Automatic Labeling of Semantic Roles

Presentation by Philip John Gorinski

Seminar "Recent Developments in Computational Semantics"

Saarland University, Summer Term 2011

Outline

- Introduction
 - The concept of Semantic Roles
 - FrameNet
- Automatic Role Assignment
 - The task
 - Features
 - Probability Estimation
 - Results
- Generalizing to abstract Sematic Roles
- Conclusion

Outline

- Introduction
 - The concept of Semantic Roles
 - FrameNet
- Automatic Role Assignment
 - The task
 - Features
 - Probability Estimation
 - Results
- Generalizing to abstract Sematic Roles
- Conclusion

The concept of Semantic Roles

- Concept of Semantic Roles dates back thousands of years
- High variety of theories
- From very specific
 - Domain dependent Information Extraction
 - Domain dependent Dialogue Understanding
- To very general
 - e.g., as part of linking theory

The concept of Semantic Roles

- Proto-Roles (Van Valin, 1993; Dowty, 1991)
 - Proto-Agent
 - Proto-Patient

"[Jane]_{AG} hit [Tommy]_{PAT} [with a bat]_{PAT}."

• Typically proposed by linguists, e.g., concerned with integration into linking theory

The concept of Semantic Roles

- Domain specific slots (e.g. travel booking)
 - "I would like to fly [from Chicago]_{orig_city}
 [to New York]_{dest_city} [on the 19th]_{depart_date}."

- Verb specific roles.
 - "[I]_{eater} ate [an apple]_{eaten}."
 - "[I]_{devourer} devoured [an apple]_{devoured}."
- Typically used by computer scientists for implementation

Outline

- Introduction
 - The concept of Semantic Roles
 - FrameNet
- Automatic Role Assignment
 - The task
 - Features
 - Probability Estimation
 - Results
- Generalizing to abstract Sematic Roles
- Conclusion

- Developed at ICSI Berkeley
- Aims to be in the middle of the spectrum
 - Neither too general
 - Nor too specific
- FrameNet roles defined as Frame Elements
 - part of the Frame they are defined for
- FrameNet Frames defined on situations involving various roles
 - invoked by numerous predicates (verbs, nouns, adjectives)

Example Frame: Discussion

Description: Two (or more) people talk to one another. No person is construed as only a speaker or only an addressee. Rather, it is understood that both (or all) participants do some speaking and some listening – the process is understood to be symmetrical or reciprocal.

Frame Elements: Interlocutor_1 Interlocutor_2 Interlocutors Topic

Example Frame: Discussion

Frame Elements: Interlocutor_1 Interlocutor_2 Interlocutors Topic

"[Peter]_{Interlocutor_1} and [Mary]_{Interlocutor_2} $\underline{discussed}$ [the women's soccer wold cup]_{Topic}."

"[The companies]_{Interlocutors} <u>negotiated</u> [the contract]_{Topic}."

- Frames form a hierarchy
 - from more general to more specific
 - allows for inheritance of Frame Elements
- Abstract thematic roles such as **Proto-Agent** can be seen as defined by abstract frames
 - inheriting Frames add semantics to the more general Frames
- Currently ~800 Frames, 10.000 lexical units, 120.000 sample sentences taken from the BNC
 - hand annotated

- Different predicates sharing the same Frame can provide very useful information
- e.g., in question answering, using the Sending-Frame for "send-v" and "receive-v"

"[Which party]_{Sender} \underline{sent} [absentee ballots]_{Theme} to [voters]_{Recipient}?"

"[Democratic and Republican voters]_{Recipient} <u>received</u> [absentee ballots]_{Theme} [from their parties]_{Sender}."

Outline

- Introduction
 - The concept of Semantic Roles
 - FrameNet
- Automatic Role Assignment
 - The task
 - Features
 - Probability Estimation
 - Results
- Generalizing to abstract Sematic Roles
- Conclusion

- Systems using semantic Frames typically are
- → hand-crafted
 - human engineers "make up" and annotate frames
- domain dependent
 - e.g., flight booking systems use slots like
 Orig_City, Dest_City, Depart_Date [...]
 - Merger and acquisition systems use slots Products, Joint_Venture_Company, Amount [...]
- Can we automatically label data with more domain-independent semantic information?

- Preliminary version of FrameNet Corpus
 - 67 frame types
 - 12 semantic domains
 - 1.462 target words
 - 49.013 annotated sentences
 - 99.232 annotated frame elements
- For each target word, corpus is split into
 - 10% test data
 - 10% tuning set
 - 80% training data

- Given a sentence with
 - target word, FrameNet Frame, Frame Element boundaries
- Rank the semantic roles which the syntactic constituents are likely to fill
 - By means of a probabilistic classifier
- Automatically assign FrameNet roles to sentence constituents
 - most likely role, according to a certain set of features

Frame: Discussion Frame Elements: Interlocutor_1 Interlocutor_2 Interlocutors Topic

"[The companies] *negotiated* [the contract] ."

Estimate and rank:

P(Interlocutor_1| [the companies]) P(Interlocutor_2| [the companies]) P(Interlocutors| [the companies]) P(Topic| [the companies]) P(Interlocutor_1| [the contract])

- Automatic labeling is challenging
- Not always direct correspondence between syntactic category and semantic role

"[We]_{Judge} <u>praised</u> [her apple pie]_{Evaluee}."

"[The actor]_{Evaluee} received [critical]_{Judge} <u>praise</u>."

Same role for different syntactic functions

"[We]_{Judge} <u>praised</u> [her apple pie]_{Evaluee}."

"[Her apple pie]_{Evaluee} was <u>praised</u>."

Outline

- Introduction
 - The concept of Semantic Roles
 - FrameNet
- Automatic Role Assignment
 - The task
 - Features
 - Probability Estimation
 - Results
- Generalizing to abstract Sematic Roles
- Conclusion

- Linking theory suggests correspondence between a sentence's syntax and semantics
- Original FrameNet Corpus is not syntactically annotated
- Automated syntactic parser used to analyze the training set
 - parse sentences
 - match syntactic constituents to frame element boundaries

- 6 features extracted for probability estimation
 - Phrase Type
 - Governing Category
 - Parse Tree Path
 - Position
 - Voice
 - Head Word

- Phrase Type
- Different roles ~ Different syntactic categories
 - For Frame Questioning
 Speaker ~ Noun Phrase
 Topic ~ Prepositional Phrase
- Extracted from parse trees
- Most common categories for Frame Elements:
 - Noun Phrases (47%)
 - Prepositional Phrases (22%)

Governing Category

- Semantic role ~ Syntactic subject / direct object
- "He drove the car over the cliff."
 - Subject NP more likely to be Agent than the two other NPs
- Two values: S (subject) & VP (object)
- Only applied to Noun Phrases
- First S or VP reachable from target NP

Parse Tree Path

- Similar to Governing Category, but
- Path from target word to parse constituent
 - thus potentially unlimited values
- Represented as string using categories and up/down arrows
 - e.g., Prototypical Subject: $V\uparrow VP\uparrow S\downarrow NP$
- Not limited to NPs

Position

- Independent of parse tree
- Indicates whether constituent is to the left or to the right of the target word
 - in general, left ~ subject; right ~ object
- Used primarily to overcome parse errors

• Voice

- Distinction between active and passive verbs
- Generally, direct object role of active verbs corresponds to subject role of passive verbs

[I]_{Agent} <u>broke</u> [the window]_{Whole_patient}.
 [The window]_{Whole_patient} was <u>broken</u>.

Head Word

- Head words of Noun Phrases can indicate selectional restrictions for roles
 - e.g., in the Discussion Frame
 I, they, Bill ~ Speaker
 him, them ~ Addressee

proposal, contract ~ Topic

Outline

- Introduction
 - The concept of Semantic Roles
 - FrameNet
- Automatic Role Assignment
 - The task
 - Features
 - Probability Estimation
 - Results
- Generalizing to abstract Sematic Roles
- Conclusion

• For a given constituent, estimate the probability of it filling a certain role *r*

h: head word; pt: phrase type, t: target word

• Intuitively, this is

$$P(r|...) = \frac{\#(r, h, pt, gov, pos, voice, t)}{\#(h, pt, gov, pos, voice, t)}$$

Times role *r* occurs with given features in training data, divided by times the given features occur in total

- Problems with initial model
- High amount of sparse data
 - small number of sentences per target word
 - large number of values for certain features, especially Head Word
 - most combinations of features will never occur, or only occur very few times in the training data
- Solution: Estimate probabilities for distributions over several feature subsets

Distribution	Coverage	Accuracy	Performance
$P(r \mid t)$	100%	40.9%	40.9%
P(r pt, t)	92.5	60.1	55.6
P(r pt, gov, t)	92.0	66.6	61.3
P(r pt, pos, voice)	98.8	57.1	56.4
P(r pt, pos, voice, t)	90.8	70.1	63.7
P(r h)	80.3	73.6	59.1
P(r h, t)	56.0	86.6	48.5
P(r h, pt, t)	50.1	87.4	43.8

- Trade-off between coverage and accuracy
 - more general distributions cover more data, show lower accuracy
 - more specific distributions cover less data, show higher accuracy
- Combine distributions to achieve broad coverage as well as high accuracy
 - Linear Interpolation
 - Geometric Mean
 - Backoff Lattice

Linear Interpolation

$$P(r | constituent) = \lambda_1 P(r | t) + \lambda_2 P(r | pt, pos, voice) + \lambda_3 P(r | pt, t) + \lambda_4 P(r | pt, gov, t) + \lambda_5 P(r | pt, pos, voice, t) + \lambda_6 P(r | h) + \lambda_7 P(r | h, t) + \lambda_8 P(r | h, pt, t)$$

with $\sum_{i} \lambda_{i} = 1$

- λ_i provide weights for the different distributions
- can all be the same (Equal Linear Interpolation) or estimated using EM training (EM Linear Interpolation)

Geometric Mean

$$P(r|constituent) = \frac{1}{Z} \exp(\lambda_1 \log P(r|t) + \lambda_2 \log P(r|pt, pos, voice)) + \lambda_3 \log P(r|pt, t) + \lambda_4 \log P(r|pt, gov, t)) + \lambda_5 \log P(r|pt, pos, voice, t) + \lambda_6 \log P(r|h) + \lambda_7 \log P(r|h, t) + \lambda_8 \log P(r|h, pt, t))$$

with Z being a normalization constant ensuring that

$$\sum_{r} P(r | constituent) = 1$$

Backoff Lattice

- Construct a lattice over different distributions
 - starting at more specific events
 - ending at more general events
- Use general distribution only if no data is available for more specific distribution
- Select only distributions for which instances have been seen in training
- Combine selected distributions with Linear Interpolation and Geometric Mean

Backoff Lattice

Outline

- Introduction
 - The concept of Semantic Roles
 - FrameNet

Automatic Role Assignment

- The task
- Features
- Probability Estimation
- Results
- Generalizing to abstract Sematic Roles
- Conclusion

Results

- All classifiers using the different estimation methods where trained on 80% of the FrameNet Corpus
- Tested on 10% tuning and 10% test sets
- Baseline: Assigning most common role of a Frame to all candidate constituents

Results

Combining Method	Correct
development set	
Equal Linear Interpolation	79.5%
EM Linear Interpolation	79.3
Geometric Mean	79.6
Backoff, Linear Interpolation	80.4
Backoff, Geometric Mean	79.6
Baseline: Most common role	40.9
test set	
EM Linear Interpolation	78.5
Backoff, Linear Interpolation	76.9
Baseline: Most common role	40.6

- 3 features for capturing syntactic relation between target word and candidate constituent
 - position, gov, path
- Do these features have significant effect on the performance combined with other features?
- Construct lattices using either of the 3 features and
 - containing no voice information
 - with independent voice
 - with conjunction of voice and grammatical function

No voice information (GF=Grammatical Function)

Independent voice information

Conjunction of voice and grammatical function

Feature	No voice	Independent voice	Conjunction
path	79.4%	79.2%	80.4%
gov	79.1	79.2	80.7
position	79.9	79.7	80.5
	76.3	76.0	76.0

- Even simple position information (candidate left/right of target word) performs similar to information extracted from parse trees
- Grammatical Function interacts with voice
- Using no Grammatical Function at all still yields good results

Outline

- Introduction
 - The concept of Semantic Roles
 - FrameNet
- Automatic Role Assignment
 - The task
 - Features
 - Probability Estimation
 - Results
- Generalizing to abstract Sematic Roles
- Conclusion

Generalizing to abstract roles

- How dependent on the given set of semantic roles is the classifier?
- For unseen frames, how can the data be generalized s.th. automatic role labeling is still possible?
- Use thematic roles such as Agent, Patient, Goal
- Allows for generalization over semantic domains
 - "If a sentence has an Agent, the Agent will occupy the subject position."

Generalizing to abstract roles

- To achieve generalization
 - find correspondence from frame-specific roles to abstract thematic roles
 - assign an abstract role to each Frame Element of each FrameNet Frame

- To test the generalized version
 - replace all Frame Element occurrences in the corpus by their abstract roles
 - train and test classifier as before

Generalizing to abstract roles

- General classifier's performance equal to assigning frame-specific roles
 - 82.1% vs. 80.4%
- Shows that the underlying set of roles has little effect on classification
 - roughly 1-to-1 mapping between specific and abstract roles
- Could be useful for annotating unknown frames, independent of semantic domain

Outline

- Introduction
 - The concept of Semantic Roles
 - FrameNet
- Automatic Role Assignment
 - The task
 - Features
 - Probability Estimation
 - Results
- Generalizing to abstract Sematic Roles
- Conclusion

Conclusion

- Automatic labeling of semantic roles is a feasible task
 - 80.4% accuracy in case Frame Element boundaries are known
- Provided classification methods are relatively independent of granularity of semantic roles
- Room for improvement
 - unseen predicates
 - unknown frames
 - finding roles without being given Frame Element boundaries

Thank you very much for your attention!