UNSUPERVISED WORD SENSE DISAMBIGUATION RIVALING SUPERVISED METHODS (DAVID YAROWSKY, 1995)

Presentation by Victor Santos LCT Masters – COLI (UDS) 03.5.2010 – Saarbrücken

List of contents

- The paper
- Slide 3
- A quick review of terminology that we will need
 - Slides 4 11
- Yarowsky's algorithm for word-sense disambiguation
- Slides 12- 27
- HOW THE ALGORITHM WORKS (5 STEPS)
 - Slides 15 27
- Evaluation
- Slides 28-29
- Conclusion
- Slide 30

The paper

• Yarowsky (1995) describes an unsupervised learning algorithm for word sense disambiguation that, when trained on unannotated (untagged) English text, performs better and is simpler and less time consuming than supervised algorithms that require hand annotations. A quick review of terminology that we will need

Word-sense disambiguation:

Deciding which sense of an ambiguous word is meant in a specific context.

Ex: 'This plant has been here for only 5 months'.

Collocation (as used by Yarowsky):

A relation that holds between words that tend to appear close to each other much more frequently than randomness would predict or than observed for any random two words in a text.

Ex:

'The **E.Ts** will come from *space* and **conquer** all of us.'

Logarithm:

The logarithm of 100 to the base 10 is 2, because $10^2 = 100$

Supervised Learning Algorithm

 In supervised learning, we have a training data set made of data set points labeled with their respective class $(k_1 \dots k_n)$. Each point in the data set is composed of certain features $(f_1 \dots f_n)$. The goal of the algorithm is to induce/learn the correlation between the features and the classes, so that it can then apply what it learned to a new data set (test set) and correctly classify data points it has not seen before.

Example of labeled training set for money loan (class=give loan)

ID	Age	Has_Job	Own_House	Credit_Rating	Class
1	young	false	false	fair	No
2	young	false	false	good	No
3	young	true	false	good	Yes
4	young	true	true	fair	Yes
5	young	false	false	fair	No
6	middle	false	false	fair	No
7	middle	false	false	good	No
8	middle	true	true	good	Yes
9	middle	false	true	excellent	Yes
10	middle	false	true	excellent	Yes
11	old	false	true	excellent	Yes
12	old	false	true	good	Yes
13	old	true	false	good	Yes
14	old	true	false	excellent	Yes
15	old	false	false	fair	No

Supervised learning in the context of word-sense disambiguation in languages

- We start with a big corpus, like SemCor, for example, which is a subset of the Brown corpus and contains 234,000 words, with each open-class word in each sentence labeled with its Wordnet sense. (all labeling was done manually).
- We usually make use of two kinds of features, combining them in one of various ways: *collocational features* and *co-occurance features*.
- <u>Collocational features (positition is important)</u>:

This refers to specific words (along with their POS) which occur in a **fixed position** to the left or to the right or our target word.

Example of collocational features:

Sentence: 'An electric guitar and **bass** player stand off to one side,'

A feature vector consisting of two words to the left and two words to the right of our target word ('bass') would result in the following vector:

[guitar, NN1, and, CJC, player, NN1, stand, VVB]

<u>Co-occurance features:</u>

This relates to neighboring words to our target word. In here, our features are the words themselves without their part of speech. The value of the feature is the number of times the words occur in a window surrounding the target word. For this approach to be manageable, a small number of content words frequently observed near our target word are selected as features. For the word 'bass', the 12 most frequent words surrounding it across many sentences in the WSJ (includes sentences from both senses of the word) are:

fishing, *big*, *sound*, *player*, *fly*, *rod*, *pound*, *double*, *runs*, *playing*, *guitar* and *band*.

Using the words above as features with a window size 10, the sentence **'An** *electric guitar and bass player stand off to one side,*' would be represented as the following vector:

[0,0,0,1,0,0,0,0,0,0,1,0]

Unsupervised Learning Algorithm

 In unsupervised learning, we start with a training data set which is not labeled, that is, we do not know to which class the data points belong to. All we have to start with is the features themselves and the algorithm must decide which points in the data belong to the same class. The problem is made much simpler if we know from the start the number of classes we are dealing with. We must take an initial informed guess in order to kick-start the algorithm.

Yarowsky's algorithm for wordsense disambiguation

Yarowsky's algorithm explores two powerful properties of human language, namely:

1) One sense per collocation:

Nearby words provide strong and <u>consistent clues</u> to the sense of a target word, conditional on relative distance, order and syntactic relationship.

Example:

'The **root** of the *plant* has **decayed**'.

'The *plant* **pesticide** has been sold for a lot of money' 'The **pesticide** *plant* has been sold for a lot of money'

2) One sense per discourse:

The sense of a target word is highly consistent within a given document. This is the first time that such a property is explored for sense-disambiguation. It's a probabilistic constraint, not a hard constraint. If the local context for another sense is strong enough, it might be overriden.

Strange example:

'The author J.K Rowling, a semi-vegetarian, loves eating fish. Her favorite one is the bass. Last month, she actually bought a bass, since learning to play an instrument has been a childhood dream...'

Confirmation of the OSPD hypothesis, based on 37,232 hand-tagged examples

The one-sense-per-discourse hypothesis:

Word	Senses	Accuracy	Applicblty
plant	living/factory	99.8 %	72.8~%
tank	vehicle/contnr	99.6 %	50.5 %
poach	steal/boil	100.0 %	44.4 %
palm	tree/hand	99.8 %	38.5 %
axes	grid/tools	100.0 %	35.5 %
sake	benefit/drink	100.0 %	33.7 %
bass	fish/music	100.0 %	58.8~%
space	volume/outer	99.2 %	67.7 %
motion	legal/physical	99.9 %	49.8 %
crane	bird/machine	100.0 %	49.1 %
Averag	е	99.8 %	50.1 %

HOW THE ALGORITHM WORKS (5 STEPS)

<u>Step 1:</u>

In a large corpus, identify all examples of the given polysemous word, storing their contexts as lines in an initially untagged training set, as shown on above:

Sense	Training Examples (Keyword in Context)
?	company said the plant is still operating
?	Although thousands of <i>plant</i> and animal species
?	zonal distribution of plant life
?	to strain microscopic <i>plant</i> life from the
?	vinyl chloride monomer plant, which is
?	and Golgi apparatus of <i>plant</i> and animal cells
?	computer disk drive plant located in
?	divide life into plant and animal kingdom
?	close-up studies of plant life and natural

Step 2

A

А

A

A

A

7

?

?

7

7

B

В

В

B

В

В

B

For each possible sense of the word $(k_1...k_n)$, identify a small number of collocations representative of that sense and then tag all the sentences from Step 1 which contain the seed collocation with the seed's sense label. The remainder of the examples (typically 85-98%) constitute an untagged residual.

Sense Training Examples (Keyword in Context) used to strain microscopic plant life from the zonal distribution of plant life close-up studies of plant life and natural ... A too rapid growth of aquatic plant life in water the proliferation of *plant* and animal life ... establishment phase of the plant virus life cycle vinyl chloride monomer plant, which is molecules found in *plant* and animal tissue ... Nissan car and truck plant in Japan is and Golgi apparatus of plant and animal cells union responses to plant closures

> automated manufacturing plant in Fremont vast manufacturing plant and distribution ... chemical manufacturing plant, producing viscose ... keep a manufacturing plant profitable without computer manufacturing plant and adjacent ... discovered at a St. Louis plant manufacturing

After Step 2

Figure 1: Sample Initial State

A = SENSE-A training example B = SENSE-B training example ? = currently unclassified training example Life = Set of training examples containing the collocation "life".

Step 3a (out of a-d)

Train the algorithm on the SENSE-A / SENSE-B seed sets (the residual is not used <u>yet</u>). The decision-list algorithm identifies other collocations that reliably partition the seed training data, ranked by the purity of the distribution.

Initial	decision list for plant (abbrevia	ated)
LogL	Collocation	Sense
8.10	plant life	\Rightarrow A
7.58	manufacturing plant	⇒B
7.39	life (within $\pm 2-10$ words)	⇒ A
7.20	manufacturing (in ±2-10 words)	⇒B
6.27	animal (within $\pm 2-10$ words)	⇒A
4.70	equipment (within $\pm 2-10$ words)	⇒ B
4.39	employee (within $\pm 2-10$ words)	⇒ B
4.30	assembly plant	⇒B
4.10	plant closure	⇒B
3.52	plant species	\Rightarrow A
3.48	automate (within $\pm 2-10$ words)	⇒ B
3.45	microscopic plant	⇒ A

...

How LogL is calculated

$LogL = Ln \frac{Prob(Sense - a | collocation_k)}{Prob(Sense - b | collocation_k)}$

Step 3b (out of a-d)

Apply the resulting classifier to the entire sample set. Take those members in the residual which are tagged as SENSE-A or SENSE-B with probability above a certain threshold, and add those examples to the growing seed sets. Using the decision list, these new additions will contain new collocations reliably indicative of the previously trained seed sets.

Figure 2: Sample Intermediate State (following Steps 3b and 3c)

Important point about Step 3b

In Step 3b, when applying the decision list to previous residual sentences, there might be sentences that contain collocations from both classes at the same time (Sense A and Sense B), for example:

'An **employee** (Sense-B, LogL4.39) whose **animal** (Sense-A, Log 6.27) ate a dangerous *plant* damaged the **equipment** (Sense-B, LogL4.70)'.

Only the most predictable collocation is taken into account for deciding the sense of the polysemous word. In this case, it will be tag as **SENSE-A**.

Step 3c (out of a-d) The one-sense-per-discourse step

This is the step where the *one-sense-per discourse* tendency comes into play. It is used to both augment (increase) the training set or to correct (filter) erroneously labeled examples. It is important to point out **this is conditional on the relative numbers and the probabilities associated with the tagged examples in the discourse**.

Examples (next slide):

The augmentation use of Step 3c

Labeling previously untagged contexts

using the one-sense-per-discourse property

Change	Disc.	
in tag	Numb.	Training Examples (from same discourse)
$A \rightarrow A$	724	the existence of <i>plant</i> and animal life
$A \rightarrow A$	724	classified as either plant or animal
? → A	724	Although bacterial and plant cells are enclosed

In this example, we can see that the third sentence in the discourse has no collocation previously identified before. However, given the one-sense-per-discourse 'rule', we can label it and therefore augment our training set. This works as a bridge to new collocations (in this case, the collocation 'cell/cells'.

The filter (error correction) use of Step 3c

Error Correction using the one-sense-per-discourse property

Change	Disc.	
in tag	Numb.	Training Examples (from same discourse)
$A \rightarrow A$	525	contains a varied plant and animal life
$A \rightarrow A$	525	the most common plant life, the
$A \rightarrow A$	525	slight within Arctic plant species
$B \rightarrow A$	525	are protected by plant parts remaining from

We can see here that even though the fourth sentence in this discourse had been labeled as sense B, due to the one-sense-per-discourse law, we decide that it should actually belong to SENSE-A, instead of SENSE-B.

Step 3d (out of a-d) The iterative step

Repeat Step 3a-3c iteratively. The training set, i.e., those sentences with occurances of the polysemous word Labeled either SENSE-A or SENSE-B will tend to grow, while the residual (occurrences of the word which have not yet been labeled) will tend to shrink.

Figure 2: Sample Intermediate State (following Steps 3b and 3c)

STEP 4

Stop. When the training parameters are held constant, the algorithm will converge on a stable residual set. Reminder: Even though most training examples will exhibit multiple collocations indicative of the same sense, only the highest Log actually influences our choice for what sense to assign (this circumvents problems associated with non-independent evidence sources).

Figure 3: Sample Final State

STEP 5

- After completing steps 1-4,
- we can now apply the
- classifier to new data and/or
- use it to annotate the
- original untagged corpus
- with sense tags and
- probabilities.
- Notice that the initial
- decision list is quite different from the final one.

Initia	decision list for plant (abbrevia	ated)
LogL	Collocation	Sense
8.10	plant life	\Rightarrow A
7.58	manufacturing plant	⇒ B
7.39	life (within $\pm 2-10$ words)	⇒ A
7.20	manufacturing (in $\pm 2-10$ words)	⇒ B
6.27	animal (within $\pm 2-10$ words)	⇒ A
4.70	equipment (within $\pm 2-10$ words)	\Rightarrow B
4.39	employee (within $\pm 2-10$ words)	⇒ B
4.30	assembly plant	⇒ B
4.10	plant closure	⇒ B
3.52	plant species	\Rightarrow A
3.48	automate (within $\pm 2-10$ words)	⇒ B
3.45	microscopic plant	\Rightarrow A

Final decision list for <i>plant</i> (abbreviated)						
LogL	Collocation	Sense				
10.12	plant growth	\Rightarrow A				
9.68	car (within $\pm k$ words)	⇒ B				
9.64	plant height	\Rightarrow A				
9.61	union (within $\pm k$ words)	⇒ B				
9.54	equipment (within $\pm k$ words)	⇒ B				
9.51	assembly plant	⇒ B				
9.50	nuclear plant	⇒ B				
9.31	flower (within $\pm k$ words)	⇒ A				
9.24	job (within $\pm k$ words)	⇒ B				
9.03	fruit (within $\pm k$ words)	⇒ A				
9.02	plant species	⇒ A				
l						

Evaluation

- Data extracted from a 460 million word corpus containing news articles, scientific abstracts, spoken transcripts and novels, constituting almost certainly the largest training/testing sets used in the sense-disambiguation literature.
- Performance of multiple models compared with:
 - supervised decision lists

 unsupervised learning algorithm by Schütze(1992), based on alignment of clusters with words senses and taking the bag-of-words point of view.

EVALUATION

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
			%		Seed Training Options		(7) + OSPD			
		Samp.	Major	Supvsd	Two	Dict.	Top	End	Each	Schütze
Word	Senses	Size	Sense	Algrtm	Words	Defn.	Colls.	only	Iter.	Algrthm
plant	living/factory	7538	53.1	97.7	97.1	97.3	97.6	98.3	98.6	92
space	volume/outer	5745	5 0.7	93.9	89.1	92.3	93.5	93.3	93.6	90
tank	vehicle/container	11420	58.2	97.1	94.2	94.6	95.8	96.1	96.5	95
motion	legal/physical	11968	57.5	98.0	93.5	97.4	97.4	97.8	97.9	92
bass	fish/music	1859	56.1	97.8	96.6	97.2	97.7	98.5	98.8	-
palm	tree/hand	1572	74.9	96.5	93.9	94.7	95.8	95.5	95.9	-
poach	steal/boil	585	84.6	97.1	96.6	97.2	97.7	98.4	98.5	- 1
axes	grid/tools	1344	71.8	95.5	94.0	94.3	94.7	96.8	97.0	-
duty	tax/obligation	1280	50.0	93.7	90.4	92.1	93.2	93.9	94.1	-
drug	medicine/narcotic	1380	50.0	93.0	90.4	91.4	92.6	93.3	93.9	-
sake	benefit/drink	407	82.8	96.3	59.6	95.8	96.1	96.1	97.5	-
crane	bird/machine	2145	78.0	96.6	92.3	93.6	94.2	95.4	95.5	-
AVG		3936	63.9	96.1	90.6	94.8	95.5	96.1	96.5	92.2

*Column 11 shows Schütze's unsupervised algorithm (bag-of-words) applied to some of these words, trained on the New York Times News Service corpus. His algorithm works with clustering based on distributional parameters and he might have 10 different clusters for only 2 senses, which have to be hand-inspected at the end to decide on the sense)

*Column 5 shows the results for supervised training using the decision list algorithm, applied to the same data and not using any discourse information (OSPD).

29

CONCLUSION

- The algorithm works by harnessing several powerful, empirically-observed properties of language, namely the strong tendency for words to exhibit only on sense per collocation and per discourse.
- It attempts to derive maximal leverage from these properties by modeling a rich diversity of collocational relationships. It thus uses more discriminating information than available to algorithms treating documents as bag of words.
- For an unsupervised algorithm it works surprisingly well, directly outperforming Schütze's unsupervised algorithm 96.7% to 92.2%, on a test of the same 4 words. More impressively, it achieves nearly the same performance as the supervised algorithm given identical training contexts (95.5% vs. 96.1%), and in some cases actually achieves superior performance when using the one-sense-per discourse contraint (96.5% vs. 96.1%).

