Distributional Semantics and Compositionality Mitchell&Lapata 2008, Erk&Pado 2008

Katerina Danae Kandylaki

Saarland University

May 10, 2010

Introduction

- O The models
 - Mitchell&Lapata (M&L)
 - Structured Vector Space (SVS)
- O Evaluation
- Onclusions

The problem Vector-based Semantic Composition

Semantic Composition

Main question: how to compose the meaning of words into phrases/ sentences.

Examples

- Catch a ball
- ② catch a disease
- attend a ball

Composition:

- $\textcircled{0} \quad ``\underline{catch}" + ``\underline{ball}" \rightarrow ``grab", ``spherical object"$
- $\textcircled{2} \quad ``\underline{catch"} \ + \ ``disease" \ \rightarrow \ ``contract"$
- \bullet "attend" + "<u>ball</u>" \rightarrow "dancing event"

3/ 34

The problem Vector-based Semantic Composition

The importance of argument positions

What happens for cases like this??

Different argument positions

Example

- a horse draws
- draw a horse

Need for accounting the word's **selectional preferences** for its argument positions.

The problem Vector-based Semantic Composition

Vector-based Semantic Composition

In a vector based model of word meaning:

- vector : represents an individual word or a composition of words (depending on the model)
- dimensions : the possible co-occurrent words (semantically similar)
- vector spaces : built from corpora; use of vector spaces in the evaluation task

Semantic Composition: vector composition (in various ways)

Operations on vectors:

vector addition: two vectors v and w can be "added" to yield the sum v + w (which is another vector)

Ø multiplication

Note: operations are performed component-wise

The problem Vector-based Semantic Composition

Existing approaches

Existing approaches:

- General context effects (Schütze 1998, McDonald&Brew 2004) "first-" and "second-order" vectors, result sense clusters.
- Predicate-argument combination (Kintsch 2001, Mitchell&Lapata 2008), context typically consists of a single word, no/little account for the relation between them.
- Integration of lexical information and selectional preferences (Erk&Pado 2008), within the framework of Mitchell&Lapata 2008.

Mitchell&Lapata (M&L) Erk&Pado (SVS) Short summary and comparison of the models

Mitchell&Lapata 2008 (M&L model)

propose a framework for vector composition which:

- allows the derivation of different types of models and
- licenses two fundamental composition operations, multiplication and addition (and their combination).

Mitchell&Lapata (M&L) Erk&Pado (SVS) Short summary and comparison of the models

Basic assumptions

- Semantic composition : a function of two vectors, u and v.
- Individual words : vectors acquired from a corpus following parametrisation.
- word vector : typically represents its co-occurrence with neighbouring words.

Mitchell&Lapata (M&L) Erk&Pado (SVS) Short summary and comparison of the models

Semantic space construction

Construction of a semantic space:

- **definition of** linguistic **context** (e.g., neighbouring words can be documents or collocations)
- number of components used (e.g., the k most frequent words in a corpus)
- values of these components, and their values (e.g., as raw co-occurrence frequencies or ratios of probabilities).

Example

A hypothetical semantic space for *horse* and *run* (five-dimensional space, matrix cells: co-occurrence of the target words):

	animal	stable	village	gallop	jockey
horse	0	6	2	10	4
run	1	8	4	4	0

Mitchell&Lapata (M&L) Erk&Pado (SVS) Short summary and comparison of the models

General class of models

General class of models:

$$\mathbf{p} = f(\mathbf{u}, \mathbf{v}, R, K)$$

- p: the composition of two vectors, u and v.
- *u*, *v*: vectors of the constituents that stand in some syntactic relation
- R: the syntactic relation
- K: additional knowledge or information needed to construct the semantics of the composition

Mitchell&Lapata (M&L) Erk&Pado (SVS) Short summary and comparison of the models

Adding constraints; reduced class

- Hold R fixed: focus on a single linguistic structure, e.g. verb-subject relation
- Ignore K: explore what can be achieved in the absence of additional knowledge

Reduced class of models:

$$\mathbf{p}=f(\mathbf{u},\mathbf{v})$$

Mitchell&Lapata (M&L) Erk&Pado (SVS) Short summary and comparison of the models

Specifying the form of f

• Additive model (simple instantiation):

 $\mathbf{p}_i = \mathbf{u}_i + \mathbf{v}_i$

Example

horse + run = $[1 \ 14 \ 6 \ 14 \ 4]$

	animal	stable	village	gallop	jockey
horse	0	6	2	10	4
run	1	8	4	4	0

Problem: all components have the same contribution to the composition

Katerina Danae Kandylaki Distributional Semantics and Compositionality

13/ 34

Mitchell&Lapata (M&L) Erk&Pado (SVS) Short summary and comparison of the models

Specifying the form of fWeighted Addition

Adding weights to vector components:

 $\mathbf{p_i} = \alpha \mathbf{u_i} + \beta \mathbf{v_i}$

Example

Mitchell&Lapata (M&L) Erk&Pado (SVS) Short summary and comparison of the models

Specifying the form of fMultiplication

• Multiplication model (simplified version):

 $\mathbf{p_i} = \mathbf{u_i} \cdot \mathbf{v_i}$

Example

horse·**run** = $[0 \ 48 \ 8 \ 40 \ 0]$

	animal	stable	village	gallop	jockey
horse	0	6	2	10	4
run	1	8	4	4	0

15/ 34

Mitchell&Lapata (M&L) Erk&Pado (SVS) Short summary and comparison of the models

Specifying the form of fMultiplication - Components with value zero

Example

bank (selected senses): 1. depository financial institution, 2. sloping land

	park	cashier
bank	10	8
account	0	8

 $bank \cdot account = [0 64]$: component-wise multiplication cancels out the irrelevant meaning of bank in this specific context.

16/ 34

Mitchell&Lapata (M&L) Erk&Pado (SVS) Short summary and comparison of the models

Specifying the form of fCombination of additive and multiplicative methods

Combination of methods:

$$\mathbf{p}_{\mathbf{i}} = \alpha \mathbf{u}_{\mathbf{i}} + \beta \mathbf{v}_{\mathbf{i}} + \gamma \mathbf{u}_{\mathbf{i}} \mathbf{v}_{\mathbf{i}}$$

Advantages:

- Account for syntax
- Migrates possible problems from zero components

Note: This is the model to be conpared with the Erk&Pado model in the Evaluation section.

ntroduction
The models
Evaluation
Conclusions

Mitchell&Lapata (M&L) Erk&Pado (SVS) Short summary and comparison of the models

Erk&Pado 2008 (SVS model)

present a robust model of semantic composition, the *structured vector space* model:

- selectional preferences for a word's argument positions
- syntactic information in the computation of a word meaning in context

Mitchell&Lapata (M&L) Erk&Pado (SVS) Short summary and comparison of the models

Weak point of existing models; phrases

Remember the case:

- a horse draws
- draw a horse

"horse" (Subj) + "<u>draw</u>" : verb similar to "pull"

vs.

"<u>draw</u>" + "horse" (**Obj**) : verb similar to "sketch"

Different syntactic relation between components: not captured by a single vector representation.

Mitchell&Lapata (M&L) Erk&Pado (SVS) Short summary and comparison of the models

Weak point of existing models; sentences

How can semantic spaces "scale up" to provide representations for entire sentences?

Consider the sentences:

- The dog chased the cat.
- The cat chased the dog.

Vectors: fixed dimensions -> fixed amount of structure representation

Sentences: **arbitrary** amount sentence length and structural information

Therefore, single vector representations are **not efficient** to encode an arbitrary amount of structures

Mitchell&Lapata (M&L) Erk&Pado (SVS) Short summary and comparison of the models

Basic idea behind the SVS model

Main intuition: the interpretation of a word in context is guided by *expectations about typical events*.

Example

"catch a ball"

- "catch" matches with typical actions that can be performed with a ball
 - "ball" reflects the hearer's expectations of typical things that can be caught

linguistic expectations = selectional preferences

Mitchell&Lapata (M&L) Erk&Pado (SVS) Short summary and comparison of the models

SVS model: Representing lemma meaning

Word is encoded as a **combination** of:

- One vector that models the lexical meaning of the word
- a set of vectors, representing the semantic expectations/ selectional preferences for one particular relation that the word supports.

Mitchell&Lapata (M&L) Erk&Pado (SVS) Short summary and comparison of the models

Formal description of a lemma

In a vector space D (the set of possible vectors), with R the set of relation labels; a lemma is represented by the triple:

 $w = (v, R, R^{-1})$

- $v \in D$: lexical vector of the word w itself,
- $\bullet \ R: R \rightarrow D$: w 's selectional preferences
- $R^{-1}: R \to D$: inverse selectional preferences of w.

Note: Both R and R^{-1} are partial functions.

23/34

Mitchell&Lapata (M&L) Erk&Pado (SVS) Short summary and comparison of the models

Computing meaning in Context

From the lexicon, we have:

- word a: $a = (v_a, R_a, R_a^{-1})$
- word b: $b = (v_b, R_b, R_b^{-1})$
- $r \in R$: the relation linking a to b.

We compose the meaning of a and b as a pair (a', b') of vectors:

- a': the meaning of a in the context of b
- b': the meaning of b in the context of a

Formal description of the composition:

$$a' = (v_a \odot R_b^{-1}(r), R_a - \{r\}, R_a^{-1})$$
$$b' = (v_b \odot R_a(r), R_b, R_b^{-1} - \{r\})$$

24/34

Mitchell&Lapata (M&L) Erk&Pado (SVS) Short summary and comparison of the models

Computing meaning in Context (2)

Example

"catch a ball"

$$a' = (v_a \odot R_b^{-1}(r), R_a - \{r\}, R_a^{-1})$$
$$b' = (v_b \odot R_a(r), R_b, R_b^{-1} - \{r\})$$

Result: one context-adapted meaning representation per word

Mitchell&Lapata (M&L) Erk&Pado (SVS) Short summary and comparison of the models

Computation of elementary vectors

Computing elementary vectors in this case means constructing the vector space:

- **Bag Of Words (BOW)** vector space: for target- context word pair, consider their co-occurrence frequency within a surface window of size 10.
- "Dependency-based" (SYN) vector space : target and context words need to be linked by a "valid"¹ dependency relation to count as co-ocurring.

¹"valid" relations were defined using minimal context specification and plain weight function

Mitchell&Lapata (M&L) Erk&Pado (SVS) Short summary and comparison of the models

Computation of Selectional Preferences

Model selectional preferences through similarity to seen filler vectors v_a

- Compute the selectional preference for word b and relation (between a and b) r :
 - SELPREF (baseline) model

$$R_b(r)_{SELPREF} = \sum_{a:f(a,r,b)>0} f(a,r,b) \cdot v_a$$

- Two additional variants alleviating noise:
 - SELPREF-CUT: instead of all fillers, the model uses only the fillers seen more often than a threshold θ .
 - SELPREF-POW: takes each component of the selectional preference vector to the *n*th power.

Mitchell&Lapata (M&L) Erk&Pado (SVS) Short summary and comparison of the models

Schematic comparison of M&L vs. SVS model

M&L: single vector representation

SVS: structured vector representation (one per word in context)

Experiment 1 Experiment 2

Experiment 1 Human similarity judgements

- Experiment 1: one construction limit verb and its subject
- Task: predict human similarity judgements

Example

human similarity judgements

verb	subject	landmark	sim	judgement
slump	shoulder	slouch	high	7
slump	shoulder	decline	low	2
slump	value	slouch	low	3
slump	value	decline	high	7

	Introduction The models Evaluation Conclusions	Experiment 1 Experiment 2
Experiment 1 _{Results}		

• Mean **cosine similarity** for items with high- and lowsimilarity landmarks

Model	high	low	ρ	high	low	ρ
	BOW	space		SYN	space	
Target only	0.32	0.32	0.0	0.20	0.20	0.08
SelPref only	0.46	0.40	0.06	0.27	0.21	0.16
M&L	0.25	0.15	0.20	0.13	0.06	0.24
SELPREF	0.32	0.26	0.12	0.22	0.16	0.13
SELPREF-CUT, θ=10	0.32	0.24	0.11	0.20	0.13	0.13
SELPREF-POW, $n = 30$	0.11	0.03	0.27	0.08	0.04	0.22
Upper bound	-	-	0.4	-	-	0.4

Introduction The models Evaluation Conclusions	Experiment 1 Experiment 2
Experiment 2 Appropriate vs. inappropriate paraphrases	

- Experiment 2: more types of syntactic constructions
- **Task**: distinguish between appropriate and inappropriate paraphrases

Example

Lexical substitution items for "work"

Sentence	Substitutes
By asking people who work there, I have	be employed 4;
since determined that he didn't.	labour 1
Remember how hard your ancestors worked.	toil 4; labour 3; task 1

The models Evaluation Conclusions

Introduction

Experiment 1 Experiment 2

Experiment 2 Results

• Mean "out of ten" percision (Poor)

Model	V-SUBJ	V-OBJ	N-OBJ
Target only	47.9	47.4	49.6
SelPref only	54.8	51.4	55.0
M&L	50.3	52.0	53.4
SELPREF-POW, $n = 30$	63.1	55.8	56.9

Encouraging evidence for the usefulness of selectional preferences for judging substitutability in context

Conclusions

Vector- based Semantic Composition:

- M&L model:
 - word/ phrase/ sentence represented by a single vector
 - limited coverage of syntax
- SVS model:
 - lemma: lexical information + selectional preferences
 - composition: combination of selectional preferences of words in context
 - account for syntactic relations, more efficient encoding of meaning

General conclusion: A word's selectional preferences play a central role in the computation of meaning in context.

Thank you!

