-order representations to approx-
imate phenomena that would be modeled appropriately with higher-order
logic only (e.g. in the “ontological promiscuity” approach (Hobbs 1985); see
also Pulman (2007) for a more recent case study).

Conversely, one can explore the use of logics that are less expressive
than first-order logic in order to maximize efficiency, for restricted tasks
and applications. Description logics (Baader et al. 2003) are a family of
fragments of first-order logic designed to model terminological knowledge
and reasoning about the membership of objects in the denotation of con-
cepts, of which the KL-ONE system is an early representative (Brachman
& Schmolze 1985). They are supported by very fast reasoning systems
(Haarslev & Möller 2001; Tsarkov, Horrocks & Patel-Schneider 2007). Be-
cause they offer only restricted types of quantification, however, they have
mostly been used for small domains or for specific problem, such as the
resolution (Koller et al. 2004) and generation (Areces, Koller & Striegnitz
2008) of referring expressions.

Historically, another fragment of first-order logic that experienced wide-
spread use in computational semantics is Horn Clause Logic, which under-
lies the programming language Prolog. Horn Clause Logic is limited by its
inability to express true logical negation, which in Prolog must be approx-
imated as “negation by failure”: A negation ¬A is considered as true iff
A cannot be proved from the database. Prolog has been widely used in
computational linguistics (Pereira & Shieber 1987; Blackburn & Bos 2005)
– among other reasons, because it can model the full process of natural-
language understanding including parsing, semantic construction, and in-
ference uniformly, by using logical deduction. However, its use has declined
due to the availability of fast theorem provers and of NLP software libraries
for mainstream programming languages, as well as the growing importance
of numeric processing for statistical methods (see Section 3. below).

A final challenge is the modeling of common-sense reasoning. Inference
steps needed in the process of natural-language understanding may be valid
only in the typical case, and thus their results can be overwritten, if more
specific contradicting information is added. Knowing that Tweety is a bird
allows us to infer that Tweety can fly; adding the information that Tweety is
a penguin forces us to revise the derived information. This raises the infer-
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ence task to another level of difficulty. Standard predicate-logic deduction
just adds information, extending the knowledge base in a monotonic way,
and has no mechanism for knowledge revision. Several alternative logic
frameworks supporting non-monotonic deduction have been proposed, most
importantly default logic (Reiter 1980), abductive reasoning (Lipton 2001),
and auto-epistemic logic (Moore 1985). Of these, default logic (particularly
in the context of SDRT, Asher & Lascarides 2003) and abductive reasoning
(i.e., reasoning from observations to the best explanation, particularly in the
text understanding framework of Hobbs et al. 1993) have become influential
in computational semantics.

2.3. Knowledge resources for computational semantics

So far, we have sketched how logic-based semantic representations can be
automatically built, and how inferences with these representations can be ef-
ficiently computed using theorem provers. To make real use of these systems,
we need wide-coverage knowledge bases, which provide us with facts about
the meaning of predicates and constants. Consider the following examples:

(2) a. Socrates is a man.
All men are mortal.

b. Socrates is mortal.

(3) a. Bill bought a convertible.

b. Bill bought a car.

(4) a. John went shopping.

b. Did he bring enough money?

(5) a. Which genetically caused connective tissue disorder has severe
symptoms and complications regarding the aorta and skeletal
features, and, very characteristically, ophthalmologic subluxation?

b. Marfan’s is created by a defect of the gene that determines the
structure of Fibrillin-11. One of the symptoms is displacement of
one or both of the eyes’ lenses. The most serious complications
affect the cardiovascular system, especially heart valves and the
aorta.

The range of inferences that we can draw from semantic representations
alone without any additional knowledge is very limited. We may be able to
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do simple syllogistic reasoning as in (2); but the vast majority of intuitively
plausible inferences require additional background knowledge. The inference
in (3) requires the lexical-semantic information that convertibles are cars;
to make sense of the dialogue sequence (4), we must have common-sense
knowledge about what happens when people go shopping. The example
(5) gives an impression of the complex inferences that a natural-language
interface to a medical information system must be able to draw, and of the
kind and amount of domain knowledge which is required for this.

Theorem provers support such inferences if they have access to logical
knowledge bases which contain this information. Unfortunately, the amount
of knowledge which may in principle be relevant for inference is huge, and
so hand-crafting comprehensive knowledge bases is a very expensive and
cumbersome task. In general, coverage is at present a much harder problem
for logic-based inference than efficiency.

Certain types of lexical-semantic knowledge are provided by WordNet
(Fellbaum 1998), with impressively wide coverage for English and a variety
of other languages (Vossen 2004; Hamp & Feldweg 1997). WordNet distin-
guishes various senses of each word in the lexicon, groups them into synsets
of synonymous senses, and specifies different semantic relations between
these synsets, such as hyponymy (subsumption) and meronymy (part-of).
Other resources, such as FrameNet (Baker, Fillmore & Cronin 2003) and
VerbNet (Kipper-Schuler 2006) contribute information about described sit-
uation type, thematic roles, and alternative syntactic realization patterns
for lexical expressions, in particular verbs. For a more detailed discussion of
lexical-semantic resources and methods for acquiring lexical-semantic knowl-
edge, see article 110 Semantics in computational lexicons in this handbook.

However, there are many kinds of knowledge which are not formalized in
WordNet and related resources. Examples are script-like information as in
the supermarket example above, or stereotypical properties of concepts such
as the ability of birds to fly. While it can be debated whether such knowl-
edge should be packaged into the lexicon as components of word meaning
or whether it is non-linguistic common-sense knowledge about the world,
there is no doubt that such knowledge is necessary for full text understand-
ing; see also article 32 Word meaning and world knowledge. Because of the
magnitude of the task, few attempts have been made to comprehensively ax-
iomatize world knowledge by hand. One notable exception is the Cyc project
(Lenat 1995); its aim is to hand-axiomatize enough knowledge that an auto-
mated system could then learn more knowledge from natural language text.
At the time of writing, Cyc contains five million assertions about several
hundreds of thousands of concepts, and has recently become freely available
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for research purposes as ResearchCyc (Matuszek et al. 2006). Because it
aims at massive coverage, Cyc is a rather heavyweight system. It is also
optimized for fine-grained reasoning on the conceptual level, rather than for
natural-language processing and inference. For instance, Cyc distinguishes
between 23 different senses of spatial “in”, all of which have different ax-
ioms. This degree of ambiguity causes substantial problems for ambiguity
resolution, and therefore Cyc can be of only limited use for language-related
semantic processing tasks.

3. Statistical methods in computational semantics

The “standard model” we have presented so far enables us to compute logic-
based meaning representations, which can be used by theorem provers to
draw inferences. This works efficiently and with impressive accuracy, if
hand-crafted grammars and knowledge resources are available that cover all
information that is required for the interpretation. However, logic-based
semantic methods run into a number of fundamental problems:

• Natural language is extremely ambiguous, and understanding of utter-
ances implies ambiguity resolution: the determination of a contextually
appropriate reading. Underspecification methods enable an efficient
representation of semantic ambiguity, but they make no attempt to
resolve it. A particular challenge is word-sense disambiguation, be-
cause lexical ambiguity comprises a large and extremely heterogenous
class of individual phenomena.

• Modeling inference for open-domain text understanding with logic re-
quires us to encode a huge amount of world knowledge in logic-based
knowledge bases, as we have discussed. Such knowledge bases are
not available; even large-scale efforts at manual resource creation like
WordNet and Cyc have coverage problems.

• Despite the progress in hand-crafting large grammars with semantic
information, many free-text sentences cannot be completely analyzed
by these grammars: Knowledge-based grammar processing still faces
coverage problems. Because traditional algorithms for semantic con-
struction can only work on complete parses, no semantic representa-
tions can be computed for these sentences. That is, semantic construc-
tion procedures are not robust to coverage problems.

As a consequence, logic-based methods for computational semantics have
not been very successful as part of applications in language technology. In
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retrospect, this is not entirely surprising. As we know from psycholinguistics,
human language use and language learning are not purely categorical pro-
cesses, but are strongly influenced by statistical expectations. This aware-
ness of preferences speeds up the interpretation process, and in particular
enables people to disambiguate expressions effortlessly and in real time. In
the nineties, computational linguistics as a whole experienced a “statistical
turn”. The basic idea behind statistical (or, more generally: data-intensive)
methods is to let a computer system discover statistical regularities in lan-
guage use in large text corpora (or even the entire Internet), and then exploit
them to analyze previously unseen texts or discourses. Because the system
learns from data, this approach is also called machine learning. The idea
was first worked out in the area of automatic speech recognition, and was
later applied successfully to syntactic parsing. Today, it is the dominant
paradigm in semantic research in computational linguistics as well.

Logic-based and data-intensive approaches are complementary in their
strengths and weaknesses. Data-intensive approaches typically take a very
shallow view on language from a linguistic point of view. The models they
build of natural-language expressions have little to say about issues such as
the logical structure of a sentence. They are typically not related to logic,
perhaps not even based on a full syntactic parse of the sentence, and the in-
ferences they support are judged to a standard of practical usefulness rather
than logical correctness. However, these models can automatically learn
information that is implicit in large text corpora, achieving wide coverage
with comparatively little human effort. This gives us tools for addressing
the coverage problems listed above. Furthermore, the knowledge provided
by statistical methods is soft preferential knowledge, in terms of frequencies
or probability estimates, which support disambiguation tasks well, and may
even be appropriate for modeling defeasible common-sense knowledge.

We assume that a reader of this handbook is less familiar with machine
learning techniques than with logic-based approaches. Therefore, the pre-
sentation in this section will be more basic than in the rest of the article.
We try to give a flavor of statistical methodology, and at the same time
provide a short overview of three prominent areas of research in compu-
tational semantics: word-sense disambiguation, semantic role labeling, and
the modeling of semantic relatedness. These topics and other research in
statistical computational linguistics are discussed at greater length in the
standard textbooks by Jurafsky & Martin (2008) and Manning & Schütze
(1999).
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3.1. Word-sense disambiguation: Basics in statistical semantics

Word-sense disambiguation. Lexical ambiguity is pervasive in natu-
ral languages, and the determination of the contextually appropriate word
meaning, known as word-sense disambiguation (WSD), has long been recog-
nized as a hard problem in computational linguistics. Over fifty years ago,
Yehoshua Bar-Hillel argued in his famous report on automatic translation
(Bar-Hillel 1960) that “a translation machine should not only be supplied
with a dictionary but also with a universal encyclopedia”. For example, to
appropriately translate “the box was in the pen” into another language, a
computer program must know about typical sizes and shapes of boxes and
pens to conclude that “pen” is used in the “enclosure” sense rather than
the “writing implement” sense. Bar-Hillel commented that any attempt to
solve this problem with knowledge-based methods was “utterly chimerical
and hardly deserves any further discussion”.

We can get a first grasp on the problem of WSD from lexical-semantic
resources that define an inventory of possible word senses for each word of a
language. Two such resources for English are WordNet (Fellbaum 1998) and
Roget’s Thesaurus (Chapman 1977). WordNet lists Bar-Hillel’s two senses
for the noun “pen”, along with the senses “correctional institution” and
“female swan”. English WordNet contains about 29,000 polysemous words,
each of these with 3 different senses on average. Neither of these resources
contains the information (e.g., box and pen sizes) that is necessary to reliably
determine the sense in which a word was used in a given sentence.

Machine learning and WSD. WSD in early large-scale NLP systems
was typically done by hand-written rules that were developed specifically for
the application and the relevant domain (see e.g. Toma 1977; Hobbs et al.
1992; Koch, Küssner & Stede 2000). Early attempts at defining generic
rule-based methods for WSD are (Wilks 1975; Hirst & Charniak 1982). The
weighted abduction approach by Hobbs et al. (1993) supported a generic,
logic-based mechanism for disambiguation, but suffered from efficiency issues
and required a large hand-coded knowledge base to work.

By contrast, statistical approaches attempt to solve the WSD problem
by automatically learning the choice of the appropriate word sense from text
corpora. The fundamental idea of such a machine learning approach is to
build a classifier, which for each occurrence of a word w in some context c
determines the sense s of this occurrence of w. This classifier is automatically
learned from observations in a text corpus, in which each occurrence of each
word has been manually annotated with its sense; one corpus that has been

15



annotated with WordNet senses is the SemCor corpus (Landes, Leacock &
Tengi 1998).

Machine learning approaches in which the training data is assumed to be
annotated in this way are called supervised. The context c is usually approx-
imated by a collection f of features that can be automatically extracted from
the text. The machine learning system is trained on the annotated training
corpus, i.e., it observes the pairs of sense annotations and extracted feature
instantiations, for all instances of w, and derives from these data a sta-
tistical model of the correlation between feature patterns and word senses.
The system can then be executed on unseen, unlabeled documents to label
each word token automatically with its most plausible word sense, given the
feature information extracted from the token’s context.

Different approaches to statistical WSD are distinguished by the features
they use and the machine learning method. The simplest choice for the
features is to use context words. For instance, Yarowsky’s (1995) system
automatically identified the context words life, animal, and species as strong
statistical indicators of the biological sense of the target word plant, and
manufacturing, equipment, and employee as strong indicators of its “factory”
sense. To address the disambiguation problem in a systematic way, we might
determine the 2000 most frequent content words w1, . . . , w2000 in the corpus.
For any occurrence of a target word w, we could then assign the feature fi
the value 1 if the context word wi occurs within a window of n words (for
n = 5, 10, 30, . . .) before or after w, and 0 otherwise. Approaches to machine
learning differ substantially in the exact way in which they make use of the
feature information to solve their classification task. For an overview of
different approaches to machine learning, see Mitchell (1997), Russell &
Norvig (2010), or Witten, Frank & Hall (2011).

Modeling context. The choice of features is a crucial part of designing a
successful machine-learning-based WSD system: Since only the information
encoded in features is visible to the machine learning system, the design of
the feature space entails a decision about the information made available to
the disambiguation process. The simplistic view of context as a set of co-
occurring content words can be refined by adding more features representing
different kinds of information. We can, e.g., include precedence information
(does the context word occur to the left or to the right of the target?) or
use positional information (does the context word occur as the immediate
left and right neighbor of the target instance?). We may enrich the context
information with linguistic information provided by available, reasonably
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efficient and reliable analysis tools: Using lemma and part-of-speech infor-
mation is standard; adding syntactic information through shallow syntactic
parsing is another frequently chosen option.

In principle, it would be desirable to use deeper and more informative
context features than this. However, extracting such features tends to be
expensive (it may again require large hand-crafted grammar and knowledge
resources) or extremely noisy, if it can be done at all. Nevertheless, even
the simple context-word approach can capture a remarkable amount of in-
formation on different levels of contextual knowledge and their interaction,
however. Consider the following example; the common noun dish is ambigu-
ous between a “plate” and a “food” sense.

(6) Yesterday night we went to a restaurant; I ordered an expensive dish.

The verb order contributes selectional preference information for its ob-
ject position, and restaurant provides relevant topical or situational infor-
mation. The two pieces of contextual evidence interact in a way that sup-
ports a strong prediction of the “food” sense of dish. Explicit modeling
of the inference process leading to the correct reading would require very
specific common-sense knowledge. A simple statistical model is able to pre-
dict the effects of this interaction with good results, based on the simple
co-occurrence counts of these context words.

Measuring system performance. A machine learning system general-
izes from observations without human intervention, and typically only has
access to shallow features. The goal in designing such a system is therefore
never that it is infallible. Instead, the aim is to balance maximum cover-
age with making relatively few mistakes. In order to examine the quality
of such a system, one evaluates it on data for which the correct responses
are known. To this end, one splits the manually annotated corpus into two
separate portions for training and testing. The machine learning system is
trained on the training corpus, and then used to classify every single word in
the test corpus. One can, e.g., compute the accuracy, i.e., the percentage of
word tokens in the test corpus for which the system computed the annotated
word sense. This makes it possible to compare the performance of different
systems using well-defined measures.

WSD has been an active field of research in computational semantics
for the last two decades. An early successful WSD system was presented by
Yarowsky (1992). One can get a sense of the current state of the art from the
results of the “Coarse-grained English All Words Task” (Navigli, Litkowski
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& Hargraves 2007), a competition advertised for the SemEval 2007 work-
shop. This task consists in annotating the words in a given corpus with a
coarse-grained sense inventory derived from WordNet. The random base-
line, which assigns each word a random sense, achieved an accuracy of about
52% on this task. Because one sense of a word is often strongly predom-
inant, the simple policy of assigning the instances of each word always its
globally most frequent sense achieves 79% accuracy on the dataset, which
is a much more demanding baseline for WSD systems. On the other hand,
the inter-annotator agreement, i.e. the percentage of tokens for which the
human annotators agreed when creating the SemEval 2007 test data was
94%. This is usually taken to indicate the upper bound for automatic pro-
cessing. The best-performing WSD system in the 2007 competition reached
an accuracy of about 88%, beating the most-frequent-sense baseline signifi-
cantly. Although the WSD system does not reach human performance yet, it
does come rather close. Recent overview articles about WSD are McCarthy
(2009) and Navigli (2009).

3.2. Semantic role labeling: The issue of feature design

Semantic roles. WSD algorithms predict atomic meaning representations
for lexical items in a text. In order to compute a semantic representation
for an entire sentence, we must compose these lexical meaning representa-
tions into larger structures. Recent research has focused on the computation
of predicate-argument structures as the first step in the semantic composi-
tion process. This is not a trivial problem, because the syntactic realiza-
tion of semantic argument positions is subject to considerable variation.
The central theoretical concept relating syntactic complements and seman-
tic arguments is that of a semantic role. The practical task of computing
predicate-argument structures is called semantic role labeling (SRL).

The first issue that one needs to address in SRL is what inventory of
semantic roles to use. Fillmore (1968) originally proposed a small universal
set of thematic roles, such as “agent”, “patient”, “recipient”, etc.; see also
article 18 Thematic roles. This assumption has turned out to be impractical
for wide-coverage lexicons, because it is impossible to map the variation and
conceptual wealth of natural-language semantics cleanly to such a small role
inventory. For example, in the description of a commercial transaction in (7)
does the subject “China Southern” fill the agent role (since it pays money
to Airbus), or the recipient role (since it receives planes from Airbus)?

(7) China Southern buys five A380 planes from Airbus.
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FrameNet and PropBank. Research on SRL in computational linguis-
tics therefore tends to use semantic role inventories which do not assume
universal semantic roles, either in FrameNet (Fillmore & Baker 2010) or in
PropBank style (Palmer, Gildea & Kingsbury 2005).

FrameNet organizes the lexicon into frames, which correspond to situa-
tion types. The FrameNet database currently contains about 12,000 lexical
units, organized into 1,100 frames. Semantic roles (called frame elements)
are then assumed to be specific to frames. For example, the verbs “re-
place” and “substitute” (as “exchange” and “switch”, and the nouns “re-
placement” and “substitution”) evoke the REPLACING frame; core roles
of this frame are Agent, Old, and New. The names of these roles are mean-
ingful only within a given frame. This makes the role concept of FrameNet
rather specific and concrete, and makes it possible to annotate role infor-
mation with high intuitive confidence. Two major corpora that have been
annotated with FrameNet data are the Berkeley FrameNet Corpus (Baker,
Fillmore & Cronin 2003) and the SALSA Corpus for German (Burchardt
et al. 2006). An example that illustrates how different verbs can induce the
same predicate-argument structure in FrameNet is shown in (8).

(8) a. [Agent Lufthansa] is replacingREPLACING [Old its 737s]
[New with Airbus A320s].

b. [Agent Lufthansa] is substitutingREPLACING [New Airbus A320s]
[Old for its 737s].

The PropBank approach proposes an even more restricted notion of a
semantic role. PropBank assumes specific roles called arg0, arg1, arg2, . . .
for the senses of each verb separately, and thus only relates syntactic alter-
nations of the same predicate to each other. Role label identity between
complements of different verbs is not informative, as the examples in (9)
illustrate:

(9) a. [Arg0 Lufthansa] is replacing [Arg1 its 737s]
[Arg2 with Airbus A320s].

b. [Arg0 Lufthansa] is substituting [Arg1 Airbus A320s]
[Arg3 for its 737s].

Of the two approaches, FrameNet is the more ambitious one, in that it
supports a more informative encoding of predicate-argument structure than
PropBank role labeling. However, annotating a corpus with PropBank roles
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is easier and can be done much more quickly than for FrameNet. As a conse-
quence, exhaustively annotated corpora are available for several languages;
the English PropBank corpus is a version of the Penn Treebank (Marcus,
Santorini & Marcinkiewicz 1993) in which the arguments of all verb tokens
are annotated with semantic roles.

Semantic role labeling systems. The SRL task for FrameNet or Prop-
Bank can be split into two steps. First, because roles are specific to FrameNet
frames or PropBank verb senses, we must determine the frame or sense in
which a given verb token is being used. This is a WSD task, and is usually
handled with WSD methods.

Assuming that each predicate in the sentence has been assigned a frame,
the second step is to identify the arguments and determine the semantic
roles they fill. The first system that did this successfully was presented by
Gildea & Jurafsky (2002) – originally for FrameNet, but the approach has
also been adapted for PropBank (see Palmer, Gildea & Kingsbury 2005).
It uses a set of features providing information about the target verb, the
candidate role-filler phrase, and their mutual relation. Most of the features
refer to some kind of syntactic information, which is typically provided by
a statistical parser. Features used include the phrase type (e.g., NP, PP,
S); the head word of the candidate phrase; the voice of the head verb; the
position of the candidate phrase relative to the head verb (left or right); and
the path between candidate phrase and head verb, described as a string of
non-terminals. Based on this information, the system estimates the proba-
bility that the candidate phrase stands in certain role relations to the target
predicate, and selects the most probable one for labeling.

Feature design and the sparse data problem. The Gildea & Jurafsky
system (as well as more recent approaches to WSD) uses syntactic informa-
tion, but only looks at a handful of specific features of a syntax tree; much
of the available information that the syntax tree contains is hidden from
the machine learning system. Even a human annotator would sometimes
have difficulties in predicting the correct semantic roles given just this in-
formation. If the SRL system assumes that it has full syntactic information
anyway, why does it ignore most of it? Couldn’t its performance be im-
proved by adding additional features that represent more detailed syntactic
information?

This question touches upon a fundamental challenge in using statistical
methods, the sparse data problem. Every statistical model is trained from
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a limited set of observations in the corpus, and is expected to make accu-
rate predictions on unseen data. The reliability of these predictions depends
greatly on the size of the training corpus and the number of features. If we
add features, we increase the number of possible combinations of feature-
value pairs, i.e., the size of the feature space. For a given size of the training
data, this means that certain feature-value combinations will be seen only
once or not at all in training, which implies that the estimate of the statis-
tical model becomes too inaccurate to make good predictions. Smoothing
and back-off techniques can improve the performance of systems by assign-
ing some kind of positive probability to combinations that have never or
rarely been seen in training. But even these methods ultimately reduce the
system’s predictions on rare events to educated guesses.

The trade-off between informativity and occurrence frequency is one of
the major challenges to statistical NLP. Sensible feature design, i.e. selecting
a feature set which provides maximal information while keeping the feature
space manageable, is a task where combined technical and linguistic exper-
tise is required.

Further reading. For a more detailed introduction to standard SRL, we
refer the reader to Jurafsky & Martin (2008). Just as for WSD, a good
starting point to get a sense of the state of the art is to look at recent SRL
competitions (Carreras & Marquez 2004; Carreras & Marquez 2005; Hajic
et al. 2009).

3.3. Semantic relatedness: Minimizing supervision

All data-intensive methods we have described so far are supervised meth-
ods: They require manually annotated corpora for training. The sparse data
problem we just mentioned arises because annotating a corpus is costly and
time-intensive, which limits the size of available corpora (Ng 1997). Con-
versely, this means that supervised methods can only be used with relatively
inexpressive features.

Data expansion methods attempt to work around this problem by par-
tially automating the annotation process. These methods train an initial
model on a small amount of manually annotated seed data; use this model
to identify instances in a large un-annotated corpus whose correct annotation
can be predicted with high confidence; add the automatically annotated in-
stances to the corpus; use the extended corpus to retrain the model; and then
repeat the entire process in a “bootstrapping cycle”. Such semi-supervised
methods have been quite successful in early WSD systems (Yarowsky 1995),
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and more recently also for SRL (Fürstenau & Lapata 2009). Another strat-
egy of reducing annotation effort is known as active learning : A model is
trained on a seed corpus, but it is then used for the identification of low
confidence instances. Specifically annotating these low-confidence cases will
usually add more relevant information than annotating large numbers of
cases that the learning system already “is certain about” (Settles 2009).

Learning from unannotated text. A class of popular approaches take
this idea one step further, by requiring no manual annotation of training
corpora at all. They are in particular attractive for the acquisition of world
knowledge and lexical knowledge, because these tasks require large amounts
of training data to achieve thematic coverage. An early representative of this
tradition is Hearst (1992), who learned hyponym relations between words
by considering occurrences of patterns like “an X such as Y”. If this string
occurs significantly more frequently than would be expected from the fre-
quencies of X and Y alone, the system infers that Y is a hyponym of X. The
approach was later generalized to other semantic relations, e.g. to meronymy
(Girju, Badulescu & Moldovan 2006) and certain semantic relations between
verbs (Chklovski & Pantel 2004).

Although such pattern-matching approaches sometimes find incorrect
pairs (the top Google hit for the above pattern at the time of writing was
“a fool such as I”), their great advantage is that they can operate on raw
text and require no annotation effort. They can even be used on the en-
tire Web, with certain caveats that are discussed e.g. by Keller, Lapata &
Ourioupina (2002), and therefore achieve huge lexical coverage. However,
these approaches still require human intervention in the specification of the
patterns for which the corpus should be searched. To alleviate the problem,
Ravichandran & Hovy (2002) present a bootstrapping approach that can
simultaneously learn patterns and instances of the relation.

Distributional models. A more radical approach to the problem of learn-
ing knowledge from unannotated corpora is offered by methods which auto-
matically learn from co-occurrence frequencies what expressions are seman-
tically similar and do not even require the specification of search patterns.
The basic idea, known as the Distributional Hypothesis, is that words with
similar meaning tend to occur together with the same words. The basic
insight can be traced back to the 1950s (Harris 1951). The catchy phrase
“You shall know a word by the company it keeps” is due to Firth (1957).

In its basic version, distributional semantics approximates word meaning
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grow 15 147 330 517 106 3
garden 5 200 198 316 118 17
worker 279 0 5 84 18 0
production 102 6 9 130 28 0
wild 3 216 35 96 30 0

Figure 108.4: Some co-occurrence vectors from the British National Corpus.
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Figure 108.5: Graphical illustration of co-occurrence vectors.

through counts of context words occurring in the neighborhood of target
word instances. Take, as in the WSD example above, the n (e.g., 2000)
most frequent content words in a corpus as the set of relevant context words;
then count, for each word w, how often each of these context words occurred
in a context window of n before or after each occurrence of w. Fig. 108.4
shows the co-occurrence counts for a number of target words (columns),
and a selection of context words (rows) obtained from a 10% portion of the
British National Corpus (Clear 1993).

The resulting frequency pattern encodes information about the meaning
of w. According to the Distributional Hypothesis, we can model the semantic
similarity between two words by computing the similarity between their co-
occurrences with the context words. In the example of Fig. 108.4, the target
flower co-occurs frequently with the context words grow and garden, and
infrequently with production and worker. The target word tree has a similar
distribution, but the target factory shows the opposite co-occurrence pattern
with these four context words. This is evidence that trees and flowers are
more similar to each other than to factories.

Technically, we represent each word w as a vector in a high-dimensional
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vector space, with one dimension for each context word; the value of the vec-
tor at a certain dimension v is the co-occurrence frequency of w with v. We
define a similarity measure between words based on their respective vector
representations. A commonly used measure is the cosine of the angle be-
tween the two vectors, which can be computed easily from the co-occurrence
counts. It assumes the value 1 if the vectors’ directions coincide (i.e., the
proportions of their context-word frequencies are identical), and 0 if the vec-
tors are orthogonal (i.e., the distributions are maximally dissimilar). In the
5-dimensional word-space of our example, we obtain a high distributional
similarity between the targets tree and flower (cosine of 0.752, representing
an angle of about 40◦), and a low similarity (cosines of 0.045 and 0.073, re-
spectively, representing angles of about 85◦) between either of the two and
the target factory, as illustrated in Fig. 108.5.

Discussion. Standard distributional models offer only a rough approxi-
mation to lexical meaning. Strictly speaking, they do not model semantic
similarity in terms of the “likeness” of lexical meaning, but a rather vague
notion of “semantic relatedness”, which includes synonymy, topical related-
ness, and even antonymy (Budanitsky & Hirst 2006). This is in part because
the notion of context is rather crude. A deeper problem is that textual co-
occurrence patterns provide essentially incomplete and indirect information
about natural-language meaning, whose primary function is to connect lan-
guage to the world. We will come back to the issue in Section 4.4..

Nevertheless, distributional approaches to semantics are attractive be-
cause they are fully unsupervised: They do not require any annotation or
other preparatory manual work, in contrast to the supervised and semi-
supervised methods sketched above. Therefore, one gets wide-coverage mod-
els almost for free; the only prerequisite is a text corpus of sufficient size.
In particular, distributional models can be easily obtained for languages for
which no lexicon resources exist, and adapted to arbitrary genre-specific or
domain-specific sub-languages. They have proven practically useful for sev-
eral language-technology tasks. Examples are word-sense disambiguation
(McCarthy & Carroll 2003; Li, Roth & Sporleder 2010; Thater, Fürstenau
& Pinkal 2011), word-sense induction (Schütze 1998), information retrieval
(Manning, Raghavan & Schütze 2008), and question answering (Dinu 2011).

Contextualization. An obvious flaw of the basic distributional approach
is that it counts words rather than word senses. Because of lexical ambiguity,
the distributional pattern of a word is therefore a mixture of the distribu-
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tional patterns of its individual senses. While ideally each occurrence of
plant should be either highly similar to factory or to tree, the model will
uniformly assign them a value that is somewhere in between, as indicated
by the plant arrow in Fig. 108.5.

Dealing with this problem is tricky; adding word-sense information to
the corpus is not a real option, since this would throw us back to supervised
methods, requiring expensive manual annotation. An approach that has
received recent attention is to contextualize a target instance, by modifying
its meaning with information provided by its actual context words (using
algebraic operations on the respective vector representations, such as addi-
tion or component-wise multiplication). The effect is that the vector of of an
occurrence of plant in the context of water is “pulled” towards the vector of
tree, thus modeling a preference for the botanical word sense (Schütze 1998;
Mitchell & Lapata 2008; Erk & Padó 2008; Thater, Fürstenau & Pinkal
2010).

Refining distributional similarity measures. The basic approach of
distributional similarity modeling has been refined in various ways. Different
alternative measures for the association of a target word with the context and
for computing similarity between a pair of target words have been proposed.
Recent work makes frequent use of “hidden variable” techniques (Dinu &
Lapata 2010), which were originally developed for Information Retrieval
(Landauer, Foltz & Laham 1998; Schütze 1998). Syntactic information has
been added to the model in different ways in order to achieve a finer-grained
analysis of distributional similarity, e.g. in the contextualization approaches
of Erk & Padó (2008) and Thater, Fürstenau & Pinkal (2010). Lin & Pan-
tel (2001) present an interesting syntax-enriched variant of distributional
semantics, which generalizes to multiword relational patterns. Their system
can discover, for example, that “X solves Y” and “X finds a solution to Y”
are paraphrases, based on the fact that the frequency distributions of fillers
for the X and Y slots are similar. Work on contextualization and syntactic
refinement has initiated a discussion about compositionality in distributional
semantics – that is, methods for computing distributional representations for
complex expressions from distributional information about individual words
(Mitchell & Lapata 2008; Grefenstette & Sadrzadeh 2011).

Unsupervised methods for semantic relatedness are currently a very ac-
tive field of research, and it will be interesting to see how the area will
develop in the future. For a recent detailed overview over the state of the
art, see Turney & Pantel (2010).
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4. Current developments

We conclude our overview with a discussion of some recent developments
in computational semantics. We will look at a general evaluation scheme
for computational semantics systems (textual entailment, Section 4.1.), an
approach to shallow logic-based inference that may be a starting point for
bringing logic back into broad-coverage computational semantics (natural
logic, Section 4.2.), approaches to the automated learning of wide-coverage
semantic construction resources (Section 4.3.), and approaches to learning
data-intensive models that ground word meaning directly in the real world
(Section 4.4.). Common to all of these approaches is that they are in their
early stages, and there is no telling whether they will be successful in the long
run; but they are all promising, active research areas, which may contribute
to bringing knowledge-based and data-intensive semantics closer together in
the future.

4.1. Textual entailment

As we have argued above, inference is the touchstone for computational se-
mantics. It is the capability of supporting inferences that makes semantic
processing potentially useful in applications. The performance of a seman-
tic processing method is therefore strongly dependent on its performance
in modeling inference. While the evaluation of WSD or SRL systems is
straightforward, the question of how to assess a system’s performance on
the more global task of modeling inference appropriately has long been an
open issue in the computational semantics community.

FraCaS. A first step in this direction was the creation of a test suite of
inference problems by the FraCaS project in the 1990s (Cooper et al. 1996).
Each problem consisted of a premise and a candidate conclusion (phrased
as a yes/no question), plus information about their logical relation; systems
could then be evaluated by making them decide the logical relation between
the sentences and comparing the result against the gold standard. Two of
the about 350 examples are shown below:

(10) P: ITEL won more orders than APCOM
Q: Did ITEL win some orders?
→ YES

(11) P: Smith believed that ITEL had won the contract in 1992
H: Had ITEL won the contract in 1992?
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→ UNKNOWN

The FraCaS testsuite was hand-crafted to cover challenging semantic
phenomena (such as quantifiers, plural, anaphora, temporal reference, and
attitudes), while minimizing the impact of problems like syntactic complex-
ity and word-sense ambiguity. This made it a valuable diagnostic tool for
semanticists, but it also limited its usefulness for the performance evalua-
tion of semantic processing systems on real-world language data, in which
syntactic complexity is uncontrolled and word-sense ambiguity is prevalent.

RTE. A milestone in the development of an organized and realistic evalu-
ation framework for natural-language inference was the Recognizing Textual
Entailment (RTE) challenge initiated by Ido Dagan and his colleagues in the
PASCAL network (Dagan, Glickman & Magnini 2006). The RTE dataset
consists of pairs of sentences (a text T and a hypothesis H) derived from
text that naturally occurred in applications such as question answering, in-
formation retrieval, and machine translation, plus an annotation specifying
whether each sentence pair stands in an “entailment” relation.

In RTE, “entailment” is defined as follows:

“We say that T entails H if the meaning of H can be inferred from
the meaning of T, as would typically be interpreted by people.
This somewhat informal definition is based on (and assumes)
common human understanding of language as well as common
background knowledge.” (Dagan, Glickman & Magnini 2006)

For instance, the following sentence pair from the second RTE challenge
(Bar-Haim et al. 2006) is in the entailment relation.

(12) T: In 1954, in a gesture of friendship to mark the 300th anniversary
of Ukrainian union with Russia, Soviet Premier Nikita Khrushchev
gave Crimea to Ukraine.
H: Crimea became part of Ukraine in 1954.
→ YES

Crucially, “textual entailment” is not a logical notion; it is a relation
between textual objects. The above definition has been criticized for its
vagueness and for its insufficient theoretical grounding, in that it blurs the
distinction between logical entailment, common-sense inference, presuppo-
sition, and conversational implicature (Zaenen, Karttunen & Crouch 2005).
However, it was deliberately intended as a specification of a pre-theoretic
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concept, which is neutral with respect to any particular semantic theory.
Determining textual entailment seems to be a quite natural task for peo-
ple, and is motivated from applications (Manning 2006); one effect of this
is that annotators agree quite well on RTE-style entailment judgments (Bos
& Markert 2005), whereas agreement on the precise and theoretically well-
motivated distinctions tends to be difficult. For instance, it is doubtful
whether the following logical reformulation of (12) is logically or analyti-
cally sound, given the semantics of the predicates and the sortal information
about the argument fillers.

(13) give-to(Khrushchev, Crimea, Ukraine)
|= become-part-of(Crimea, Ukraine)

However, (12) is still a clear case of entailment in the sense of the above
definition.

For the RTE challenge, two datasets were created, intended as training
and evaluation corpus, respectively. They contained 800 sentence pairs each,
annotated with respect to entailment. Participating systems could be tuned
on the training corpus, which was made available several weeks in advance.
For evaluation, they had to automatically determine for the unseen sentence
pairs in the test corpus whether they stand in the entailment relation or
not. Performance was measured in terms of accuracy, i.e. the percentage of
sentence pairs on which the system’s judgment agreed with the annotation in
the test corpus. The RTE challenge has established itself as a yearly event,
with new datasets every year, and some variation in dataset and evaluation
design.

RTE systems. The simplest reasonable baseline system for textual en-
tailment recognition is one which checks for word overlap between T and H:
It takes the percentage of words in the second sentence that occur in the
first sentence as well as an indicator for entailment, and returns “yes” if this
percentage exceeds a certain threshold. Such a system might classify (12) as
a positive entailment case because “Crimea”, “Ukraine”, “in”, and “1954”
occur both in H and T. A word-overlap system typically gets about 60% of
the sentence pairs right, depending on the particular instance of RTE. The
accuracy can be increased by combining word overlap with semantic similar-
ity measures (Jijkoun & de Rijke 2005; Glickman, Dagan & Koppel 2005),
but the potential for such purely shallow and knowledge-lean improvements
seems to be limited.
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Pure logic-based systems, located at the other end of the spectrum, have
completely failed at the RTE task, which was shown impressively by Bos
& Markert (2005). They applied a state-of-the-art logic-based system along
the lines of Section 2.. Where this system claims entailment for a given
sentence pair, its judgment is quite reliable; but because it only claimed
entailment for less than 6% of the pairs, it gave far fewer correct answers
overall than a simple word-overlap model. This demonstrates the severity
of the knowledge bottleneck in logic-based semantics, which we mentioned
above.

A standard system architecture that emerged from the experiences in
RTE combines syntactic and semantic knowledge with machine learning
technology. A typical inventory of knowledge types includes syntactic depen-
dency information contributed by knowledge-based or statistical parsers plus
lexical semantic information taken from WordNet or distributional models,
potentially complemented by semantic role information (FrameNet, Prop-
Bank) and lexical semantic and world knowledge from other sources (e.g.,
DIRT (Lin & Pantel 2001), VerbOcean (Chklovski & Pantel 2004), or the
YAGO knowledge base (Suchanek, Kasneci & Weikum 2008)). This informa-
tion is used as input to a supervised machine-learning system, which learns
to predict the entailment status of a sentence pair from features indicating
structural and semantic similarity. Systems enhanced with linguistic knowl-
edge in such ways typically outperform the purely overlap-based systems,
but only by a rather modest margin, with an accuracy around 65% (see e.g.
Giampiccolo et al. (2007) for an overview).

A notable exception is Hickl & Bensley (2007), a system submitted by
an industrial company (LCC) in the RTE-3 Challenge, which achieved 80%
accuracy, using a variety of rich resources in a machine learning approach. A
second LCC system (Tatu & Moldovan 2007) used a special-purpose theorem
prover (Moldovan et al. 2007) and reached a high accuracy as well. Although
neither the knowledge repositories nor the details about the method are
available to the public, it is likely that the success of these systems stems
from language and knowledge resources of various kinds that have been
built over years with enormous manpower, accompanied by a consistent
optimization of methods based on repeated task-oriented evaluations. This
suggests that at the end of the day, the decisive factor in building high-
performing systems for entailment checking is not a single theoretical insight
or design decision, but rather the availability of huge amounts of information
about language and the world. The key difference between the logic-based
and machine-learning paradigms is that the latter degrades more gracefully
when this information is not sufficiently available.
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Discussion. Between 2005 and 2010 a total of about 300 different systems
in total were evaluated. This has helped a lot in providing a clear picture
of the potential of different methods and resources on the task. However,
the RTE Challenges reveal a current state of the art that is not entirely
satisfactory. Statistical systems appear to hit a ceiling in modeling inference.
This is not just a technical problem: the fundamental shortcoming of purely
text-based approaches is that they do not model the truth conditions of
the sentences involved, and therefore cannot ground entailment in truth. It
is difficult to imagine how a notion of inference for semantically complex
sentences can be approximated by a model that does not in some way or
another subsume the conceptual framework of logic-based semantics. On the
other hand, direct implementations of the logic-based framework do not solve
the problem either, because such systems are rendered practically unusable
by the lack of formalized knowledge. Resolving this tension remains the
central challenge for computational semantics today.

4.2. Natural logic inference

One promising direction of research that might help solve the dilemma is to
model truth-based entailment directly in natural language, without resorting
to explicit logical representations. The idea is old – indeed, before the
introduction of formal logic, it was the only way of analyzing inference –,
but was revived and formalized in the 1980s by Johan von Benthem under
the heading of natural logic (van Benthem 1986; Sanchez-Valencia 1991).
Consider the following examples:

(14) a. Last year, John bought a German convertible.

b. Last year, John bought a German car.

To determine the entailment relation between (14a) and (14b), we need
not compute the respective logical representations and employ a deduction
system. We just need to know that “convertible” is a hyponym of “car”.
The argument does not apply in general. Replacing “convertible” with “car”
in “John didn’t buy a convertible” or “John bought two convertibles” has
different semantic effects: In the former case, entailment holds in the inverse
direction, in the second, the two sentences are logically independent. The
differences are due to the different monotonicity properties (in the sense of
Barwise & Cooper 1981) of the contexts in which the respective substitutions
take place. In addition to knowledge about lexical inclusion relations, we
need syntactic information, a mechanism for monotonicity marking, and
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monotonicity or polarity information for the functor expressions (in the sense
of categorial grammar or type theory).

Natural logic and RTE. MacCartney & Manning (2008) and MacCart-
ney (2009) propose a model for textual entailment recognition which is based
on natural logic and extends and complements the framework in several as-
pects. Compared to the original approach of Sanchez-Valencia, they use
a refined inventory of semantic relations. Wide-coverage knowledge about
lexical semantic relations is obtained from WordNet, with distributional sim-
ilarity as a fallback. Monotonicity handling includes the polarity analysis
of implicative and factive verbs (Nairn, Condoravdi & Karttunen 2006),
in addition to the standard operators (negation, determiners, conjunctions,
modal expressions) and constructions. Their full model also processes sen-
tence pairs that require multiple substitutions, deletions, or insertions; the
global entailment relation between the sentences is computed as the joint
entailment effect of the individual edit steps.

Because the preposition “without” introduces a downward monotonic
context, the system can thus make the correct, but nontrivial judgment
that (15a) and (15b) do not entail each other, based on the edits shown in
(16).

(15) a. Some people are happy without a car.

b. Some professors are happy without an expensive convertible.

(16) Some SUBST(people, professors) are happy without an
INSERT(expensive) SUBST(car, convertible).

The global entailment relation between the sentences is computed as
the joint entailment effect of the single edit steps. Because the preposition
“without” is downward monotonic in its internal argument, the system can
thus make the correct, but nontrivial judgment that (15a) and (15b) do not
entail each other, based on the edits shown in (16).

MacCartney’s NATLOG system has been shown to achieve an accuracy
of 70% on the FraCaS test suite. This demonstrates that the system can
handle logically non-trivial inference problems, although some phenomena,
like ellipsis, are outside the system’s coverage. On the RTE-3 test set, the
system has an accuracy of 59%, which does not exceed the performance
achieved by simple word-overlap systems. However, the positive message is
that that the natural-logic-based approach is able to avoid the robustness
issues that make semantic construction for standard logic-based systems so

31



difficult. Combining NATLOG with the the shallow Stanford RTE system
(de Marneffe et al. 2006) increases the accuracy of the shallow system
from 60.5% by 4%, which proves that the “deep” inferences captured by the
natural-logic-based system are able to complement shallow RTE methods in
a substantial way.

Discussion. The natural logic approach does not capture all inferences
that a predicate logic approach would. It does not deal with inferences that
require multiple premises, and can only relate sentence pairs in which the
lexical material is exchanged while the global structure stays the same (e.g.,
de Morgan’s Law is outside its reach). However, the approach does cover
many inference patterns that are relevant in natural language, and the over-
head for semantic construction and the disambiguation of irrelevant parts
of sentences is eliminated, because no translation to logical representation
is required.

4.3. Statistical methods in semantic construction

One reason for the low performance of logic-based inference systems in the
standard framework of computational semantics is the lack of wide-coverage
semantic construction procedures. Natural logic gets around the problem
by dispensing with semantic construction altogether. An alternative that
has recently been explored is the use of machine learning techniques for the
automatic assignment of rich semantic representations.

To get a better idea of the task, it is helpful to consider its relationship
to systems for syntactic parsing. The two problems are similar from a high-
level perspective, in that both compute structured linguistic representations
for natural language expressions. The dominant approach in syntactic pars-
ing is to apply supervised statistical approaches to syntactically annotated
corpora, in order to learn grammars and estimate the parameters of a syn-
tactic probability model. For semantic construction, statistical approaches
have been much less successful. Even for Semantic Role Labeling, the results
are noisier than for syntax. The assignment of complex logical structures
as representations for full sentences is harder, due to the fine granularity of
the target representations and the difficulty of finding surface features that
are indicative of deep semantic phenomena. This makes the specification of
annotation guidelines that would allow non-experts to reliably annotate a
corpus challenging.

Nevertheless, a considerable amount of research in the past few years has
investigated the use of supervised learning in semantic parsers, trained on
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small domain-specific corpora. Logical annotations are typically obtained by
converting the annotations from existing corpora, e.g., the Geo880 corpus
(Zelle & Mooney 1996; Tang & Mooney 2000) of 880 geographical queries
and the ATIS corpus (Dahl et al. 1994), a corpus of about 5000 spoken
queries to a travel planning system. Both of these corpora were originally
annotated with database queries that correspond to the natural-language
query. When these are converted into lambda terms, examples look as fol-
lows:

(17) What states border Texas?
λx.state(x) ∧ borders(x, texas)

(18) on may four atlanta to denver delta flight 257
λx.month(x,may) ∧ day number(x, fourth) ∧ from(x, atlanta) ∧
to(x, denver) ∧ airline(x, delta) ∧ flight(x) ∧ flight number(x, 257)

Current approaches for training semantic parsers typically employ meth-
ods from statistical machine translation, such as probabilistic synchronous
grammars (Chiang 2007). These grammars simultaneously describe a tree
for the syntactic representation of the natural-language string and a tree for
the semantic representation, i.e. the lambda term. Because the syntactic
parses are not explicitly given in the corpora mentioned above, these ap-
proaches assume a very permissive syntactic grammar, which allows many
ungrammatical analyses of the input expression in addition to the gram-
matical ones. They then estimate parameters for a probability model that
makes the ungrammatical analyses improbable, and maps the grammatical
analyses to the correct semantic representations.

One key challenge that research in this area must overcome compared to
pure syntactic parsing is that the annotated structures are not syntax trees,
but lambda terms, which can be rewritten by αβη-equality. The exact way
in which this problem is addressed depends on the grammar formalism that a
particular system uses. Wong & Mooney (2007) use a synchronous context-
free grammar with an extra mechanism for representing variable binding.
Zettlemoyer & Collins (2005) and Kwiatkowski et al. (2010) instead use
probabilistic CCG grammars (Steedman 2000), which model the combina-
tion of lambda terms directly. The best-performing systems today achieve
an accuracy of about 89% exact matches on the Geo880 corpus and still
about 82% on the ATIS speech corpus (see Kwiatkowski et al. (2011) for
an overview), which demonstrates that the method is feasible in principle.
These are very promising numbers, but it is important to keep in mind that
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these methods have so far been applied only to relatively small corpora from
limited domains, and it remains to be seen how well they will scale up.

4.4. Grounded models of meaning

Standard systems of distributional semantics learn meaning information
purely from text; but semantics, unlike syntax or morphology, is essentially
concerned with the relationship of language with the outside world. Chil-
dren do not learn what “chair” means by hearing people talk about chairs,
but by observing chairs in connection with hearing the word “chair”. Cer-
tain regularities in the real world are reflected in statistical patterns in texts
(chairs are used for sitting, so the word “chair” frequently co-occurs with the
word “sit”). But ultimately it is unsurprising that computer systems cannot
learn the full semantics of words and sentences, when they are exposed to a
much poorer and fundamentally incomplete stimulus.

While the simulation of human meaning acquisition in a full-fledged re-
alistic environment is not feasible, a number of alternative methods have
been explored to integrate restricted layers or pieces of extralinguistic infor-
mation into the learning process. One option is the creation of multimodal
corpora consisting of visual material – e.g., pictures or videos – labeled
with linguistic descriptions. Large-scale data collections of this kind can be
obtained through Internet-based experiments or games; examples are the
Google Image Labeler (von Ahn & Dabbish 2004), which lets people anno-
tate pictures with textual descriptions, and the Microsoft Research Video
Description Corpus (Chen & Dolan 2011), which was collected by asking
people to describe the activities shown in short YouTube videos.

Data of this kind can be used in two ways. First, one may completely
disregard the nonlinguistic information, and use picture and video IDs just
as indices of the natural-language expressions. This tells the system that the
different descriptions of the same picture refer to the same scene: they are
proper paraphrase candidates and definitely will not contain contradictory
information. A similar effect is obtained by corpora containing parallel
texts, which are known to describe the same event. For instance, Titov &
Kozhevnikov (2010) use collections of alternative weather forecasts for the
same day and region. Their system learns that “cloudy” and “sunny” stand
in a different semantic relationship than “cloudy” and “overcast”: while
both pairs occur in similar linguistic contexts, the former but not the latter
are identified as describing two different states of sky cover, because they
do not co-occur as descriptions of one world state.

Other approaches have taken the further step of analyzing the contents

34



of the picture or video, typically using methods from computer vision, in
order to let the computer system learn an actual mapping of language to
extralinguistic objects. For example, Marszalek, Laptev & Schmid (2009)
train a machine-learning system to identify instances of activities such as
“drinking” in movies. Their training data is the movie itself together with
textual descriptions of the current scene collected from subtitles and movie
scripts. Learning a mapping between words and the external world is a
problem that is frequently considered in cognitive robotics (Gold & Scassel-
lati 2007; Kruijff et al. 2007), where a human user may explicitly teach the
robot how to interpret spoken utterances in its environment. This also adds
an interactive dimension to the process of automated language learning.

The core problem of mapping language to the extralinguistic environ-
ment can also be studied in more abstract settings. This has the advantage
that the learning system can access the environment more directly. For in-
stance, a system can learn the meaning of expressions referring to actions
in a simulated robot soccer game (Chen, Kim & Mooney 2010), and the
interpretation of help texts as actions in the Windows GUI, such as clicking
buttons or entering text into certain input fields (Branavan et al. 2009). A
middle ground is struck by approaches trained on virtual 3D environments
(Orkin & Roy 2007; Fleischman & Roy 2005). An instructive account of
alternative methods to connect language to real world or virtual reality is
given in (Roy & Reiter 2005).

All these approaches to learning meaning representations are necessarily
constrained in that they consider only some modalities and some aspects of
non-linguistic information. Nevertheless, they form an exciting avenue of
future research. From the perspective of semantic theory, they are perhaps
most interesting because they open up a new direction in which the use of
computers can support research on natural language meaning: as an instru-
ment which connects natural-language expressions with large quantities of
data about objects, properties, and events in the real world in a meaningful
way.

5. Conclusion

Determining the meaning of a natural-language expression is crucial for
many applications in computational linguistics, and computational seman-
tics has long been a very active field of research. An approach to computa-
tional semantics that is to be useful for such applications must balance the
depth of the linguistic analysis with the ability to compute such analyses
reliably with wide coverage, i.e. for arbitrary sentences. Research in compu-
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tational semantics is characterized by navigating this tension between depth
and coverage.

In this article, we have sketched a number of prominent approaches in
our field. Direct implementations of logic-based theories of semantics man-
aged to overcome initial efficiency problems and, to some extent, deal with
the massive amount of ambiguity that such approaches face in practice.
However, making wide-coverage semantic construction robust and acquiring
wide-coverage knowledge resources for inferences remain open problems. By
contrast, data-intensive approaches have had very impressive successes in
extracting useful semantic information from text corpora. But they tend
to work with shallower meaning information than logic-based approaches;
deeper representations still require a modeling effort by humans. The most
promising recent research brings these two paradigms together, and com-
bines them with novel ideas for models of meaning that are grounded in the
environment. In our view, this makes the present a very exciting time for
research in computational semantics indeed.
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