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The concept of Semantic Roles

● Concept of Semantic Roles dates back 
thousands of years

● High variety of theories
● From very specific

● Domain dependent Information Extraction
● Domain dependent Dialogue Understanding

● To very general
● e.g., as part of linking theory
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The concept of Semantic Roles

● Proto-Roles (Van Valin, 1993; Dowty, 1991)
● Proto-Agent
● Proto-Patient

“[Jane]
AG
 hit [Tommy]

PAT
 [with a bat]

PAT
.”

● Typically proposed by linguists, e.g., concerned 
with integration into linking theory
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● Domain specific slots (e.g. travel booking)

● Verb specific roles.

● Typically used by computer scientists for 
implementation

The concept of Semantic Roles

● “I would like to fly [from Chicago]
orig_city

  
[to New York]

dest_city
 [on the 19th]

depart_date
.”

● “[I]
eater

 ate [an apple]
eaten

.”
● “[I]

devourer
 devoured [an apple]

devoured
.”
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FrameNet

● Developed at ICSI Berkeley
● Aims to be in the middle of the spectrum

● Neither too general
● Nor too specific

● FrameNet roles defined as Frame Elements
● part of the Frame they are defined for

● FrameNet Frames defined on situations 
involving various roles
● invoked by numerous predicates (verbs, nouns,

adjectives)
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FrameNet

Example Frame: Discussion

Description: Two (or more) people talk to one another.
No person is construed as only a speaker
or only an addressee. Rather, it is
understood that both (or all) participants
do some speaking and some listening – the
process is understood to be symmetrical or
reciprocal.

Frame Elements: Interlocutor_1
Interlocutor_2
Interlocutors
Topic
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FrameNet

Example Frame: Discussion

Frame Elements: Interlocutor_1
Interlocutor_2
Interlocutors
Topic

”[Peter]
Interlocutor_1

 and [Mary]
Interlocutor_2 

discussed 
[the women's soccer wold cup]

Topic
.”

“[The companies]
Interlocutors

 negotiated [the contract]
Topic

.”
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FrameNet

● Frames form a hierarchy
● from more general to more specific
● allows for inheritance of Frame Elements

● Abstract thematic roles such as Proto-Agent 
can be seen as defined by abstract frames
● inheriting Frames add semantics to the more 

general Frames

● Currently ~800 Frames, 10.000 lexical units, 
120.000 sample sentences taken from the BNC
● hand annotated
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FrameNet

Domain: Communication

Frame: Discussion

Frame Elements: Interlocutor-1
Interlocutor-2
Interlocutors
Topic

confer-v

negotiate-v

discussion-n

discuss-v

...

Frame: Questioning

Frame Elements: Speaker
Addressee
Message
Topic

...

question-n

interrogate-v

ask-v

...
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FrameNet

● Different predicates sharing the same Frame 
can provide very useful information

● e.g., in question answering, using the Sending-
Frame for “send-v” and “receive-v”

“[Which party]
Sender

 sent [absentee ballots]
Theme

 to 
[voters]

Recipient
?”

“[Democratic and Republican voters]
Recipient

 
received [absentee ballots]

Theme
 [from their 

parties]
Sender

.”
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The Task

● Systems using semantic Frames typically are
➔ hand-crafted

● human engineers “make up” and annotate frames

➔ domain dependent
● e.g., flight booking systems use slots like 
Orig_City, Dest_City, Depart_Date […]

● Merger and acquisition systems use slots 
Products, Joint_Venture_Company, 
Amount […]

● Can we automatically label data with more 
domain-independent semantic information?
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The Task

● Preliminary version of FrameNet Corpus
● 67 frame types
● 12 semantic domains
● 1.462 target words
● 49.013 annotated sentences
● 99.232 annotated frame elements

● For each target word, corpus is split into
● 10% test data
● 10% tuning set
● 80% training data
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The Task

● Given a sentence with
● target word, FrameNet Frame, Frame Element 

boundaries

● Rank the semantic roles which the syntactic 
constituents are likely to fill
● By means of a probabilistic classifier

● Automatically assign FrameNet roles to 
sentence constituents
● most likely role, according to a certain set of 

features
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The Task
Frame: Discussion
Frame Elements: Interlocutor_1

Interlocutor_2
Interlocutors
Topic

“[The companies]
element1?

 negotiated [the contract]
element2?

.”

Estimate and rank:
P(Interlocutor_1| [the companies] )
P(Interlocutor_2| [the companies] )
P(Interlocutors| [the companies] )

P(Topic| [the companies] )
P(Interlocutor_1| [the contract] )

...



20.06.2011 Automatic Labeling of Semantic Roles 19

The Task

● Automatic labeling is challenging
● Not always direct correspondence between 

syntactic category and semantic role

“[We]
Judge

 praised [her apple pie]
Evaluee

.”

“[The actor]
Evaluee

 received [critical]
Judge

 praise.”

● Same role for different syntactic functions

“[We]
Judge

 praised [her apple pie]
Evaluee

.”

“[Her apple pie]
Evaluee

 was praised.”



20.06.2011 Automatic Labeling of Semantic Roles 20

Outline

● Introduction
● The concept of Semantic Roles
● FrameNet

● Automatic Role Assignment
● The task
● Features
● Probability Estimation
● Results

● Generalizing to abstract Sematic Roles
● Conclusion



20.06.2011 Automatic Labeling of Semantic Roles 21

Features

● Linking theory suggests correspondence 
between a sentence's syntax and semantics

● Original FrameNet Corpus is not syntactically 
annotated

● Automated syntactic parser used to analyze the 
training set
● parse sentences
● match syntactic constituents to frame element 

boundaries
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Features

● 6 features extracted for probability estimation
● Phrase Type
● Governing Category
● Parse Tree Path
● Position
● Voice
● Head Word



20.06.2011 Automatic Labeling of Semantic Roles 23

Features

● Phrase Type

● Different roles ~ Different syntactic categories
● For Frame Questioning

Speaker ~ Noun Phrase

Topic ~ Prepositional Phrase

● Extracted from parse trees
● Most common categories for Frame Elements:

● Noun Phrases (47%)
● Prepositional Phrases (22%)
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Features

I asked him about semantic roles

Pro

NP

Pro

NP

NN NN

NP

P

PP

V

VP

S

Speaker Addressee Topic



20.06.2011 Automatic Labeling of Semantic Roles 25

Features

● Governing Category

● Semantic role ~ Syntactic subject / direct object
● “He drove the car over the cliff.”

● Subject NP more likely to be Agent than the two 
other NPs

● Two values: S (subject) & VP (object)
● Only applied to Noun Phrases
● First S or VP reachable from target NP
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Features

I asked him about semantic roles

Pro

NP

Pro

NP

NN NN

NP

P

PP

V

VP

S

Speaker Addressee Topic
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Features

● Parse Tree Path

● Similar to Governing Category, but
● Path from target word to parse constituent

● thus potentially unlimited values

● Represented as string using categories and 
up/down arrows
● e.g., Prototypical Subject: V↑VP↑S↓NP

● Not limited to NPs
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Features

I asked him about semantic roles

Pro

NP

Pro

NP

NN NN

NP

P

PP

V

VP

S

Speaker Addressee Topic

V↑VP↑S↓NP V↑VP↓NP V↑VP↓PP
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Features

● Position

● Independent of parse tree
● Indicates whether constituent is to the left or to 

the right of the target word
● in general, left ~ subject; right ~ object

● Used primarily to overcome parse errors
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Features

● Voice

● Distinction between active and passive verbs
● Generally, direct object role of active verbs 

corresponds to subject role of passive verbs

[I]
Agent

 broke [the window]
Whole_patient

.

[The window]
Whole_patient

 was broken.
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Features

● Head Word

● Head words of Noun Phrases can indicate 
selectional restrictions for roles
● e.g., in the Discussion Frame

I, they, Bill ~ Speaker

him, them ~ Addressee

proposal, contract ~ Topic
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Probability Estimation

● For a given constituent, estimate the probability of it 
filling a certain role r

h: head word; pt: phrase type, t: target word

● Intuitively, this is 

Times role r occurs with given features in training 
data, divided by times the given features occur in 
total

P (r | ...)=
#(r , h , pt , gov , pos , voice , t )
#(h , pt , gov , pos , voice , t)

P (r |h , pt , gov , pos , voice , t)
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Probability Estimation

● Problems with initial model
● High amount of sparse data

● small number of sentences per target word
● large number of values for certain features, 

especially Head Word
● most combinations of features will never occur, or 

only occur very few times in the training data

● Solution: Estimate probabilities for distributions 
over several feature subsets
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Probability Estimation

Distribution Coverage Accuracy Performance

P(r | t) 100% 40.9% 40.9%

P(r | pt, t) 92.5 60.1 55.6

P(r | pt, gov, t) 92.0 66.6 61.3

P(r | pt, pos, voice) 98.8 57.1 56.4

P(r | pt, pos, voice, t) 90.8 70.1 63.7

P(r | h) 80.3 73.6 59.1

P(r | h, t) 56.0 86.6 48.5

P(r | h, pt, t) 50.1 87.4 43.8
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Probability Estimation

● Trade-off between coverage and accuracy
● more general distributions cover more data, show 

lower accuracy
● more specific distributions cover less data, show 

higher accuracy

● Combine distributions to achieve broad 
coverage  as well as high accuracy
● Linear Interpolation
● Geometric Mean
● Backoff Lattice



20.06.2011 Automatic Labeling of Semantic Roles 37

Linear Interpolation

● λ
i
 provide weights for the different distributions

● can all be the same (Equal Linear Interpolation) 
or estimated using EM training (EM Linear 
Interpolation)

P (r |constituent)= λ1P (r | t)+λ2 P (r | pt , pos , voice)
+λ3 P (r | pt , t )+λ4 P (r | pt , gov , t)
+λ5P (r | pt , pos , voice , t )+λ6P (r | h)
+λ7 P (r |h , t)+λ8P (r |h , pt , t)

∑i
λi=1with
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Geometric Mean

P (r |constituent)=

with Z being a normalization constant ensuring that

1
Z

exp (λ1 logP (r | t )+λ2 logP (r | pt , pos , voice)

+λ3 logP (r | pt , t )+λ4 logP (r | pt , gov , t)
+λ5 logP (r | pt , pos , voice , t )+λ6 logP (r |h)
+λ7 logP (r |h , t)+λ8 logP (r |h , pt , t ))

∑r
P (r |constituent )=1
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Backoff Lattice

● Construct a lattice over different distributions
● starting at more specific events
● ending at more general events

● Use general distribution only if no data is 
available for more specific distribution

● Select only distributions for which instances 
have been seen in training

● Combine selected distributions with Linear 
Interpolation and Geometric Mean
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Backoff Lattice

P(r | h, pt, t) P(r | pt, gf, t) P(r | pt, pos, voice, t)

P(r | h, t) P(r | pt, t) P(r | pt, pos, voice)

P(r | h) P(r |t)



20.06.2011 Automatic Labeling of Semantic Roles 41

Outline

● Introduction
● The concept of Semantic Roles
● FrameNet

● Automatic Role Assignment
● The task
● Features
● Probability Estimation
● Results

● Generalizing to abstract Sematic Roles
● Conclusion



20.06.2011 Automatic Labeling of Semantic Roles 42

Results

● All classifiers using the different estimation 
methods where trained on 80% of the 
FrameNet Corpus

● Tested on 10% tuning and 10% test sets
● Baseline: Assigning most common role of a 

Frame to all candidate constituents
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Results

Combining Method Correct
development set
Equal Linear Interpolation 79.5%
EM Linear Interpolation 79.3
Geometric Mean 79.6
Backoff, Linear Interpolation 80.4
Backoff, Geometric Mean 79.6
Baseline: Most common role 40.9
test set
EM Linear Interpolation 78.5
Backoff, Linear Interpolation 76.9
Baseline: Most common role 40.6
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Feature Interaction

● 3 features for capturing syntactic relation 
between target word and candidate constituent
● position, gov, path

● Do these features have significant effect on the 
performance combined with other features?

● Construct lattices using either of the 3 features 
and
● containing no voice information
● with independent voice
● with conjunction of voice and grammatical function
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Feature Interaction

P(r | h, pt, t) P(r | pt, GF, t)

P(r | h, t) P(r | pt, t)

P(r | h) P(r |t)

No voice information (GF=Grammatical Function)
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Feature Interaction

P(r | h, pt, t) P(r | pt, GF, t)

P(r | h, t) P(r | pt, t)

P(r | h) P(r |t)

Independent voice information

P(r | pt, voice, t)

P(r | pt, voice)
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Feature Interaction

P(r | h, pt, t)

P(r | h, t) P(r | pt, t)

P(r | h) P(r |t)

Conjunction of voice and grammatical function

P(r | pt, GF, voice, t)

P(r | pt, GF, voice)
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Feature Interaction

● Even simple position information (candidate left/right of 
target word) performs similar to information extracted from 
parse trees

● Grammatical Function interacts with voice

● Using no Grammatical Function at all still yields good 
results

Feature No voice Independent 
voice

Conjunction

path 79.4% 79.2% 80.4%

gov 79.1 79.2 80.7

position 79.9 79.7 80.5

-- 76.3 76.0 76.0
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Generalizing to abstract roles

● How dependent on the given set of semantic 
roles is the classifier?

● For unseen frames, how can the data be 
generalized s.th. automatic role labeling is still 
possible?

● Use thematic roles such as Agent, Patient, 
Goal

● Allows for generalization over semantic domains
● “If a sentence has an Agent, the Agent will occupy 

the subject position.”
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Generalizing to abstract roles

● To achieve generalization
● find correspondence from frame-specific roles to 

abstract thematic roles
● assign an abstract role to each Frame Element of 

each FrameNet Frame

● To test the generalized version
● replace all Frame Element occurrences in the 

corpus by their abstract roles
● train and test classifier as before
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Generalizing to abstract roles

● General classifier's performance equal to 
assigning frame-specific roles
● 82.1% vs. 80.4%

● Shows that the underlying set of roles has little 
effect on classification
● roughly 1-to-1 mapping between specific and 

abstract roles

● Could be useful for annotating unknown 
frames, independent of semantic domain
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Conclusion

● Automatic labeling of semantic roles is a feasible 
task
● 80.4% accuracy in case Frame Element boundaries 

are known

● Provided classification methods are relatively 
independent of granularity of semantic roles

● Room for improvement
● unseen predicates
● unknown frames
● finding roles without being given Frame Element 

boundaries
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Thank you very much
for your attention!
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