The Proposition Bank An Annotated Corpus of Semantic Roles

TzuYi Kuo

EMLCT Saarland University June 14, 2010

- Introduction
- Motivation
- PropBank
 - Semantic role
 - Framing
 - Annotation
- Automatic Semantic-Role labeling
 - Features
 - Algorithm
 - Evaluation
- Conclusion

- Introduction
- Motivation
- PropBank
 - Semantic Role
 - Framing
 - Annotation
- Automatic Semantic-Role labeling
 - Features
 - Algorithm
 - Evaluation
- Conclusion

- Represent the full meaning of sentences
- Alternation
 - Syntactic realization of semantic arguments
 - (1) John broke the window.
 - (2) The window broke.

- Represent the full meaning of sentences
- Alternation
 - Syntactic realization of semantic arguments
 - (1) John broke the window.
 - (2) The window broke.

same underlying semantic role

- Focus on
 - Argument structure of verbs
 - Provide a complete corpus annotated with semantic roles
- Goal
 - Provide a broad-coverage hand-annotated corpus for supervised automatic role labelers
 - Show how and why these syntactic alternations take place

- Introduction
- Motivation
- PropBank
 - Semantic Role
 - Framing
 - Annotation
- Automatic Semantic-Role labeling
 - Features
 - Algorithm
 - Evaluation
- Conclusion

Motivation

- Inspired by Levin (1993)
 - Research into the linking between semantic roles and syntactic realization
 - Syntactic frames are a direct reflection of the underlying semantics
 - Define verb classes
 - Based on the ability of particular verbs
 - In syntactic frames

Motivation

- VerbNet (Kipper et al. ,2000)
 - Extend Levin's classes
 - Adding an abstract representation of the syntactic frames for each class
 - Correspond between syntactic positions and the semantic roles they express

Ex. Break

Agent REL Patient Patient REL into pieces

- Introduction
- Motivation
- PropBank
 - Semantic Role
 - Framing
 - Annotation
- Automatic Semantic-Role labeling
 - Features
 - Algorithm
 - Evaluation
- Conclusion

PropBank

• From sentences to propositions

John met Mary.

John and Mary met.

John met with Mary.

John and Mary had a meeting.

Proposition: meet(John, Mary)

- Introduction
- Motivation
- PropBank
 - Semantic Role
 - Framing
 - Annotation
- Automatic Semantic-Role labeling
 - Features
 - Algorithm
 - Evaluation
- Conclusion

- Difficult to define a universal set of semantic roles covering all types of predicates
- Verb-by-verb basis
 - Arg0 \rightarrow Agent
 - Arg1 \rightarrow Prototypical Patient

• Verb-specific numbered role

Frameset accept.01 "take willingly"

Arg0: Acceptor Arg1: Thing accepted Arg2: Accepted-from Arg3: Attribute

• Verb-specific numbered role

Frameset accept.01 "take willingly"

Arg0: Acceptor Arg1: Thing accepted Arg2: Accepted-from Arg3: Attribute

Frames File

Attempt to cover the range of syntactic alternations afforded by the usage 17

- Introduction
- PropBank
 - Semantic Role
 - Framing
 - Annotation
- Automatic Semantic-Role labeling
 - Features
 - Algorithm
 - Evaluation
- Conclusion

Distinguishing Framesets

- Different numbers of arguments

(15) Frameset decline.01 "go down incrementally"

Arg1: entity going down

Arg2: amount gone down by, EXT

Arg3: start point

Arg4: end point

Ex: ... [$_{Arg1}$ its net income] *declining* [$_{Arg2-ExT}$ 42%] [$_{Arg4}$ to \$121 million] [$_{Arg4-TMP}$ in the first 9 months of 1989]. (wsj_0067)

(16) Frameset decline.02 "demure, reject"

Arg0: agent

Arg1: rejected thing

Ex: [Arrel A spokesman,] declined [Arrel *trace*, to elaborate] (wsj_0038)

Distinguishing Framesets

- Verb-particle

Frameset cut.01 "slice"

Frameset cut.05 "cut back = reduce"

Arg0: cutter Arg0: cutter Arg1: thing cut Arg1: thing reduced Arg2: medium, source Arg2: amount reduced by Arg3: instrument Arg3: start point Ex: [Arro Longer production runs] Arg4: end point [Aremmon would] cut [Arel inefficiencies Ex: "Whoa," thought John, from adjusting machinery "[Arro I]'ve got [Arro *trace*] to start between production cycles]. (wsj_0317) [_____*trace*] cutting back [my intake of chocolate].

• Distinguishing Framesets

- Different syntactic type

Frameset see.01 "view"

Arg0: viewer

Arg1: thing viewed

Ex1: [Arg0 John] saw [Arg1 the President] NP

Ex2: [Argo John] saw [Arg1 the President collapse] Clause object

Secondary Predications

predicative reading Mary called John a doctor. (LABEL) Arg0: Mary Rel: called Arg1: John (item being labeled) Arg2-PRD: a doctor (attribute)

ditransitive reading Mary called John a doctor.⁵ (SUMMON) Arg0: Mary Rel: called Arg2: John (benefactive) Arg1: a doctor (thing summoned)

• Traces

- Empty category which known as trace
- Coindex with other constituents in tree

[$_{Argo}$ John] tried [$_{Argo}$ *trace*] to kick [$_{Argo}$ the football], but Mary pulled it away at the last moment.

- Frames file
 - the collection of framesets for each lexeme

 \dots [Argo the company] to \dots offer [Arg1 a 15% to 20% stake] [Arg2 to the public] (wsj_0345)¹ ... [_{Arg0} Sotheby's] ... (offered) [_{Arg2} the Dorrance heirs] [_{Arg1} a money-back guarantee] (wsj_1928) ... [an amendment] offered [by Rep. Peter DeFazio] ... (wsj_0107) ... [Arg2 Subcontractors] will be offered [Arg1 a settlement] ... (wsj_0187) group into Major sense2 Major sense1 Frameset2 Frameset1

- In Wall Street Journal
 - Over 3,300 verbs framed
 - -4,500 framesets described
 - Average polysemy of 1.36
 - Each instance of a polysemous verb is marked as to which frameset it belongs to
 - Interannotator (ITA) agreement of 94%

- Introduction
- Motivation
- PropBank
 - Framing
 - Annotation
- Automatic Semantic-Role labeling
 - Features
 - Algorithm
 - Evaluation
- Conclusion

Development Process

- Annotation
 - Rule-based argument tagger (Palmer, Rosenzweig, and Cotton 2001)
 - Class-based mappings between grammatical and semantic roles
 - 83% accuracy
 - The output is then corrected by hand
 - Examining the descriptions of the arguments and the example tagged sentences

Development Process

- Annotation
 - Kappa statistic (Siegel and Castellan, 1988)
 - Measure agreement between annotators

$$\kappa = \frac{P(A) - P(E)}{1 - P(E)}$$

- P(A) : the probability of inter-annotator agreement
- P(E): the agreement expected by chance

Development Process

- Annotation
 - Kappa statistic

Table 2 Interannotator agreement.

		P(A)	P(E)	κ	
Including ArgM	Role identification	.99	.89	.93	
	Role classification	.95	.27	.93	
	Combined decision	.99	.88	.91	
Excluding ArgM	Role identification	.99	.91	.94	
	Role classification	.98	.41	.96	
	Combined decision	.99	.91	.93	
	- 김 양양 전문 중 가슴 것 같은 것이 한 것은 한 것을 것 수 있었다.				

- Introduction
- PropBank
 - Framing
 - Annotation
- Automatic Semantic-Role labeling
 - Features
 - Algorithm
 - Evaluation
- Conclusion

Automatic Semantic Role Labeling

- Examine the importance of syntactic information for semantic-role labeling
- Comparing the performance of
 - System based on gold-standard parses
 - Automatically generated parser output

Automatic Semantic Role Labeling

- Gildea and Jurafsky (2002)
 - Statistical system trained on FrameNet project
 - Pass sentences through an automatic parser (Collins, 1999)
 - Extract syntactic features from the parses
 - Estimate probabilities for semantic roles from the syntactic and lexical features
 - Errors introduced by the parser no doubt negatively affected the results obtained

- Introduction
- PropBank
 - Framing
 - Annotation
- Automatic Semantic-Role labeling
 - Features
 - Algorithm
 - Evaluation
- Conclusion

Automatic Semantic Role Labeling

- Features
 - Phrase type : the syntactic type of the phrase expressing the semantic roles
 - Parse tree path : the path from the predicate

through the parse tree to the constituent in question. In order to capture the syntactic relation of a constituent to the predicate

Automatic Semantic Role Labeling

- Features
 - Position : indicates whether the constituent to be labeled occurs before or after the predicate
 - Voice : distinguishes between active and passive, direct objects of active verbs correspond to subjects of passive verbs
 - Headword : a lexical feature and provides information about the semantic type of the role filler

- Introduction
- PropBank
 - Framing
 - Annotation
- Automatic Semantic-Role labeling
 - Features
 - Algorithm
 - Evaluation
- Conclusion

• Predict argument roles

$$\operatorname{argmax}_{r_1...,n} P(r_1...,n|F_1...,n,p)$$

 r_i : role of constituents *i* in the sentence

 $F_i = \{pt_i, path_i, pos_i, v_i, h_i\}$: set of features at each constituent in the parse tree

• Predict argument roles

$$P(r_1 \dots n | F_1 \dots n, p) \approx P(\{r_1 \dots n\} | p) \prod_i \frac{P(r_i | F_i, p)}{P(r_i | p)}$$

 $P(r_i | F_i, p)$: a constituent's role given our five features for the constituent and the predicate p

 $P(\{r_1 \dots n\} | p)$: a set of roles appearing in a sentence given a predicate

Outline

- Introduction
- PropBank
 - Framing
 - Annotation
- Automatic Semantic-Role labeling
 - Features
 - Algorithm
 - Evaluation
- Conclusion

Data

- PropBank (preliminary release version)
 - 72,109 predicate-argument structures
 - 190,815 individual arguments
 - examples from 2,462 lexical predicates (types)
- Testing data : Penn Treebank Section 23

Results

- Given the constituents which are arguments to the predicate and merely has to predict the correct role
- Find the arguments in the sentence and label them correctly

	Accuracy			
	FrameNet	PropBank	PropBank > 10 examples	
Automatic parses	82.0	79.9	80.9	
Gold-standard parses		82.0	82.8	

Accuracy of semantic-role prediction (in percentages) for known boundaries

- Results
 - Adding Traces
 - Provide hints as to the semantics of individual clauses

	FrameNet		PropBank		PropBank > 10 examples	
	Precision	Recall	Precision	Recall	Precision	Recall
Automatic parses	64.6	61.2	68.6	57.8	69.9	61.1
Gold-standard parses	a nu sue presidente		74.3	66.4	76.0	69.9
Gold-standard with traces			80.6	71.6	82.0	74.7

Accuracy of semantic-role prediction (in percentages) for unknown boundaries (the system must identify the correct constituents as arguments and give them the correct roles)

Results

Table 13

Accuracy of semantic-role prediction for unknown boundaries (the system must identify the correct constituents as arguments and give them the correct roles).

		100	DH0000		3.6
Role	Number	Precision	Labeled recall	Unlabele	d recall
Arg0	1,197	94.2%	88.9%	92.2%	
Arg1	1,436	95.4	82.5	88.9	Labeled recall : how often the
Arg2	229	79.0	64.2	77.7	
Arg3	61	71.4	49.2	54.1	semantic-role label
Arg4	31	91.7	71.0	83.9	is correctly identified
ArgM	127	59.6	26.8	52.0	
ArgM-ADV	85	59.1	30.6	55.3	
ArgM-DIR	49	76.7	46.9	61.2	Unlobaled receil , how often a
ArgM-DIS	65	40.0	18.5	55.4	Unlabeled recall : how often a
ArgM-EXT	18	81.2	72.2	77.8	constituent with the given role is
ArgM-LOC	95	60.7	38.9	62.1	.
ArgM-MNR	80	62.7	40.0	63.8	correctly identified as being a
ArgM-MOD	95	77.6	40.0	43.2	semantic role, even if it is labeled
ArgM-NEG	40	63.6	17.5	40.0	
ArgM-PRD	3	0.0	0.0	33.3	with the wrong role
ArgM-PRP	54	70.0	25.9	37.0	43
ArgM-TMP	325	72.4	45.2	64.6	

 The relation of Syntactic Parsing and Semantic-Role labeling

– Chunks

- Do not build a full parse tree
- Large advantage in speed
- Contain basic-level constituent boundaries and labels
- No dependencies between constituents

[_{NP} Big investment banks] [_{VP} refused to step] [_{ADVP} up] [_{PP} to] [_{NP} the plate] [_{VP} to support] [_{NP} the beleaguered floor traders] [_{PP} by] [_{VP} buying] [_{NP} bigblocks] [_{PP} of] [_{NP} stock], [_{NP} traders] [_{VP} say]. (wsj_2300)

 The relation of Syntactic Parsing and Semantic-Role labeling

> Table 14 Summary of results for unknown-boundary condition.

	Precision	Recall	
Gold parse	74.3%	66.4%	
Auto parse	68.6	57.8	
Chunk	27.6	22.0	
Chunk, relaxed scoring	49.5	35.1	

Conclusion

- Consistent annotation has been achieved
- One step closer to a detailed semantic representation
- WSJ too domain specific, too financial, need broader coverage genres for more general annotation

Future work

- Add more informative thematic labels based on VerbNet
- Map annotation with FrameNet to merge two annotated data sets
- Explore
 - machine-learning approaches
 - Integration of semantic-role labeling and sense tagging with the parsing process

References

➤ Levin, B. (1993).

English Verb Classes and Alternations: A preliminary Investigation. University of Chicago Press, Chicago.

 \succ Kipper, K., Hoa T. D., and Martha, P. (2000).

Class-based construction of a verb lexicon.

Proceedings of the Seventh National Conference on Artificial Intelligence