## Discovery of Inference Rules, Their Selectional Preferences and Directionality

Ehsan Khoddammohammadi
Computational Semantics, 2012
Saarland University

#### Chapters

- 1. Discovery of Inference Rules from Text
- 2. Inferential Selectional Preferences
- 3. Learning Directionality of Inference Rules

Chapter 1:

# Discovery of Inference Rules from Text (DIRT)

### **Outline**

- What is Relation?
- What is Inference Rule and why is it important?
- What is Unsupervised discovery of Inference Rules?
- How is DIRT working?
- How is performance of DIRT?

### Inference Rules

### **:** Relations

- X is parent of Y
- Y is child of X
- X wrote Y
- X is the author of Y

#### Inference Rules

- X is parent of  $Y \Leftrightarrow Y$  is child of X
- S eats T  $\Rightarrow$  S likes T
- X wrote  $Y \Leftrightarrow X$  is the author of Y

## What kind of Inference Rules could DIRT find?

- Mostly Paraphrases
  - X is author of Y  $\Leftrightarrow$  X wrote Y

- And also other type of Rules
  - X manufactures  $Y \Leftrightarrow X's Y$  factory

# What is the Application of Finding Inference Rules?

In Information Retrieval

In Question/Answering

In Summarization

### **Outline Of The Algorithm**

Objective: given a relation, find its paraphrases Solution:

- 1. Extract dependency paths that share at least one feature with the relation
- 2. Prune them
- 3. For each candidate count common features and calculate the similarity
- 4. Report most K-similar paths as paraphrases

# An Extension to Harris' Distributional Hypothesis Internal structure of sentences could be shown by

 Internal structure of sentences could be shown by dependency relations.

- we can assign meaning to paths.
- We can formulate our task to "finding paths with similar meaning".

#### **Extended Distributional Hypothesis:**

If two paths tend to occur in similar contexts, the meanings of the path tend to be similar.

### **Definition of path**

John found a solution to the problem.



### **Pruning Dependency Trees**

Slot fillers must be nouns

Dependency relation should connect two content words

 Frequency count of an internal relation must be greater than a certain threshold

## An Example

| "X finds a s | olution to Y'  | "X solves Y" |         |  |
|--------------|----------------|--------------|---------|--|
| SlotX        | SLOTY          | SLOTX        | SLOTY   |  |
| commission   | strike         | committee    | problem |  |
| committee    | civil war      | clout        | crisis  |  |
| committee    | crisis         | government   | problem |  |
| government   | crisis         | he           | mystery |  |
| government   | problem        | she          | problem |  |
| he           | problem        | petition     | woe     |  |
| legislator   | budget deficit | researcher   | mystery |  |
| sheriff      | dispute        | sheriff      | murder  |  |

## A Short Reminder about Pointwise Mutual Information

What is Pointwise Mutual Information?

$$pmi(x,y) = log \frac{P(x,y)}{P(x)P(y)}$$

• Here:

$$mi(p, slot, w) = log \frac{P(p, Slot, w)}{P(Slot)P(p|Slot)P(w|Slot)}$$

# How to measure similarity of paths?

• Similarity function for slots:

$$sim(slot_1, slot_2)$$

$$= \frac{\sum_{w \in T(p_1,s)} \sum_{r=1}^{T} mi(p_1,s,w) + mi(p_2,s,w)}{\sum_{w \in T(p_1,s)} mi(p_1,s,w) + \sum_{w \in T(p_2,s)} mi(p_2,s,w)}$$

• Similarity function for relations:

$$S(p_1, p_2) = \sqrt{sim(SlotX_1, SlotX_2) \times sim(SlotY_1, SlotY_2)}$$

### How good is it working?

 Compared to human-generated paraphrases of the first six questions in the TREC-8 QA:

| Q#    | PATHS                       | MA | N.     | OIR I | NT. | Acc.   |
|-------|-----------------------------|----|--------|-------|-----|--------|
| $Q_1$ | X is author of Y            |    | 7      | 21    | 2   | 52.5%  |
| $Q_2$ | X is monetary value of Y    |    | 6      | 0     | 0   | N/A    |
| $Q_3$ | X manufactures Y            | 1  | 3      | 37    | 4   | 92.5%  |
| $Q_4$ | X spend Y                   |    | 7      | 16    | 2   | 40.0%  |
|       | spend X on Y                |    | 8      | 15    | 3   | 37.5%  |
| $Q_5$ | X is managing director of Y |    | 5      | 14    | 1   | 35.0%  |
| $Q_6$ | X asks Y                    | :  | 2      | 23    | 0   | 57.5%  |
|       | asks X for Y                |    | $_{2}$ | 14    | 0   | 35.0%  |
|       | X asks for Y                |    | 3      | 21    | 3   | \$2.5% |

Chapter 2:

# Learning Inferential Selectional Preferences (ISP)

# Learning Inferential Selectional Preferences (ISP)

- Main motivation:
  - Improve automatic discovery of inference rules (DIRT)
- Approach:
  - Filtering out incorrect IR that their arguments are not in the same semantic classes that a relation imposes on.
- Resources:
  - Relies on having a bank of semantic classes:
    - Manual collections: WordNet, FrameNet,...
    - Automatic induction: CBC,...

### **Task definition**

- For each binary relation determine which semantic classes are valid to be its arguments
- <X,p,Y>, p=relation, X,Y=arguments
- c(X) and c(Y) are valid semantic classes for relation p

Given an inference rule  $p_i \Rightarrow p_j$  and the instance  $< x, p_i, y >$ , our task is to determine  $if < x, p_j, y >$  is valid.

### **Outline of method**

Make a repository of semantic classes

Extract relational SP for each relation

Decide whether two IR shares same SP

# How to create semantic classes repository?

### Either

 Run CBC clustering algorithm on a corpus and used generated noun concepts

#### Or

 Extract semantic classes from the WordNet by truncating the noun synset hierarchy.

# How to extract Relational Selectional Preferences for a Rule?

- For each instance of p increase the count of correspondent semantic class of its arguments:
  - $-\langle x,p,y\rangle \rightarrow ++\langle c(x),p,c(y)\rangle (JRM)$
  - $\langle x,p,y \rangle \rightarrow ++ \langle c(x),p,* \rangle$  and  $++ \langle *,p,c(y) \rangle$  (IRM)
- Rank based on the strength of association between C(x) and C(y):
  - pmi of c(x) and c(y) given p (JRM)
  - Rank based on conditional probability of c(x) or c(y) given p (IRM)

## How to find Inferential Selectional Preferences?

- Given two relations  $p_i$  and  $p_j$  we want to find common SPs
- For each inference rule like  $p_i \Rightarrow p_j$ :
  - find the intersection of relational SP of p<sub>i</sub> and p<sub>j</sub>.
     use min, max or average of same classes
- Filter out inferences by top τ percent :
  - ISP.JIM
  - ISP.IIM.∧
  - ISP.IIM.√

### Joint Inferential Model (JIM)

$$p_i = X$$
 is charged by Y

```
< Person, p_i, Law Enforcement Agent > = 1.45
```

$$\langle\langle$$
 Person,  $p_i$ , Law Enforcement Agency  $\rangle$  = 1.21

 $< Bank Account, p_i, Organization > = 0.97$ 

$$p_j = Y$$
 announced the arrest of  $X$ 

 $\angle$ Law Enforcement Agent,  $p_i$ , Person > = 2.01

Law Enforcement Agency, p; Person > = 1.61

 $< Reporter, p_i, Person > = 0.97$ 

| Minimum | Maximum | Average |
|---------|---------|---------|
| 1.45    | 2.01    | 1.73    |
| 1.21    | 1.61    | 1.41    |

# Independent Inferential Model (IIM)

 $p_i = X$  is charged by Y

$$<$$
 Law Enforcement Agent,  $p_i$ ,\*> = 3.43  
 $<*$   $p_i$ , Person > = 2.17  
 $<*$ ,  $p_i$ , Organization > = 1.24

 $p_i = Y$  announced the arrest of X

```
<*,p_{j}, Person> = 2.87

< Law\ Enforcement\ Agent,p_{j},*> = 1.61

< Reporter,p_{j},*> = 0.89
```

| Minimum | Maximum | Average |
|---------|---------|---------|
| 1.61    | 3.43    | 2.52    |
| 2.17    | 2.87    | 2.52    |

### **Evaluation criteria**

|        |       | GOLD STANDARD |       |  |
|--------|-------|---------------|-------|--|
|        |       | True          | False |  |
| SYSTEM | True  | Α             | В     |  |
|        | False | С             | D     |  |

- **1. Sensitivity**: probability of accepting correct inferences  $\frac{A}{A+C}$
- 2. Specificity: probability of rejecting incorrect inferences  $\frac{D}{B+D}$
- **3.** Accuracy: probability of a filter being correct  $\frac{A+D}{A+B+C+D}$

### **Evaluation**

| System  |           | PARAMETERS SELECTED FROM DEV SET |       | SENSITIVITY | SPECIFICITY | ACCURACY               |
|---------|-----------|----------------------------------|-------|-------------|-------------|------------------------|
|         |           | RANKING STRATEGY                 | τ (%) | (95% CONF)  | (95% CONF)  | (95% CONF)             |
|         | B0        | -                                | -     | 0.00±0.00   | 1.00±0.00   | 0.50±0.04              |
|         | B1        | -                                | -     | 1.00±0.00   | 0.00±0.00   | 0.49±0.04              |
| Rai     | ndom      | -                                | -     | 0.50±0.06   | 0.47±0.07   | 0.50±0.04              |
|         | ISP.JIM   | maximum                          | 100   | 0.17±0.04   | 0.88±0.04   | 0.53±0.04              |
| CBC     | ISP.IIM.∧ | maximum                          | 100   | 0.24±0.05   | 0.84±0.04   | 0.54±0.04              |
|         | ISP.IIM.∨ | maximum                          | 90    | 0.73±0.05   | 0.45±0.06   | 0.59±0.04 <sup>†</sup> |
|         | ISP.JIM   | minimum                          | 40    | 0.20±0.06   | 0.75±0.06   | 0.47±0.04              |
| WordNet | ISP.IIM.∧ | minimum                          | 10    | 0.33±0.07   | 0.77±0.06   | 0.55±0.04              |
|         | ISP.IIM.∨ | minimum                          | 20    | 0.87±0.04   | 0.17±0.05   | 0.51±0.05              |

## Confusion Matrix for Best Methods

| ISP.IIM.V |       | GOLD STANDARD |       |  |
|-----------|-------|---------------|-------|--|
|           |       | True          | False |  |
| SYSTEM    | True  | 184           | 139   |  |
|           | False | 63            | 114   |  |

| ISP.JIM |       | GOLD STANDARD |       |  |
|---------|-------|---------------|-------|--|
|         |       | True          | False |  |
| E       | True  | 42            | 28    |  |
| SYSTEM  | False | 205           | 225   |  |

**Best Accuracy** 

**Best Specificity** 

Chapter 3:

# Learning Directionality of Inference Rules (LEDIR)

# Learning Directionality of Inference Rules (LEDIR)

- Rules inference by DIRT are all bidirectional ( ⇔, symmetric)
- DIRT is not finding strict logical entailments
- DIRT is based on finding plausible Inference Rules relied on mutual co-occurrence and context similarity
- One should decide about the directionality of rules.

### LEDIR is using ...

Distributional hypothesis (DIRT)

Selectional preferences (ISP)

- Directional hypothesis:
  - "specific relation implies general relation"

### **Directionality Hypothesis**

$$p_{i} \Rightarrow p_{j} \stackrel{\text{def}}{=} x \in V_{m}(p_{i}) \text{ then } x \in V_{m}(p_{j})$$

$$V_{m}(p_{i}) \subset V_{m}(p_{j})$$

$$|V_{m}(p_{i})| < |V_{m}(p_{j})|$$

### How does LEDIR work?

- \* we have computed SP of relations .  $< C_x$ ,  $p_i$ ,  $C_y >$
- We have Inferential SP.
- We can measure the similarity of the antecedent and the consequent of each IR by e.g. Overlap Coefficient.
- If similarity is more than a certain threshold we consider it as plausible IR.

### **Plausibility**

Overlap Coefficient:

$$sim(p_i, p_j) = \frac{|\langle C_x, p_i, C_y \rangle \cap \langle C_x, p_j, C_y \rangle|}{\min(|\langle C_x, p_i, C_y \rangle, \langle C_x, p_j, C_y \rangle|)}$$

Rule:

if 
$$sim(p_i, p_j) \ge \alpha$$
:  
 $inference$  is plausible  
 $else$ :  
 $inference$  is not plausible

### **Directionality**

- As we said before the direction is from specific relation to general direction. A relation with broader semantic classes is considered to be more general.
- Use cardinality of RSP of each relation to determine the directionality

• 
$$\frac{|C_x, p_j, C_y|}{|C_x, p_i, C_y|} > \beta$$
 then  $p_i \Rightarrow p_j$ 

### **Evaluation: Plausibility**

• Baseline: 66%

• Systems: 68% -70%



## **Evaluation: Directionality**



### **Evaluation: all**

| Model      |     | α    | β | Accuracy (%) |
|------------|-----|------|---|--------------|
| B-random   |     | -    | ı | 25           |
| B-frequent |     | -    | ı | 34           |
| B-DIRT     |     | -    | - | 25           |
| JRM        | CBC | 0.15 | 2 | 38           |
|            | WN  | 0.55 | 2 | 38           |
| IRM        | CBC | 0.15 | 3 | 48           |
|            | WN  | 0.45 | 2 | 43           |

### **Review on DIRT**

- Finding Inference Rules from corpus and their equivalents (paraphrases).
- Actually it finds equivalent binary semantic relations.
- Relation is a verb and slot fillers are two nouns.
- Inference rule is equivalency relation.
- Extension on Harris' Distributional Hypothesis:
  - "If two paths tend to occur in similar contexts, the meanings of the paths tend to be similar."
- Here context is dependency path between words.

### **Problems of DIRT**

#### Low Precision:

- 1. For some relations there is a constraint on the semantic class of their slot filler which is not captured by DIRT. Due to different senses of arguments and relations. (Solution: ISP)
- 2. Inference rules are always bidirectional which is not true for many cases. (Solution: LEDIR)
- 3. Antonym paths will be easily confused.

### References

- Dekang Lin, Patrick Pantel: DIRT, discovery of inference rules from text. KDD 2001: 323-328
- Patrick Pantel et al: ISP: Learning Inferential Selectional Preferences. HLT-NAACL 2007: 564-571
- Rahul Bhagat, Patrick Pantel, Eduard H. Hovy: LEDIR, An Unsupervised Algorithm for Learning Directionality of Inference Rules. EMNLP-CoNLL 2007: 161-170
- Dekang Lin, Patrick Pantel: Discovery of inference rules for question-answering. Natural Language Engineering 7(4): 343-360 (2001)