Automatic Labeling of Semantic Roles

Presentation by
Philip John Gorinski

Seminar
„Recent Developments in Computational Semantics“

Saarland University, Summer Term 2011
Outline

• Introduction
 • The concept of Semantic Roles
 • FrameNet
• Automatic Role Assignment
 • The task
 • Features
 • Probability Estimation
 • Results
• Generalizing to abstract Semantic Roles
• Conclusion
Outline

- Introduction
 - The concept of Semantic Roles
 - FrameNet
- Automatic Role Assignment
 - The task
 - Features
 - Probability Estimation
 - Results
- Generalizing to abstract Semantic Roles
- Conclusion
The concept of Semantic Roles

- Concept of Semantic Roles dates back thousands of years
- High variety of theories
- From very specific
 - Domain dependent Information Extraction
 - Domain dependent Dialogue Understanding
- To very general
 - e.g., as part of linking theory
The concept of Semantic Roles

- Proto-Roles (Van Valin, 1993; Dowty, 1991)
 - Proto-Agent
 - Proto-Patient

“[Jane]_{AG} hit [Tommy]_{PAT} [with a bat]_{PAT}.”

- Typically proposed by linguists, e.g., concerned with integration into linking theory
The concept of Semantic Roles

- Domain specific slots (e.g. travel booking)
 - “I would like to fly [from Chicago]\textsubscript{orig_city} [to New York]\textsubscript{dest_city} [on the 19th]\textsubscript{depart_date}.”

- Verb specific roles.
 - “[I]\textsubscript{eater} ate [an apple]\textsubscript{eaten}.”
 - “[I]\textsubscript{devourer} devoured [an apple]\textsubscript{devoured}.”

- Typically used by computer scientists for implementation
Outline

• Introduction
 • The concept of Semantic Roles
 • FrameNet

• Automatic Role Assignment
 • The task
 • Features
 • Probability Estimation
 • Results

• Generalizing to abstract Semantic Roles

• Conclusion
FrameNet

- Developed at ICSI Berkeley
- Aims to be in the middle of the spectrum
 - Neither too general
 - Nor too specific
- FrameNet **roles** defined as **Frame Elements**
 - part of the Frame they are defined for
- FrameNet **Frames** defined on **situations** involving various roles
 - invoked by numerous predicates (verbs, nouns, adjectives)
Example Frame: Discussion

Description: Two (or more) people talk to one another. No person is construed as only a speaker or only an addressee. Rather, it is understood that both (or all) participants do some speaking and some listening – the process is understood to be symmetrical or reciprocal.

Frame Elements: Interlocutor_1
 Interlocutor_2
 Interlocutors
 Topic
FrameNet

Example Frame: Discussion

Frame Elements: Interlocutor_1
 Interlocutor_2
 Interlocutors
 Topic

"[Peter]_{Interlocutor_1} and [Mary]_{Interlocutor_2} discussed
the women's soccer world cup]_{Topic}.”

“[The companies]_{Interlocutors} negotiated [the contract]_{Topic}.”
FrameNet

- Frames form a hierarchy
 - from more general to more specific
 - allows for inheritance of Frame Elements
- Abstract thematic roles such as Proto-Agent can be seen as defined by abstract frames
 - inheriting Frames add semantics to the more general Frames
- Currently ~800 Frames, 10,000 lexical units, 120,000 sample sentences taken from the BNC
 - hand annotated
FrameNet

Domain: Communication

Frame: Discussion
Frame Elements: Interlocutor-1, Interlocutor-2, Interlocutors, Topic

confer-v
discuss-v
discussion-n
negotiate-v

Frame: Questioning
Frame Elements: Speaker, Addressee, Message, Topic

question-n
ask-v
interrogate-v
FrameNet

- Different predicates sharing the same Frame can provide very useful information
- e.g., in question answering, using the Sending-Frame for “send-v” and “receive-v”

“[Which party]\text{sent} [absentee ballots] to [voters]?”

“[Democratic and Republican voters]\text{received} [absentee ballots] [from their parties].”
Outline

• Introduction
 • The concept of Semantic Roles
 • FrameNet

• Automatic Role Assignment
 • The task
 • Features
 • Probability Estimation
 • Results

• Generalizing to abstract Semantic Roles

• Conclusion
The Task

- Systems using semantic Frames typically are hand-crafted
 - human engineers “make up” and annotate frames
- domain dependent
 - e.g., flight booking systems use slots like `Orig_City`, `Dest_City`, `Depart_Date` [...]
 - Merger and acquisition systems use slots `Products`, `Joint_Venture_Company`, `Amount` [...]
- Can we automatically label data with more domain-independent semantic information?
The Task

- Preliminary version of FrameNet Corpus
 - 67 frame types
 - 12 semantic domains
 - 1,462 target words
 - 49,013 annotated sentences
 - 99,232 annotated frame elements
- For each target word, corpus is split into
 - 10% test data
 - 10% tuning set
 - 80% training data
The Task

- Given a sentence with
 - target word, FrameNet Frame, Frame Element boundaries
- Rank the semantic roles which the syntactic constituents are likely to fill
 - By means of a probabilistic classifier
- Automatically assign FrameNet roles to sentence constituents
 - most likely role, according to a certain set of features
The Task

Frame: Discussion
Frame Elements: Interlocutor_1
Interlocutor_2
Interlocutors
Topic

“The companies element1? negotiated [the contract] element2?.”

Estimate and rank:

\[P(\text{Interlocutor}_1 | \text{[the companies]}) \]
\[P(\text{Interlocutor}_2 | \text{[the companies]}) \]
\[P(\text{Interlocutors} | \text{[the companies]}) \]
\[P(\text{Topic} | \text{[the companies]}) \]
\[P(\text{Interlocutor}_1 | \text{[the contract]}) \]
...
The Task

- Automatic labeling is challenging
- Not always direct correspondence between syntactic category and semantic role

 “[We]_{Judge} praised [her apple pie]_{Evaluatee}.”

 “[The actor]_{Evaluatee} received [critical]_{Judge} praise.”

- Same role for different syntactic functions

 “[We]_{Judge} praised [her apple pie]_{Evaluatee}.”

 “[Her apple pie]_{Evaluatee} was praised.”
Outline

- Introduction
 - The concept of Semantic Roles
 - FrameNet
- Automatic Role Assignment
 - The task
 - Features
 - Probability Estimation
 - Results
- Generalizing to abstract Semantic Roles
- Conclusion
Features

- Linking theory suggests correspondence between a sentence's syntax and semantics
- Original FrameNet Corpus is not syntactically annotated
- Automated syntactic parser used to analyze the training set
 - parse sentences
 - match syntactic constituents to frame element boundaries
Features

- 6 features extracted for probability estimation
 - Phrase Type
 - Governing Category
 - Parse Tree Path
 - Position
 - Voice
 - Head Word
Features

• Phrase Type

• Different roles ~ Different syntactic categories
 • For Frame Questioning
 Speaker ~ Noun Phrase
 Topic ~ Prepositional Phrase

• Extracted from parse trees

• Most common categories for Frame Elements:
 • Noun Phrases (47%)
 • Prepositional Phrases (22%)
I asked him about semantic roles.
Features

• Governing Category

• Semantic role ~ Syntactic subject / direct object
• “He drove the car over the cliff.”
 • Subject NP more likely to be Agent than the two other NPs
• Two values: S (subject) & VP (object)
• Only applied to Noun Phrases
• First S or VP reachable from target NP
I asked him about semantic roles.

Speaker: I
Addressee: him
Topic: semantic roles

Features:
- S
- VP
- PP
- NP
- V
- Pro
- P
- NN
- NN
Features

• **Parse Tree Path**

• Similar to Governing Category, but
• Path from target word to parse constituent
 • thus potentially unlimited values
• Represented as string using categories and up/down arrows
 • e.g., Prototypical Subject: V↑VP↑S↓NP
• Not limited to NPs
I asked him about semantic roles

Features
Features

• Position

• Independent of parse tree
• Indicates whether constituent is to the left or to the right of the target word
 • in general, left ~ subject; right ~ object
• Used primarily to overcome parse errors
Features

• Voice

• Distinction between active and passive verbs

• Generally, direct object role of active verbs corresponds to subject role of passive verbs

\[\text{I}_\text{Agent} \text{ broke } \text{the window}_\text{Whole_patient} \, . \]

\[\text{The window}_\text{Whole_patient} \text{ was broken} . \]
Features

• Head Word

• Head words of Noun Phrases can indicate selectional restrictions for roles
 • e.g., in the Discussion Frame
 I, they, Bill ~ Speaker
 him, them ~ Addressee
 proposal, contract ~ Topic
Outline

- Introduction
 - The concept of Semantic Roles
 - FrameNet
- Automatic Role Assignment
 - The task
 - Features
 - Probability Estimation
 - Results
- Generalizing to abstract Semantic Roles
- Conclusion
Probability Estimation

- For a given constituent, estimate the probability of it filling a certain role r

$$P(r \mid h, pt, gov, pos, voice, t)$$

h: head word; pt: phrase type, t: target word

- Intuitively, this is

$$P(r \mid ...)=\frac{\#(r, h, pt, gov, pos, voice, t)}{\#(h, pt, gov, pos, voice, t)}$$

Times role r occurs with given features in training data, divided by times the given features occur in total
Probability Estimation

- Problems with initial model
- High amount of sparse data
 - small number of sentences per target word
 - large number of values for certain features, especially Head Word
 - most combinations of features will never occur, or only occur very few times in the training data
- Solution: Estimate probabilities for distributions over several feature subsets
Probability Estimation

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Coverage</th>
<th>Accuracy</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(r \mid t)$</td>
<td>100%</td>
<td>40.9%</td>
<td>40.9%</td>
</tr>
<tr>
<td>$P(r \mid pt, t)$</td>
<td>92.5</td>
<td>60.1</td>
<td>55.6</td>
</tr>
<tr>
<td>$P(r \mid pt, gov, t)$</td>
<td>92.0</td>
<td>66.6</td>
<td>61.3</td>
</tr>
<tr>
<td>$P(r \mid pt, pos, voice)$</td>
<td>98.8</td>
<td>57.1</td>
<td>56.4</td>
</tr>
<tr>
<td>$P(r \mid pt, pos, voice, t)$</td>
<td>90.8</td>
<td>70.1</td>
<td>63.7</td>
</tr>
<tr>
<td>$P(r \mid h)$</td>
<td>80.3</td>
<td>73.6</td>
<td>59.1</td>
</tr>
<tr>
<td>$P(r \mid h, t)$</td>
<td>56.0</td>
<td>86.6</td>
<td>48.5</td>
</tr>
<tr>
<td>$P(r \mid h, pt, t)$</td>
<td>50.1</td>
<td>87.4</td>
<td>43.8</td>
</tr>
</tbody>
</table>
Probability Estimation

- Trade-off between coverage and accuracy
 - more general distributions cover more data, show lower accuracy
 - more specific distributions cover less data, show higher accuracy
- Combine distributions to achieve broad coverage as well as high accuracy
 - Linear Interpolation
 - Geometric Mean
 - Backoff Lattice
Linear Interpolation

\[P(r|\text{constituent}) = \lambda_1 P(r|t) + \lambda_2 P(r|pt, pos, voice) + \lambda_3 P(r|pt, t) + \lambda_4 P(r|pt, gov, t) + \lambda_5 P(r|pt, pos, voice, t) + \lambda_6 P(r|h) + \lambda_7 P(r|h, t) + \lambda_8 P(r|h, pt, t) \]

with \[\sum_i \lambda_i = 1 \]

- \(\lambda_i \) provide weights for the different distributions
- can all be the same (Equal Linear Interpolation) or estimated using EM training (EM Linear Interpolation)
Geometric Mean

\[P(r|\text{constituent}) = \]
\[\frac{1}{Z} \exp(\lambda_1 \log P(r|t) + \lambda_2 \log P(r|pt, pos, voice) + \lambda_3 \log P(r|pt, t) + \lambda_4 \log P(r|pt, gov, t) + \lambda_5 \log P(r|pt, pos, voice, t) + \lambda_6 \log P(r|h) + \lambda_7 \log P(r|h, t) + \lambda_8 \log P(r|h, pt, t)) \]

with \(Z \) being a normalization constant ensuring that

\[\sum_r P(r|\text{constituent}) = 1 \]
Backoff Lattice

- Construct a lattice over different distributions
 - starting at more specific events
 - ending at more general events
- Use general distribution only if no data is available for more specific distribution
- Select only distributions for which instances have been seen in training
- Combine selected distributions with Linear Interpolation and Geometric Mean
Backoff Lattice

\[P(r \mid h, pt, t) \quad P(r \mid pt, gf, t) \quad P(r \mid pt, pos, voice, t) \]

\[P(r \mid h, t) \quad P(r \mid pt, t) \quad P(r \mid pt, pos, voice) \]

\[P(r \mid h) \quad P(r \mid t) \]
Outline

• Introduction
 • The concept of Semantic Roles
 • FrameNet

• Automatic Role Assignment
 • The task
 • Features
 • Probability Estimation
 • Results

• Generalizing to abstract Sematic Roles

• Conclusion
Results

- All classifiers using the different estimation methods were trained on 80% of the FrameNet Corpus.
- Tested on 10% tuning and 10% test sets.
- Baseline: Assigning the most common role of a Frame to all candidate constituents.
Results

<table>
<thead>
<tr>
<th>Combining Method</th>
<th>Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>development set</td>
<td></td>
</tr>
<tr>
<td>Equal Linear Interpolation</td>
<td>79.5%</td>
</tr>
<tr>
<td>EM Linear Interpolation</td>
<td>79.3</td>
</tr>
<tr>
<td>Geometric Mean</td>
<td>79.6</td>
</tr>
<tr>
<td>Backoff, Linear Interpolation</td>
<td>80.4</td>
</tr>
<tr>
<td>Backoff, Geometric Mean</td>
<td>79.6</td>
</tr>
<tr>
<td>Baseline: Most common role</td>
<td>40.9</td>
</tr>
<tr>
<td>test set</td>
<td></td>
</tr>
<tr>
<td>EM Linear Interpolation</td>
<td>78.5</td>
</tr>
<tr>
<td>Backoff, Linear Interpolation</td>
<td>76.9</td>
</tr>
<tr>
<td>Baseline: Most common role</td>
<td>40.6</td>
</tr>
</tbody>
</table>
Feature Interaction

- 3 features for capturing syntactic relation between target word and candidate constituent
 - position, gov, path
- Do these features have significant effect on the performance combined with other features?
- Construct lattices using either of the 3 features and
 - containing no voice information
 - with independent voice
 - with conjunction of voice and grammatical function
Feature Interaction

No voice information (GF=Grammatical Function)

\[P(r \mid h, pt, t) \]
\[P(r \mid pt, GF, t) \]
\[P(r \mid h, t) \]
\[P(r \mid pt, t) \]
\[P(r \mid h) \]
\[P(r \mid t) \]
Feature Interaction

Independent voice information

\[P(r \mid h, pt, t) \]
\[P(r \mid pt, GF, t) \]
\[P(r \mid pt, \text{voice}, t) \]
\[P(r \mid h, t) \]
\[P(r \mid pt, t) \]
\[P(r \mid pt, \text{voice}) \]
\[P(r \mid h) \]
\[P(r \mid t) \]
Feature Interaction

Conjunction of voice and grammatical function

\[P(r \mid h, pt, t) \]

\[P(r \mid h, t) \] \[P(r \mid pt, t) \] \[P(r \mid pt, GF, voice, t) \]

\[P(r \mid h) \] \[P(r \mid t) \] \[P(r \mid pt, GF, voice) \]
Feature Interaction

<table>
<thead>
<tr>
<th>Feature</th>
<th>No voice</th>
<th>Independent voice</th>
<th>Conjunction</th>
</tr>
</thead>
<tbody>
<tr>
<td>path</td>
<td>79.4%</td>
<td>79.2%</td>
<td>80.4%</td>
</tr>
<tr>
<td>gov</td>
<td>79.1</td>
<td>79.2</td>
<td>80.7</td>
</tr>
<tr>
<td>position</td>
<td>79.9</td>
<td>79.7</td>
<td>80.5</td>
</tr>
<tr>
<td>--</td>
<td>76.3</td>
<td>76.0</td>
<td>76.0</td>
</tr>
</tbody>
</table>

- Even simple position information (candidate left/right of target word) performs similar to information extracted from parse trees
- Grammatical Function interacts with voice
- Using no Grammatical Function at all still yields good results
Outline

• Introduction
 • The concept of Semantic Roles
 • FrameNet

• Automatic Role Assignment
 • The task
 • Features
 • Probability Estimation
 • Results

• Generalizing to abstract Semantic Roles

• Conclusion
Generalizing to abstract roles

• How dependent on the given set of semantic roles is the classifier?

• For unseen frames, how can the data be generalized so that automatic role labeling is still possible?

• Use thematic roles such as Agent, Patient, Goal

• Allows for generalization over semantic domains
 • “If a sentence has an Agent, the Agent will occupy the subject position.”
Generalizing to abstract roles

• To achieve generalization
 • find correspondence from frame-specific roles to abstract thematic roles
 • assign an abstract role to each Frame Element of each FrameNet Frame

• To test the generalized version
 • replace all Frame Element occurrences in the corpus by their abstract roles
 • train and test classifier as before
Generalizing to abstract roles

- General classifier's performance equal to assigning frame-specific roles
 - 82.1% vs. 80.4%
- Shows that the underlying set of roles has little effect on classification
 - roughly 1-to-1 mapping between specific and abstract roles
- Could be useful for annotating unknown frames, independent of semantic domain
Outline

• Introduction
 • The concept of Semantic Roles
 • FrameNet

• Automatic Role Assignment
 • The task
 • Features
 • Probability Estimation
 • Results

• Generalizing to abstract Sematic Roles

• Conclusion
Conclusion

- Automatic labeling of semantic roles is a feasible task
 - 80.4% accuracy in case Frame Element boundaries are known
- Provided classification methods are relatively independent of granularity of semantic roles
- Room for improvement
 - unseen predicates
 - unknown frames
 - finding roles without being given Frame Element boundaries
Thank you very much for your attention!