Natural Language Inference Compositional Entailment

Birgit Schwarz

Saarland University

July 11, 2011

Introduction

Ed didn't manage to remember to open the door.

Introduction

Ed didn't manage to remember to open the door.

Did Ed open the door?

Introduction

- build a theory of compositional entailment
- Principle of Compositionality: The meaning of a compound expression is a function of the meanings of its parts.
- if two expressions differ by a single atomic edit, then the entailment relation between them depends on:
 - lexical entailment relation generated by edit
 - effect context of the expression has on the entailment relation
- atomic edits: substitution(SUBS), deletion (DEL), insertion (INS)

Lexical entailment relations

Lexical entailment relations

- x compound linguistic expression red car
- e(x) result of applying an atomic edit e to xSUB(*car, convertible*) \Rightarrow red convertible
- $\beta(e)$ lexical entailment relation generated by e car \Box convertible
- $\beta(x, e(x))$ entailment relation between x and e(x), depending on $\beta(e)$ and context of x red car \Box red convertible

Lexical entailment relations

Lexical entailment relations

- x compound linguistic expression red car
- e(x) result of applying an atomic edit e to xSUB(*car, convertible*) \Rightarrow red convertible
- $\beta(e)$ lexical entailment relation generated by e car \Box convertible
- $\beta(x, e(x))$ entailment relation between x and e(x), depending on $\beta(e)$ and context of x red car \Box red convertible

How can these entailment relations be computed?

- Lexical entailment relations

Lexical Entailment

lexical entailment relation generated by a substitution equals relation between the two terms: β(SUB(a,b)) = β(a,b)

Hyperonym:	car	convertible
Synonym:	forbid	prohibit
Hyponym:	crow	bird
Antonym:	warm	cold

relations can be acquired via WordNet

Entailments and Semantic Composition

so far, we can determine entailment relations between isolated terms

hug ⊏ touch French | German

but how do these entailment relations behave in a context?

doesn't hug ? doesn't touch not French ? not German

Entailments and Semantic Composition

so far, we can determine entailment relations between isolated terms

hug ⊏ touch French | German

but how do these entailment relations behave in a context?

doesn't hug ⊐ doesn't touch not French — not German

How is a relation projected through a context?

Monotonicity Calculus

- developed by Sánchez Valencia in 1995
- explains impact of semantic composition on $\equiv, \sqsubset, \sqsupset,$ and #
- three monotonicity classes:
 - ► UP projects entailment relations without change: parrot □ bird ⇒ parrots talk □ some birds talk
 - DOWN swaps □ and □ carp □ fish ⇒ no carp talk □ no fish talk
 - NON projects □ and □ as # human □ animal ⇒ most humans talk # most animals talk
- lacks handling of exclusion relations ^, |, and \sim

Projectivity

- generalize the concept of monotonicity to a concept of projectivity
- specify how an entailment relation is projected through a semantic composition tree
- Principle of Compositionality:

The entailments of a compound expression are a function of the entailments of its parts

Projectivity of Logical Connectives: Negation

- ▶ projects ≡ and # without change
- is downward monotonic, therefore swaps \square and \square
- \blacktriangleright swaps | and \smile

happy	≡	glad	\Rightarrow	not happy	\equiv	not glad
kiss		touch	\Rightarrow	didn't kiss		didn't touch
human	^	nonhuman	\Rightarrow	not human	^	not nonhuman
French		German	\Rightarrow	not French	\smile	not German
swimming	#	hungry	\Rightarrow	not swimming	#	not hungry

Projectivity of Logical Connectives: Conjunction

- "and" is upward monotone
- projects both ^ and | as |
- intersective modification (by adjectives, adverbs) has the same projectivity

convertible		car	\Rightarrow	red convertible	red car
human	^	nonhuman	\Rightarrow	living human	living nonhuman
French		Spanish	\Rightarrow	French wine	Spanish wine

Projectivity of Logical Connectives: Disjunction

- is upward monotone like conjunction
- unlike conjunction, projects both ^ and \smile as \smile and projects | as #

waltzed		danced	\Rightarrow	waltzed or sang	danced or sang
human	^	nonhuman	\Rightarrow	human or equine	nonhuman or equine
red		blue	\Rightarrow	red or yellow	blue or yellow

Projectivity of Logical Connectives: Conditionals

- the antecedent of a conditional is downward-monotone
- the consequent is upward-monotone
- the antecedent projects both $\hat{}$ and | as #
- the consequent projects both ^ and | as |

If he drinks tequila, he feels nauseous If he drinks tequila, he feels nauseous If it's sunny, we surf If it's sunny, we surf

- □ If he drinks liquor, he feels nauseous
- \square If he drinks tequila, he feels sick
- # If it's not sunny, we surf
 - If it's sunny, we don't surf

Projectivity of Quantifiers

- ▶ all quantifiers project \equiv and # as without change
- ► | is projected as #

dog		animal	\Rightarrow	some dogs		some animals
car	\Box	convertible	\Rightarrow	no car		no convertible
human	^	nonhuman	\Rightarrow	most humans	#	most nonhumans
animal	\smile	non-ape	\Rightarrow	ex. one animal	#	ex. one non-ape

Projectivity of Verbs

- most verbs are upward-monotone
- many verbs project $\hat{}, \, \smile, \, \text{and} \mid \, \text{as} \, \#$

humans	^	nonhumans	\Rightarrow	eats humans	#	eats nonhumans
cats		dogs	\Rightarrow	eats cats	#	eats dogs

Projectivity of Verbs

- most verbs are upward-monotone
- many verbs project $\hat{}, \, \smile$, and | as #

humans	^	nonhumans	\Rightarrow	eats humans	#	eats nonhumans
cats		dogs	\Rightarrow	eats cats	#	eats dogs

but:

То

Tom forgot to close the door	=	The door isn't closed
Tom didn't forget to close the door	=	The door is closed
Tom forgot that the door was closed m didn't forget that the door was closed		The door is closed The door is closed

Definition

Factive verbs

- carry same implication in both positive and negative contexts
- admit that, forget that, believe that...
- rather presuppose than entail truth of their complements, therefore not affected by negation

Implicative verbs

- implication depends on context
- manage to, forget to, permit to, fail to, force to...
- entail, rather than presuppose truth of their complements

- Implicative and Factive Verbs

Implication Signatures

- developed by Nairn et al. (2006)
- signatures model the directions of implications regarding the complements of verbs
 - ▶ positive (+), negative(-), null(○)

manage to (+ / -)

- $\begin{array}{rcl} \mbox{managed to escape} & \Rightarrow & \mbox{escaped} \\ \mbox{didn't manage to escape} & \Rightarrow & \mbox{didn't escape} \\ & & \mbox{refuse to (- / \circ)} \end{array}$
 - refused to dance \Rightarrow didn't dance
 - didn't refuse to dance \Rightarrow unclear

Implication Signatures: Deletion and Insertion of Implicatives

Implication Signatures: Deletion and Insertion of Factives

Implication Signatures: Projectivity

Translating signatures into projectivity relations:

			projectivity						
signature	example	monotonicity	\equiv			^		\smile	#
+/-	manage to	UP	\equiv			^		\bigcirc	#
+/0	force to	UP	\equiv					#	#
o / —	permit to	UP	\equiv		\Box	\smile	#	\smile	#
- / +	fail to	DOWN	\equiv	\square		^	\smile		#
— / o	refuse to	DOWN	\equiv	\Box			#		#
o/+	hesitate to	DOWN	\equiv	\Box		\smile	\smile	#	#
+/+	admit that	UP	\equiv			^	^	#	#
_ / _	pretend that	UP	\equiv			^	#	^	#
0/0	believe that	NON	#	#	#	#	#	#	#
0,0	beneve that		11	11	11	11-	11-	11-	#

Putting it all together: Establishing Entailment

Putting it all together

- Putting it all together: Establishing Entailment

Putting it all together

Establish entailment relation between premise *p* and hypothesis *h*:

1 find a sequence of atomic edits $\langle e_1, ..., e_n \rangle$ which transforms p into h with $h = (e_n \circ ... \circ e_1)(p)$, $x_0 = p$, $x_n = h$, $x_i = e_i(x_{i-1})$ for $i \in [1, n]$

- Putting it all together: Establishing Entailment

Putting it all together

Establish entailment relation between premise *p* and hypothesis *h*:

- 1 find a sequence of atomic edits $\langle e_1, ..., e_n \rangle$ which transforms p into h with $h = (e_n \circ ... \circ e_1)(p)$, $x_0 = p$, $x_n = h$, $x_i = e_i(x_{i-1})$ for $i \in [1, n]$
- for each atomic edit e_i

1 determine the lexical entailment relation $\beta(e_i)$ generated by e_i

- Putting it all together: Establishing Entailment

Putting it all together

Establish entailment relation between premise *p* and hypothesis *h*:

- 1 find a sequence of atomic edits $\langle e_1, ..., e_n \rangle$ which transforms p into h with $h = (e_n \circ ... \circ e_1)(p)$, $x_0 = p$, $x_n = h$, $x_i = e_i(x_{i-1})$ for $i \in [1, n]$
- 2 for each atomic edit *e_i*
 - 1 determine the lexical entailment relation $\beta(e_i)$ generated by e_i
 - 2 project $\beta(e_i)$ through the semantic composition tree of expression x_{i-1} to find $\beta(x_{i-1}, x_i)$ (atomic entailment relation for edit e_i)

-Putting it all together: Establishing Entailment

Putting it all together

Establish entailment relation between premise *p* and hypothesis *h*:

- 1 find a sequence of atomic edits $\langle e_1, ..., e_n \rangle$ which transforms p into h with $h = (e_n \circ ... \circ e_1)(p)$, $x_0 = p$, $x_n = h$, $x_i = e_i(x_{i-1})$ for $i \in [1, n]$
- 2 for each atomic edit *e_i*
 - 1 determine the lexical entailment relation $\beta(e_i)$ generated by e_i
 - 2 project $\beta(e_i)$ through the semantic composition tree of expression x_{i-1} to find $\beta(x_{i-1}, x_i)$ (atomic entailment relation for edit e_i)
- **3** join atomic entailment relations across the sequences of edits: $\beta(p,h) = \beta(x_0, x_n) = \beta(x_0, e_1) \bowtie ... \bowtie \beta(x_{i-1}) \bowtie ... \bowtie \beta(x_{n-1}, e_n)$

Examples

A first example

i	ei	$x_i = e_i(x_{i-1})$	$\beta(e_i)$	$\beta(x_{i-1}, e_i)$	$\beta(x_0, x_i)$
		Stimpy is a cat.			
1	SUB(cat, dog)				
		Stimpy is a dog.			
2	INS(not)		٨	^	
		Stimpy is not a dog.			
3	SUB(dog, poodle)				
		Stimpy is not a poodle.			

A first example

i	ei	$x_i = e_i(x_{i-1})$	$\beta(e_i)$	$\beta(x_{i-1}, e_i)$	$\beta(x_0, x_i)$
		Stimpy is a cat.			
1	SUB(cat, dog)				
		Stimpy is a dog.			
2	INS(not)		٨	^	
		Stimpy is not a dog.			
3	SUB(dog, poodle)				
		Stimpy is not a poodle.			

A first example

i	ei	$x_i = e_i(x_{i-1})$	$\beta(e_i)$	$\beta(x_{i-1}, e_i)$	$\beta(x_0, x_i)$
		Stimpy is a cat.			
1	SUB(cat, dog)				
		Stimpy is a dog.			
2	INS(not)		۸	^	
		Stimpy is not a dog.			
3	SUB(dog, poodle)				
		Stimpy is not a poodle.			

An example including a verb

i	e_i $x_i = e_i(x_{i-1})$	$\beta(e_i)$	$\beta(x_{i-1}, e_i)$	$\beta(x_0, x_i)$
	We were not permitted to smoke.			
1	DEL(permitted to)			
	We did not smoke.			
2	DEL(not)	^	^	
	We smoked.			
3	INS(Cuban cigars)			
	We smoked Cuban Cigars.			

An example including a verb

i	e_i $x_i = e_i(x_{i-1})$	$\beta(e_i)$	$\beta(x_{i-1}, e_i)$	$\beta(x_0, x_i)$
	We were not permitted to smoke.			
1	DEL(permitted to)			
	We did not smoke.			
2	DEL(not)	^	^	
	We smoked.			
3	INS(Cuban cigars)			
	We smoked Cuban Cigars.			

Result:

We were not permitted to smoke. We smoked Cuban cigars.

An example including a verb

i	e_i $x_i = e_i(x_{i-1})$	$\beta(e_i)$	$\beta(x_{i-1}, e_i)$	$\beta(x_0, x_i)$
	We were not permitted to smoke.			
1	DEL(permitted to)			
	We did not smoke.			
2	DEL(not)	^	^	
	We smoked.			
3	INS(Cuban cigars)			
	We smoked Cuban Cigars.			

Result:

We were not permitted to smoke. We smoked Cuban cigars. \checkmark

Example: De Morgan's Laws

Example: De Morgan's Laws

De Morgan's Laws for Quantifiers

$$\neg(\forall x P(x)) \Leftrightarrow \exists x (\neg P(x)) \neg(\exists x P(x)) \Leftrightarrow \forall x (\neg P(x))$$

Example: De Morgan's Laws

De Morgan's Laws for Quantifiers

$$\neg(\forall x \ P(x)) \Leftrightarrow \exists x \ (\neg P(x)) \\ \neg(\exists x \ P(x)) \Leftrightarrow \forall x \ (\neg P(x))$$

h Some birds do not fly.

Obviously, $p \equiv h$.

Example: De Morgan's Laws

i	ei	$x_i = e_i(x_{i-1})$	$\beta(e_i)$	$\beta(x_{i-1}, e_i)$	$\beta(x_0, x_i)$
		Not all birds fly.			
1	DEL(not)		^	^	^
		All birds fly.			
2	SUB(all, some)				\smile
		Some birds fly.			
3	INS(not)		^	\smile	$\equiv \Box \sqsupset \checkmark \#$
		Some birds don't fly.			

Example: De Morgan's Laws

i	ei	$x_i = e_i(x_{i-1})$	$\beta(e_i)$	$\beta(x_{i-1}, e_i)$	$\beta(x_0, x_i)$
		Not all birds fly.			
1	DEL(not)		^	^	^
		All birds fly.			
2	SUB(all, some)				\smile
		Some birds fly.			
3	INS(not)		^	\smile	$\equiv \Box \sqsupset \checkmark \#$
		Some birds don't fly.			

- For all 6 possible orderings of the edits, the result is the union relation U{≡, □, □, ..., #}
- omits only ^ and |, can therefore be seen as non-exclusion relation
- not incorrect, as \equiv is included, but far less informative

- Towards a Conclusion

Putting it all together: Limitations

- join operation tends toward less informative entailment relations (union sets of relations)
- so far no knowledge about how a sequence connecting h and p can be established
- in case there are several possible sequences, which one to choose?
- no mechanism for combining information from more than one premise at a time
- lacks inference rules of classical logic, like modus ponens, modus tollens, or disjunction elimination

- Towards a Conclusion

Conclusion

- inference method that is able to produce desired entailment relations
- covers broad variety of example problems
- not complete, leads to loss of information
- application in the NatLog System