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Introduction

Figure: Narrative schema

event slot, narrative chain, protagonist, types, narrative schema

3 / 33



Introduction (Untyped) Narrative Chains Typed Narrative Chains and Narrative Schemata Conclusion References

The narrative chain model

Narrative chain: (L,O)

L is a set of event slots

event slot: a tuple 〈v ,d〉 – also represented by e

v is an event (represented by the verb)

d is a typed dependency, s.t. d ∈ {subject,object,preposition}
→ the protagonist: a central actor

O is a partial order over L in time:
→ O(ei ,ej) is true if ei is strictly before ej
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Example of a narrative chain

Figure: Narrative chain with protagonist X

Narrative chain (L,O):

L = {〈admits,subj〉 ,〈pleads,subj〉 ,〈convicted,obj〉 ,
〈sentenced,obj〉}

O = {(pleads,convicted),(convicted,sentenced), . . .})
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Narrative coherence

Assumption of narrative coherence:

Verbs sharing coreferring arguments are semantically connected by
virtue of narrative discourse structure.

verbs with shared arguments are more likely to be part of the
same narrative chain
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Overview of the procedure

parse text (dependency parser, e.g. Stanford Parser)

record verbs with subj, obj or prepositional dependencies

resolve coreference (OpenNLP)

record verb pairs with coreferring arguments

the protagonist is: the entity involved in the most events

extract chains by agglomerative clustering

determine partial order
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A similarity measure

A similarity measure between two event slots:

pmi(〈w ,d〉 ,〈v ,g〉) = log
P(〈w ,d〉 ,〈v ,g〉)

P(〈w ,d〉)P(〈v ,g〉)

Numerator is calculated by:

P(〈w ,d〉 ,〈v ,g〉) =
#(〈w ,d〉 ,〈v ,g〉)

∑x ,y ∑h,f #(〈x ,h〉 ,〈y , f 〉)

The #-function is defined as:

#(〈a,k〉 ,〈b,m〉)

is the count where event a and b have coreferring arguments of
dependency type k and m, respectively
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The most likely next event

The chainsim function:

chainsim(C,〈v ,g〉) =
n

∑
i=1

pmi(〈w ,d〉i ,〈v ,g〉)

where

i is an index for existing chain members

n is the size of the existing chain, i.e. |C|

The most likely next event:

max
j:0<j<m

chainsim(C,〈x ,h〉j)

where

j is an index for the event slots in the training corpus

m is the number of event slots in the training corpus
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Evaluation - The Narrative Cloze

a sequence of event slots in a text from which one event slot has
been removed

task: predict the missing event slot

Example:

[McCann] threw two interceptions early.

Toledo pulled [McCann] aside and told [him] [he]’d start .

[McCann] quickly completed his first two passes.

〈threw ,subj〉 ,〈pulled,obj〉 ,〈told,obj〉 ,〈start,subj〉 ,
〈completed,subj〉
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Baselines

Two baselines:

pmi(w ,v) =
P(w ,v)

P(w)P(v)

1. Verb-only baseline:

the numerator is defined w.r.t to the count when both verbs occur
together in a document

2. Protagonist:

the numerator is defined w.r.t to the count when both verbs have
shared arguments in a document (irrespective of dependency
type)
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Training, development and test data

All documents are from the Gigaword Corpus:

training: maximally ca. 1 mio documents (years 1994-2004)

development: 10 manually selected documents (year 1994)

testing: 69 random documents (year 2001) - they contain at least
5 events
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Results

Figure: Narrative cloze test results

y-axis: average ranked position
the higher the rank, the better the performance
for Protagonist and Typed Deps: the more training data, the better
in this figure: Typed Deps not really comparable to baselines
→ set of possible event slots is larger than set of possible events
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The temporal ordering1

only before and other relations

two-stage supervised classification approach

first stage: classifier using temporal features of one event

second stage: classifier using event-event features including
labels from first stage

1Based on previous work (Chambers et al., 2007)
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The first stage

Classifier using temporal features of one event:

labels: tense, grammatical aspect, aspectual class

features: neighboring POS tags, neighboring auxiliaries and
modals, WordNet synsets

training: SVM trained on Timebank Corpus
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The second stage

Classifier using event-event features
→ only event pairs with coreferring arguments:

labels: before or other

features: syntactic properties (e.g. dominance relation),
combined bigram features of first stage (“present past”), same or
different sentence

training: ca. 37,000 relations from Timebank Corpus
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Temporal Evaluation

testing: the same 69 Gigaword documents as before
→ with hand identified and labeled narrative chains (only
“before”)

coherence score: sum of matching relations to gold standard,
each weighted by a confidence score

Figure: Results for choosing the correct ordered chain. (≥ 10) means there
were at least 10 pairs of ordered events in the chain.

highest accuracy for the 24 documents containing ≥ 10 event
pairs
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Problems with untyped narrative chains

Two shortcomings:

only one entity is treated in a narrative chain (i.e. the protagonist)

the type of the entity is not considered
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Motivation for typed narrative chains

Figure: fly vs. charge

fly is one of the top scoring events
→ it is observed during training with all five events slots

but charge would fit much better
→ it shares more types with the other event slots

Example:
types: criminal, suspect; other slots: accuse, search, suspect
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The typed protagonist

Typed narrative chain: (L,P,O)

L and O as before

P set of possible “argument types”:
e.g. lexical units (head words), noun clusters, other semantic
representations

Example:

L = {〈arrest,subj〉 ,〈charge,subj〉 ,〈raid,subj〉 ,
〈confiscate,subj〉 ,〈detain,subj〉 ,〈deport,subj〉}

P = {police,agent,authority ,government}

O = . . .
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Learning the argument type

build the referential set of coreferring arguments

identify the most salient one in the referential set (pronouns are
ignored, named entities are mapped to “PERSON”)

identify any event pair which has shared argument types from the
referential set
→ update count of (e, f ,a), where a is the most salient argument

Example:

But for a growing proportion of [U.S. workers], the troubles really set in
when [they] apply for unemployment benefits. Many [workers] find
[their] benefits challenged.

〈set_in,prep〉 ,〈apply ,subj〉 ,〈find,subj〉

{workers = 2, they = N/A, their = N/A}
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Untyped and typed similarity measures

In (Chambers and Jurafsky, 2008):

simuntyped (〈e,d〉 ,〈f ,g〉) = pmi(〈e,d〉 ,〈f ,g〉)

In (Chambers and Jurafsky, 2009):

simtyped(〈e,d〉 ,〈f ,g〉 ,a) = pmi(〈e,d〉 ,〈f ,g〉)

+λ freq(〈e,d〉 ,〈f ,g〉 ,a)

where

λ is a constant weight

freq(e, f ,a) is the count of the coreferring event slots e and f
having an argument type from the same referential set a

the more often e and f share argument types, the higher the
similarity
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A weighting function

a score function is defined, for a particular chain C and argument a:

score(C,a) =
n−1

∑
i=1

n

∑
j=i+1

simtyped(〈e,d〉i ,〈f ,g〉j ,a)

where

all permutations of ei and ej where ei is strictly before ej

this is a weight of how much a referential set a, i.e. the type,
contributes to the chain
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chainsim measures

The new chainsim for a given chain C and a new event slot:

chainsimtyped (C,〈f ,g〉) =

max
a

[

score(C,a)+
n

∑
i=1

simtyped(〈e,d〉i ,〈f ,g〉 ,a)

]

Compare to (Chambers and Jurafsky, 2008):

chainsimuntyped (C,〈f ,g〉) =
n

∑
i=1

simuntyped (〈e,d〉i ,〈f ,g〉)
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Narrative Schema

Narrative schema: (E ,C)

E : set of events: 〈v ,Dv 〉 where v is a verb and
Dv ⊆ {subject,object,prep}

C: set of typed narrative chains

Each 〈v ,d〉 (where d ∈ Dv ) belongs to a chain c ∈ C

models all actors in a set of events

Example: both 〈push,obj〉 and 〈push,subj〉 are in two (distinct)
chains of the same schema
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Example/Motivation

Figure: Narrative schema

pull_over and search could be in the schema
however, the first only shares subj dependency with the
containing chains, e.g. circle types
the second additionally shares obj dependency, e.g. triangle
types
⇒ favor this because it shares more arguments with containing
chains
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Learning Narrative Schemata

a verb is added to a narrative schema, if all its arguments (Dv )
are assigned to a chain c ∈ C with high confidence:

narsim(N,v) = ∑
d∈Dv

max

[

β ,max
c∈CN

(chainsimtyped (c,〈v ,d〉))

]

where

β score to decide upon creation of new chain
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Building Narrative Schemata

Schemata are built incrementally by adding the event from the training
data that maximizes the narsim function:

max
j:0<j<|v |

narsim(N,vj )

where

|v | is the number of observed events in the training data

vj is the j-th verb

Compare to building narrative chains in (Chambers and Jurafsky,
2008):

max
j:0<j<m

chainsim(c,〈v ,g〉j)

where

m is the number of observed event slots in the training data

〈v ,g〉j is the j-th event slot
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Evaluation - Comparison to FrameNet

top 20 scoring narrative schemata were compared to FrameNet
frames

after automatic mapping (at least 2 matching verbs), only 13
schemata remained
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Evaluation - Narrative cloze

Figure: Narrative cloze test results

same training, development and testing data as in (Chambers
and Jurafsky, 2008)
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Evaluation - Narrative cloze

Untyped vs. Typed chains:

used chainsimuntyped and chainsimtyped scores, respectively

6.9% improvement (at 2004)

both show long-term improvement the more training data is added
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Evaluation - Narrative cloze

Untyped chains vs. untyped schemata:

both use untyped chains (chainsimuntyped )

3.3% improvement (at 2004)

again, both show long-term improvement the more training data
is added
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Evaluation - Narrative cloze

(full) schemata:

typed chains outperform, untyped chains

untyped schemata outperform, untyped chains

combination, i.e. full schemata shows 10.1% improvement (at
2004)

but: long-term improvement with more training data?
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Conclusion

unsupervised method to learn narrative chains and schemata

key idea for chain learning: use coreference for event similarity

temporal classifier: two-stage supervised method

typed chains: using set of types for protagonist enhances chain
learning

types as semantic roles: event similarity helps learning thereof

narrative schemata: considering all dependencies of a verb
increases performance even more

“narratives” because script information is not explicit in text
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The End

Thank you! Let us discuss.
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