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Introduction Paraphrase

Paraphrase

Paraphrases are textual expressions that convey the same meaning using
different surface forms

Example

Francis Scotte Key wrote the ”Star Spangled Banner”
Francis Scotte Key is the author of ”Star Spangled Banner”
X writes Y ⇔ X is the author of Y
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Introduction Areas of Application

Areas of Application of Paraphrases

Question Answering

Information Retrieval

Information Extraction

Text Summarization

Machine Translation
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Introduction Automatic Acquisition of Paraphrases

Automatic Acquisition of Paraphrases

Traditionally knowledge bases are created manually

Extremely laborious
Difficult to generate a complete list of rules

General Procedure:

Find linguistic structures (= templates) that share the same anchors
(= lexical items describing the context in a sentence)

Automatic Discovery from Text

Copus: DIRT [Lin and Pantel, 2001]
Web: TE/ASE [Szpektor et al., 2004]
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DIRT Paths in Dependency Trees

Discovery of Inference Rules from Text (DIRT)

Discover inference rules between paths in dependency trees

Dependency trees are generated by an English parser called Minipar

find

subjwwooooooooooo obj

''OOOOOOOOOOO

John solution

detwwooooooooooo
to

''OOOOOOOOOOO

a problem

detwwooooooooooo

the

John found a solution to the problem
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DIRT Paths in Dependency Trees

Paths in Dependency Trees

find

subjwwooooooooooo obj

''OOOOOOOOOOO

JohnWVUTPQRS solution

detwwooooooooooo
to

''OOOOOOOOOOO

a problemWVUTPQRS
detwwooooooooooo

the

A path is a concatenation of dependency relationships and words
excluding the words at two ends

A path begins and ends with two dependency relations called SlotX
and SlotY

The words connected by the path are the fillers of the slots
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DIRT Paths in Dependency Trees

Paths in Dependency Trees

find

subj||yy
yy

yy
yy obj

""EE
EE

EE
EE

SlotXWVUTPQRS SlotYWVUTPQRS
det||yy

yy
yy

yy to

""EE
EE

EE
EE

a problem

det||yy
yy

yy
yy

the

find

subj||yy
yy

yy
yy obj

""EE
EE

EE
EE

SlotXWVUTPQRS solution

det||yy
yy

yy
yy to

""EE
EE

EE
EE

a SlotYWVUTPQRS
det||yy

yy
yy

yy

the

Substitute slot fillers by SlotX and SlotY (e.g: John, solution)

In a path, dependency relations that are not connected to slots are
called internal relations.

A path has to satisfy a set of contraints
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DIRT Paths in Dependency Trees

Paths in Dependency Trees - Constraints

find

subjwwooooooooooo obj

''OOOOOOOOOOO

SlotXWVUTPQRS solution

detwwooooooooooo
to

''OOOOOOOOOOO

a SlotYWVUTPQRS
detwwooooooooooo

the

Slot fillers must be nouns

Only consider dependency relations between two content words (i.e,
nouns, verbs, adjectives or adverbs)

The frequency count of an internal relation must exceed a threshold

Nam Khanh (Computational Linguistics) Automatic Acquisition of Paraphrases and Inference Patterns May 16, 2011 11 / 46



DIRT Similarity Measures

Assumption

Distributional Hypothesis

Words that occur in the same contexts tend to have similar meanings.

Extended Distributional Hypothesis

If two paths tend to occur in similar contexts, the meanings of the paths
tend to be similar.

=⇒ Two paths are similar if their respective sets of slot fillers (that
occur in a corpus) are similar.
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DIRT Similarity Measures

Triple Database

Collect the frequency counts of all paths and the slot fillers for the
paths in the corpus
For each path p that connects w1 and w2 ⇒ increase frequency
counts of two triples (p,SlotX ,w1) and (p, SlotY ,w2)
(SlotX ,w1) and (SlotY ,w2) are called features of path p ⇒ the more
features two paths share, the more similar they are

Example

”X finds a solution to Y”

Slot Slot Filler Frequency Counts

SlotX government 2
he 8
... ...

SlotY problem 4
argument 3

... ...

Problem?
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DIRT Similarity Measures

Mutual Information between Path, Slot and Slot Filler

Compute the mutual information between all pairs of paths and slot
fillers

Measure strength of the association between a slot and a filler

Mutual Information between Path, Slot and Slot Filler

mi(p, Slot,w) = log

(
P(p, Slot,w)

P(Slot)P(p|Slot)P(w |Slot)

)
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DIRT Similarity Measures

Mutual Information between Path, Slot, Slot Filler

Mutual Information between Path, Slot and Slot Filler

mi(p,Slot,w) = log(
P(p, Slot,w)

P(Slot)P(p|Slot)P(w |Slot)
)

|p, Slot,w | = frequency count of the triple (p,Slot,w)

|p, Slot, ∗| =
∑
w

|p,Slot,w | |∗, ∗, ∗| =
∑
p,s,w

|p, s,w |

Mutual Information between Path, Slot and Slot Filler

mi(p,Slot,w) = log


|p, Slot,w |
|∗, ∗, ∗|

|∗,Slot, ∗|
|∗, ∗, ∗|

|p, Slot, ∗||
|∗, Slot, ∗|

|∗,Slot,w |
|∗,Slot, ∗|



= log

(
|p,Slot,w | × |∗,Slot, ∗|
|p,Slot, ∗| × |∗,Slot,w |

)
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DIRT Similarity Measures
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DIRT Similarity Measures

Triple Database

Example

X finds a solution to Y

Slot Slot Filler Frequency Counts Mutual Information

SlotX government 2 3.14
he 8 1.23

president 3 2.48
... ... ...

SlotY problem 4 4.15
argument 3 2.27

issue 2 2.19
... ... ...
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DIRT Similarity Measures

Similarity between a Pair of Slots

Slot Similarity

sim(slot1, slot2) =

∑
w∈T (p1,s)∩T (p2,s) mi(p1, s,w) + mi(p2, s,w)∑

w∈T (p1,s) mi(p1, s,w) +
∑

w∈T (p2,s) mi(p2, s,w)

slot1 = (p1, s)
slot2 = (p2, s)
T (pi , s) = set of words that fill in the s slot of path pi
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DIRT Similarity Measures

Similarity between a Pair of Paths

Path Similarity

Similarity between two paths p1 and p2

S(p1, p2) =
√
sim(SlotX1,SlotX2)× sim(SlotY1, SlotY2)
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DIRT Finding the Most Similar Paths

Finding the Most Similar Paths

Large number of paths in the triple database
→ Computing the similarity between every pair of paths is impractical

Algorithm for finding the most similar paths of p
1 Retrieve all the paths that share at least one feature with p
→ candidate paths

2 For each candidate path c, count the number of features shared by c
and p, filter out c if the number of common features is too small

3 Compute similarity between p and c −→ output (ranked list)

Example

X solves Y: X resolves Y, X finds a solution to Y, X deals with Y, X
tackles Y, ...
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DIRT Experimental Results

Experimental Results

Compare with a set of human-generated paraphrases
on 6 questions in TREC-8 Question-Answering Track.

Perform DIRT algorithm on 1GB of newspaper text
→ 7 millions paths

Manually inspect the top 40 outputs of each input path
(correct/incorrect)
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DIRT Experimental Results

Experimental Results

First six questions from TREC-8

Q# Question

Q1 Who is the author of the book, ”The Iron Lady: A Bi-
ography of Margaret Thatcher”?

Q2 What was the monetary value of the Nobel Peace Prize
in 1989?

Q3 What does the Peugeot company manufacture?
Q4 How much did Mercury spend on advertising in 1993?
Q5 What is the name of the managing director of Apricot

Computer?
Q6 Why did David Koresh ask the FBI for a word processor?
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DIRT Experimental Results

Experimental Results

Evaluation of Top-40 most similar paths

Q Paths Human DIRT Accuracy

Q1 X is author of Y 7 21 52.5%
Q2 X is monetary value of Y 6 0 N/A
Q3 X manufactures Y 13 37 92.5%
Q4 X spend Y 7 16 40.0%

spend X on Y 8 15 37.5%
Q5 X is managing director of Y 5 14 35.0%
Q6 X asks Y 2 23 57.5%

asks X for Y 2 14 35.0%
X asks for Y 3 21 52.5%
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DIRT Experimental Results

Experimental Results

Observations:

Little overlap between manually generated and machine generated
phrases ⇒ Paraphrase generation is difficult both for humans and
machines.

DIRT outputs: Humans can easily identify correct phrases
⇒ DIRT can help humans to build paraphrase knowledge bases

Problems:

”X worsens Y” has a high similarity to ”X solves Y”

All rules are considered symmetric (”X eats Y” ⇔ ”X likes Y”)
⇒ not really true

LEarning Directionality of Inference Rules!
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LEDIR Downside of Automatic Approaches

Downside of Automatic Approaches

Inference rules are underspecified in directionality

X eats Y ⇔ X likes Y

John eats spicy food ⇒ John likes spicy food

John likes rollerblading ; John eats rollerblading
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LEDIR Downside of Automatic Approaches

Downside of Automatic Approaches

Large amount of incorrect inference rules

X is charged by Y ⇒ Y announced the arrest of X

Nichols was charged by federal prosecutors for murder
⇒ Federal prosecutors announced the arrest of Nichols

Accounts were charged by CCM telemarketers without obtaining
authorizations
; CCM telemarketers announced the arrest of accounts
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LEDIR Problem Definition

Problem Definition

Goal: Filter out incorrect inference rules and identify the directionality of
the correct ones

Formally

Given the inference rule pi ⇔ pj , we want to conclude which one of the
following is more appropriate:

1. pi ⇔ pj

2. pi ⇒ pj

3. pi ⇐ pj

4. No plausible inference
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LEDIR LEDIR Algorithm

Assumption

Distributional Hypothesis

Words that occur in the same contexts tend to have similar meanings.

Directionality Hypothesis

If two binary semantic relations tend to occur in similar contexts and the
first one occurs in significantly more contexts than the second, then the
second most likely implies the first and not vice versa.

Example

There are many more things that someone might like than those that
someone might eat → ”X eats Y” ⇒ ”X likes Y”
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LEDIR LEDIR Algorithm

Steps of the Algorithm

Given a candidate inference rule pi ⇔ pj :

1 Model the contexts of pi and pj by selectional preferences

2 Determine the plausibility of the inference rule

3 If it is plausible, determine its directionality
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LEDIR LEDIR Algorithm

Model the contexts of a relation

Let 〈x , p, y〉 be an instance of the relation p
Let Cx and Cy be the semantic classes of the words that can be
instantiated for x and y

Example

X is charged by Y
Cx = {social group, organism, state, ...}
Cy = {authority , state, section, ...}
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LEDIR LEDIR Algorithm

Joint Relational Model (JRM)

Given a relation p and a large corpus of (English) text:

1 Find all occurrences of relation p
2 For every instance 〈x , p, y〉

Obtain the sets Cx and Cy of the semantic classes that x and y belong
to
Every triple 〈cx , p, cy 〉 is a candidate selectional preference for p, by
assuming that every cx ∈ Cx can co-occur with every cy ∈ Cy and vice
versa

3 Rank these candidates using Pointwise mutual information
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LEDIR LEDIR Algorithm

Joint Realtional Model (JRM)
Ranking candidates

The ranking function is defined as the strength of association between two
semantic classes cx and cy

Pointwise mutual information

pmi(cx |p; cy |p) = log
P(cx , cy |p)

P(cx |p)P(cy |p)
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LEDIR LEDIR Algorithm

Joint Realtional Model (JRM)
Ranking candidates

Maximum likelihood estimates over the corpus

P(cx |p) =
|cx , p, ∗|
|∗, p, ∗|

P(cy |p) =
|cy , p, ∗|
|∗, p, ∗|

P(cx , cy |p) =
|cx , p, cy |
|∗, p, ∗|

|cx , p, ∗| =
∑
w∈cx

|w , p, ∗|
|C (w)|

|∗, p, cy | =
∑
w∈cy

|∗, p,w |
|C (w)|

|cx , p, cy | =
∑

w1∈cx ,w2∈cy

|w1, p,w2|
|C (w1)× C (w2)|

|cx , p, cy |: frequency of observing instance 〈cx , p, cy 〉
|x , p, y |: frequency of observing instance 〈x , p, y〉
|C (w)|: number of classes to which w belongs
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LEDIR LEDIR Algorithm

Independent Relational Model (IRM)

Given a relation p and a large corpus of (English) text

1 Find all occurrences of relation p
2 For each instance 〈x , p, y〉:

Obtain the sets Cx and Cy of semantic classes that x and y belong to
All triples 〈cx , p, ∗〉 and 〈∗, p, cy 〉 are independent candidate selectional
preferences for p, where cx ∈ Cx and cy ∈ Cy

3 Rank candidates by using maximum likelihood estimates for P(cx |p)
and P(cy |p)
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LEDIR LEDIR Algorithm

Indepedent Relational Model (IRM)

Convert independently learned candidates into a joint representation for
use by the inference plausibility and directionality model

Joint Representation

Cartesian product of sets 〈Cx , p, ∗〉 and 〈∗, p,Cy 〉

〈Cx , p, ∗〉 × 〈∗, p,Cy 〉 =

{
〈cx , p, cy 〉 : ∀〈cx , p, ∗〉 ∈ 〈Cx , p, ∗〉 and

∀〈∗, p, cy 〉 ∈ 〈∗, p,Cy 〉

}
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LEDIR LEDIR Algorithm

Inference plausibility

Overlap coefficient between two vectors A and B

sim(A,B) =
|A ∩ B|

min(|A|, |B|)

Overlap coefficient between the selectional preferences of pi and pj

sim(pi , pj) =
|〈Cx , pi ,Cy 〉 ∩ 〈Cx , pj ,Cy 〉|

min(|〈Cx , pi ,Cy 〉|, |〈Cx , pj ,Cy 〉|)

Given a candidate inference rule pi ⇔ pj and the respective selectional
preferences:

If sim(pi , pj) ≥ α:
the inference is plausible

else :
the inference is not plausible
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LEDIR LEDIR Algorithm

Directionality model

For a plausible inference:

If
|Cx , pi ,Cy |
|Cx , pj ,Cy |

≥ β we conclude pi ⇐ pj

else if
|Cx , pi ,Cy |
|Cx , pj ,Cy |

≤ 1
β we conclude pi ⇒ pj

else we conclude pi ⇔ pj

β ≥ 1
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LEDIR Experimental Results

Experimental setup

Inference rules from DIRT resource

Two sets of semantic classes:

1628 semantic classes obtained by running the CBC clustering
algorithm on newswire collections
1287 semantic classes from WordNet synsets at depth four

1999 AP newswire collection (31 million words)

Manually annotated gold standard:

57 DIRT inference rules
The most appropriate of four tags (⇒ /⇐ /⇔ /NO) is assigned to
inference rule
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LEDIR Experimental Results

Results

Model α β Accuracy (%)
B-random - - 25

B-frequent - - 34

B-DIRT - - 25

JRM
CBC 0.15 2 38
WN 0.15 2 38

IRM
CBC 0.15 3 48
WN 0.45 2 43
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LEDIR Experimental Results

Results

Accuracy variation in predicting correct versus incorrect inference rules for
different values of α
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LEDIR Experimental Results

Results

Accurary variation in predicting directionality of correct inference rules for
different values β
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Conclusion

Conclusion

DIRT: learns paraphrase patterns by computing similarity between
slots of dependency paths
−→ Methods to learn templates with an arbitrary number of slots?

LEDIR: filters incorrect inference rules and identifies the directionality
of the correct ones by using selectional preferences
−→ Antonymy relations like ”X loves Y ” ⇔ ”X hates Y ”?
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Conclusion
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Conclusion

Thank you for your attention!
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