SCRIPT ACQUISITION

Presentation of the seminar Recent Developments in Computational Semantics 2010-2011

Angeliki Lazaridou, Saarland University

What is a script?

Script is a standardized sequence of events that describes some stereotypical human activity such as going to a restaurant or visiting a doctor

(Barr and Feigenbaum, 1981)

Motivation

- Inference
- Textual undestanding
- Narrative generation

Outline

- Unsupervised Learning of Narrative Events Chains
 - Narrative Chain Model (narrative chain, narrative event, protagonist)
 - Learning Narrative Relations
 - Ordering Narrative Events
- Learning Script Knowledge with Web Experiments
 - Terminology
 - Data Acquisition
 - Constructing Temporal Script Graphs
 - Experiments and Results
- Unsupervised Learning of Narrative Scemas and their Participants
 - Typed Narrative Chains
 - Learning Argument Types
 - Narrative Scemas

Unsupervised Learning of Narrative Events Chains

Nathanael Chambers & Dan Jurafsky ACL 2008

Unsupervised Learning of Narrative Events Chains

Nathanael Chambers & Dan Jurafsky ACL 2008

Narrative Chain Model

John was arrested by the police two years ago.

He was accused ^for stealing. That ended up in convicted him and finally, he was sentenced for 2 years.

- Narrative event : Tuple of an event v (e.g verb) and the typed dependency,
 s.t. d ∈ {subject, object, preposition}
- Protagonist : The central actor who characterizes a narrative chain
- Narrative chain (L,O) : Partially ordered set of narrative events
 L = { (arrested, subj), {accused, subj), (convicted, obj), (sentenced, subj)}
 O = {(arrested, accused), (accused, convicted), (convicted, sentenced)}

Narrative Chain Model

John was arrested by the police two years ago.

He was accused ^for stealing. That ended up in convicted him and finally, he was sentenced for 2 years.

Assumption of narrative coherence

verbs sharing coreferring arguments are semantically connected by virtue of narrative discourse structure => verbs that share arguments are most likely to participate in the same narrative chain

Distributional learning vs Narrative Learning
 Whether two verbs are related
 Information about the participants

Learning Narrative Event Chains

3-step process from raw newswire text

Narrative event induction: Learn Narrative Relations

Temporal ordering: Order the connected events with respect to time

Structured Selection : Prune and cluster self-contained chains from space of events

Narrative Event Induction

- Goal: learn the protagonist and subevents
- Extract pairwise relation of events that share grammatical arguments using a similarity mesure
- **Similarity mesure:** Given e(w,d) and e(v,g) where w,v are verbs and d,g dependencies (e.g e(push, subject)) calculate

$$pmi(e(w,d),e(v,g)) = log \frac{P(e(w,d),e(v,g))}{P(e(w,d))P(e(v,g))}$$

where P(e(w,d),e(v,g)) is calculated as $P(e(w,d),e(v,g)) = \frac{C(e(w,d),e(v,g))}{\sum_{x,y}\sum_{d,f}C(e(x,d),e(y,f))}$ arguments referring to the same entity Hof times the dependencies d, f in the events were referring to the same entity

#of times the events

d,g filled with

had the dependencies

Narrative Event Induction

- For find the next most likely event:
 - Use the scores calculated from the previous process
 - Find which event from the m candidates maximizes the sum of the pmi of this event with all the other events of the chain size n

$$\max_{j:0 < j < m} \sum_{i=0}^{n} pmi(e_i, f_j)$$

Narrative Event Induction Experimental Setup

- Evaluation metric:
 - Based on cloze task (Taylor, 1953)
 - Narrative cloze: Having sequence of narrative events, remove one and predict the verb and dependency that is missing
- Dataset: Gigaword Corpus
 - Training corpus: Documents from 1994-2004
 - **Development set: manually** selected to capture various topics
 - Testing corpus: randomly selected 69 stories(containing a narrative chain > 5) from a randomly selected year (2001)

Narrative Event Induction Experimental Setup

- Experiment:
 - For training:
 - Parse into typed dependencies and resolve entity mentions
 - Create PMI counts
 - For testing:
 - Hand-selected narrative chain, remove one event from chain and generate ranked list with the guesses
 - 740 cloze tests (69 narratives with 740 events)

Known events: (pleaded subj), (admits subj), (convicted obj)									
Likely Events:									
0.89		0.74							
0.76	fined obj	0.73							
0.75	denied subj	0.73							
	0.89 0.76	0.89 indicted obj 0.76 fined obj							

Given the chain and the top6 ranked guesses if the correct event was **fired** then the score would be 3. Unseen events are penalized with the length of the ranked list

Narrative Event Induction Results

- Measuring average ranked performance
- Approximatly 9.000 candidates for each ranked list (716/740 removed events in the respective ranked list)
- Protagonist model & Typed Deps model: The more training data, the better for the performance
- Protagonist model: 36% improvment over baseline
- 3.5 % decrease of performance without coreference tool

Ordering Narrative Events

- 2-stage process based on previous work (Chambers et al. 2007)
 1st stage: Label temporal attributes of events (e.g tense)
 - Train an SVM using as features for the classifier neigbouring POS, auxiliaries and modals, and WordNet synsets

2nd stage: Classify temporal relation events (*before* relation or *other*)

Combine SVM from first stage with linguistic features

Ordering Narrative Events Experimental Setup

- Training Dataset:
 - Timebank corpus (37519 of *before* relations)
 - Applying transitivity rules and extend Timebank to 45619 relations
- Testing Dataset:
 - Gigaworld corpus (69 documents as before)
 - Hand-labeled with temporal ordering (remove 6 documents because of no ordered event)
- Experiment:
 - First classify temporal features of each event
 - Before relation between all events
 - Every pair of events is a different classifiaction task
- Evaluation: compare the predicted order with (up to) 300 random orderings for every document.

- Coherence score: sum of correct relations weighted by the confidence score.
- Compute coherence score for their output and 300 random
- If their score is higher from the 300 random, they are correct
- The bigger the chain, the better for their method(unfair for random, maybe compare with more permutations)

Recap

- What we saw:
 - An unsupervised method for learning ordered narrative event chains
 - No information about type of protagonist
 - Only one protagonist
 - Some scripts like SHOPPING are shared implicit knowledge and are rarely elaborated in text

Learning Script Knowledge with Web Experiments

Regneri M, Koller A., Pinkal M. ACL 2010

Introduction

- Goal:
 - Learn paraphrases for the same events
 - Learn what constraints should hold on the temporal order
- Key Idea
 - Ask non-experts to describe typical event sequences in a given scenario

Some terminology

- Event sequence descriptions:
 - Set of ordered steps that are taking place in a specific scenario (e.g open the beamer, open my presentation, start presenting, go home)
- Temporal Script Graph
 - A directed graph $G_s = (E_s, T_s)$ where:
 - $-E_s$ is a set of nodes representing events in a scenario
 - T_s is a set of edges (e_i , e_k) indicating that e_i happens before e_k

Data Acquisition

- 22 scenarios of varying complexity
- collect 493 ESD's with Amazon Mechanical Turk (bullet type)
- Different level of granularity (average 9 event)
- 93% of all individual event decriptions occured only once

1. look at menu	1. walk into restaurant				
2. decide what you want	2. find the end of the line				
order at counter	stand in line				
pay at counter	look at menu board				
5. receive food at counter	5. decide on food and drink				
6. take food to table	6. tell cashier your order				
7. eat food	7. listen to cashier repeat order				
	8. listen for total price				
1. walk to the counter	9. swipe credit card in scanner				
2. place an order	10. put up credit card				
pay the bill	11. take receipt				
4. wait for the ordered food	12. look at order number				
5. get the food	13. take your cup				
6. move to a table	14. stand off to the side				
7. eat food	15. wait for number to be called				
8. exit the place	16. get your drink				

Temporal Script Graphs

Temporal Script Graphs-Multiple Sequence Aligment

row	\$ 1	\$2	\$3	84
1	0	walk into restaurant	0	enter restaurant
2	0	0	walk to the counter	go to counter
3	0	find the end of the line	0	0
4	0	stand in line	0	0
5	look at menu	look at menu board	0	0
6	decide what you want	decide on food and drink	0	make selection
7	order at counter	tell cashier your order	place an order	place order
8	0	listen to cashier repeat order	0	0
9	pay at counter	0	pay the bill	pay for food
10	0	listen for total price	0	0
11	0	swipe credit card in scanner	Ø	0
12	0	put up credit card	0	0
13	0	take receipt	Ø	0
14	0	look at order number	Ø	0
15	0	take your cup	0	0
16	0	stand off to the side	Ø	0
17	0	wait for number to be called	wait for the ordered food	0
18	receive food at counter	get your drink	get the food	pick up order
19	0	0	0	pick up condiments
20	take food to table	0	move to a table	go to table
21	eat food	0	eat food	consume food
22	0	0	0	clear tray
22	0	0	exit the place	0

Temporal Script Graphs-Multiple Sequence Aligment

• Compute

$$c(A) = c_{gap} \cdot \Sigma_{\emptyset} + \sum_{i=1}^{n} \sum_{\substack{j=1, \\ a_{ji} \neq \emptyset}}^{m} \sum_{\substack{k=j+1, \\ a_{ki} \neq \emptyset}}^{m} c_m(a_{ji}, a_{ki})$$

- Choose this alignment A with the **minimum cost**
- m>2 is NP-Complete. Approximation algorithm: align two sequences, take this as one sequence of pairs and then add the third one etc.. (always m=2)
- Cost function = semantic dissimilarity
 - ESD's short, elliptic -> only pseudo-parsing possible
 - Sim = α^* pred + β^* subj + γ^* obj
 - Pred, subj, obj scores(100 for synonyms, 0 for no relation, intermediate numbers for other kind)
 - Optimize intermediate numbers of pred, subj, obj and weights from development set

Temporal Script Graphs-Building Temporal Graph

- Initial graph-> one node for every row of MSA output (paraphrases)
- Add edges to initial graph
- Post-process
 - eliminate nodes that have only one ESD
 - Merge nodes with two filters:
 - First clustering
 - Then for preventing introduction of new temporal relations not supported by input apply graph-structural constraints.
 - Important : SHOULDN'T MERGE NODES THAT COME FROM SAME SEQUENCE!!

Experimental Setup

- Select 10 scenarios
- Baselines:
 - Clustering Baseline: (the granularity of clustering is optimized with repsect to desnity and cluster distance)
 - Levenshtein Baseline: in the proposed method replace (dis)similarity mesure with Levenshtein distance)
- 1st Task: Evaluate Paraphrases
 - Create parahrase set (30 from system and 30 random pairs)
 - Clustering Baseline: if e1, and e2 in the same cluster
- 2nd Task: Evaluate temporal constraints
 - Create happens-before set (30 from system, 30 random and the reverse of all)
 - Clustering Baseline: e comes before f if some phrase in e's cluster precedes some phrase in f's cluster
- Gold standard from Mechanical Turk (Does e1 and e2 describe the same thing in SCENARIO? Does e1 comes before e2 in SCENARIO?

Results Paraphrasing Task

SCENARIO		PRECISION				RECALL			F-SCORE			
	OCENARIO		base _{cl}	baselev	sys	base _{cl}	baselev	sys	base _{cl}	baselev	upper	
	pay with credit card	0.52	0.43	0.50	0.84	0.89	0.11	0.64	0.58	• 0.17	0.60	
¥	eat in restaurant	0.70	0.42	0.75	0.88	1.00	0.25	0.78	 0.59 	 0.38 	• 0.92	
M TURK	iron clothes I	0.52	0.32	1.00	0.94	1.00	0.12	0.67	 0.48 	 0.21 	• 0.82	
Z	cook scrambled eggs	0.58	0.34	0.50	0.86	0.95	0.10	0.69	• 0.50	• 0.16	• 0.91	
	take a bus	0.65	0.42	0.40	0.87	1.00	0.09	0.74	• 0.59	• 0.14	• 0.88	
	answer the phone	0.93	0.45	0.70	0.85	1.00	0.21	0.89	• 0.71	• 0.33	0.79	
ю	buy from vending machine	0.59	0.43	0.59	0.83	1.00	0.54	0.69	0.60	0.57	0.80	
OMICS	iron clothes II	0.57	0.30	0.33	0.94	1.00	0.22	0.71	• 0.46	• 0.27	0.77	
õ	make coffee	0.50	0.27	0.56	0.94	1.00	0.31	0.65	• 0.42	o 0.40	• 0.82	
	make omelette	0.75	0.54	0.67	0.92	0.96	0.23	0.83	• 0.69	• 0.34	0.85	
	AVERAGE	0.63	0.40	0.60	0.89	0.98	0.22	0.73	0.56	0.30	0.82	

- System outperfoms both baselines in F-score.
- Good recall for clustering but not for precision. Vice verca for Levenshtein.
- Upper bound (random selection of one of the annotations)

Results Happens-Before Task

	SCENARIO		PRECISION			RECALL			F-SCORE			
			base _{cl}	baselev	sys	base _{cl}	baselev	sys	basec1	baselev	upper	
	pay with credit card	0.86	0.49	0.65	0.84	0.74	0.45	0.85	• 0.59	• 0.53	0.92	
Ħ	eat in restaurant	0.78	0.48	0.68	0.84	0.98	0.75	0.81	• 0.64	0.71	• 0.95	
MTURK	iron clothes I	0.78	0.54	0.75	0.72	0.95	0.53	0.75	0.69	• 0.62	• 0.92	
Z	cook scrambled eggs	0.67	0.54	0.55	0.64	0.98	0.69	0.66	0.70	0.61	• 0.88	
	take a bus	0.80	0.49	0.68	0.80	1.00	0.37	0.80	• 0.66	• 0.48	• 0.96	
	answer the phone	0.83	0.48	0.79	0.86	1.00	0.96	0.84	• 0.64	0.87	0.90	
22	buy from vending machine	0.84	0.51	0.69	0.85	0.90	0.75	0.84	• 0.66	o 0.71	0.83	
OMICS	iron clothes II	0.78	0.48	0.75	0.80	0.96	0.66	0.79	 0.64 	0.70	0.84	
0	make coffee	0.70	0.55	0.50	0.78	1.00	0.55	0.74	0.71	o 0.53	o 0.83	
	make omelette	0.70	0.55	0.79	0.83	0.93	0.82	0.76	o 0.69	0.81	• 0.92	
	AVERAGE	0.77	0.51	0.68	0.80	0.95	0.65	0.78	0.66	0.66	0.90	

- ANSWER THE PHONE: trivial lexicon, more word knowledge do not contribute
- COOK SRAMBLED EGGS: System can't represent events that can happen in arbitrary order. (in recipes in general)

Recap

- What we saw
 - Unsupervised method for learning events along with their order
 - Can capture everyday scenaria that are implicit knowledge and thus are not elaborated explicitly in documents
 - They way of gathering data is not automated and it is limited to the knowledge of the annotators

From Chambers & Jurafsky 2008

- What we saw:
 - No information about type of protagonist
 - Only one protagonist
 - Some scripts like SHOPPING are shared implicit knowledge and are rarely elaborated in text

Unsupervised Learning of Narrative Schemas and their Participants

Nathanael Chambers & Dan Jurafsky ACL 2009

Motivation

•Top scoring is (fly, X) cause it's often seen with all 5 WRONG (charge,X) shares many arguments (e.g criminal, suspect) with accuse, suspect and search

Model argument overlap across all pairs

relevant? Convict or capture? Only look at objects-> convict

Given arrest which verb is more

- WRONG because (police arrest vs judge convict)
- Look both objects and subjets -> •

arrest and capture share police and criminal

All entities and slots in the space of events should be jointly considered 33

Typed Narrative Chains

Narrative Chains

L = { (hunt, X), (X, use), (suspect, X), (accuse, X), (search,X)}

O = {(use, hunt), (suspect, search), (suspect, accuse)...}

 Include arguments -> Typed Narrative Chains

+ P = {person, government, company, criminal}

Learning Argument Types

- Record counts of arguments with each pair of event slot
- Build referential set
- Represent each observed argument by the most frequent head word
- Example

But for a growing proportion of U.S. workers, the troubles really set in when they apply for unemployment benefits. Many workers find their benefits challenged.

Event Slot Similarity with Arguments

• From previous approach for a new event against a chain

$$chainsim(C, \langle f, g \rangle) = \sum_{i=1} sim(\langle e_i, d_i \rangle, \langle f, g \rangle)$$

• Extend *sim* to include argument types

 $sim(\langle e, d \rangle, \langle e', d' \rangle, a) = pmi(\langle e, d \rangle, \langle e', d' \rangle) + \lambda \log freq(\langle e, d \rangle, \langle e', d' \rangle, a)$

• Then score entire chain for a particular argument

$$score(C, a) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} sim(\langle e_i, d_i \rangle, \langle e_j, d_j \rangle, a)$$

 Finally score a new event based on the argument tha maximizes the entire's chain's score

$$chainsim'(C, \langle f, g \rangle) = \max_{a}(score(C, a) + \sum_{i=1}^{n} sim(\langle e_i, d_i \rangle, \langle f, g \rangle, a))$$

Narrative Schema

- A 2-tupple N = (E,C)
 - E is set of events (v,d) where $d \in D_v$
 - C is set of events chains
 - Every event slot (v,d) belongs to a chain a chain $c \in C$

Learning Narrative Schemas

- Like the previous example with *arrest* in a chain and candidates *convict* and *capture*, we want to favor *capture* cause it shares more arguments
- Instead of asking which event (v,d) is a best fit ask if v is best considering all slots possible.

$$\begin{array}{l} narsim(N,v) = \\ \sum\limits_{d \in D_v} \max(\beta, \max\limits_{c \in C_N} chainsim'(c, \langle v, d \rangle)) \end{array}$$

Building Scemas

Best candidate for Chambers & Jurafsky 2008

$$\max_{\substack{j:0 < j < m}} chainsim(c, \langle v_j, g_j \rangle)$$

· Best candidate for the proposed method

 $\max_{\substack{j:0 < j < |v|}} \max(N, v_j)$

Results

Conclusion

- We saw:
 - Different ways for unsupervised script learning
 - Different granularity (one or more protagonists)
 - Script learning can profit when they use for training explit scenarios
 - Different kinds of evaluation (cloze tasks, web experiments)
 - How we can leverage all the information from the document and enrich chains with arguments leading to more rich information that can help for Semantic Role Labeling.

References

Nathanael Chambers and Dan Jurafsky *Unsupervised Learning of Narrative Event Chains.* In Proceedings of ACL/HLT 2008.

Michaela Regneri, Alexander Koller and Manfred Pinkal *Learning Script Knowledge with Web Experiments.* In Proceedings of ACL 2010.

Nathanael Chambers and Dan Jurafsky *Unsupervised Learning of Narrative Schemas and their Participants.* Proceedings of ACL-IJCNLP 2009.