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Abstract

This paper reviews the modular, statistical model of human lexical category
disambiguation (SLCM) proposed by Corley and Crocker (2000). The SLCM is

distinct lexical category disambiguation mechanism within the human sentence
processor, which uses word-category frequencies and category bigram
frequencies for the initial resolution of category (part-of-speech) ambiguities.
The model has been shown to account for a range of existing experimental

findings in relatively diverse constructions. This paper presents the results of two
new experiments that directly confirm the predictions of the model. The first
experiment demonstrates the dominant role of word-category frequency in
resolving noun-verb ambiguities. The second experiment then presents evidence

for the modularity of the mechanism, by demonstrating that immediately
available syntactic context does not override the SLCMs initial decision.

                                                          
1 This paper presents entirely joint work, and the order of authors is arbitrary. Correspondence

should be sent in the first instance to M. Crocker (crocker@coli.uni-sb.de). The authors would like to

express particular thanks to Charles Clifton, Jr. and Martin Corley for their invaluable assistance. The
authors gratefully acknowledge the support of an ESRC Research Fellowship (to Matthew Crocker,
#H5242700394) and an ESRC Studentship (to Steffan Corley, #R00429334081), both of which were
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Introduction
This paper reconsiders the nature of modular architectures in the light of

recent empirical, theoretical and computational developments concerning the
exploitation of statistical language processing mechanisms. We defend a simpler

notion of modularity than that proposed by Fodor (1983). Given current
conflicting theoretical arguments and empirical evidence for and against
modularity, we argue for modularity strictly on computational and

methodological grounds. We then apply this to a particular aspect of human
language processing: the problem of lexical category disambiguation.

While previous work has often focused on the kinds of linguistic knowledge
which are used in ambiguity resolution, we focus on the role of statistical, or

frequency-based, knowledge. While such mechanisms are now a common
element of non-modular, constraint-based models (see Tanenhaus et al (in
press)), we argue that probabilistic mechanisms may be naturally associated with

modular architectures. In particular, we suggest that a Statistical Lexical
Category Module (SLCM) provides an extremely efficient and accurate solution
to the sub-problem of lexical category disambiguation. Following a summary of
the model and how it accounts for the range of relevant existing data, we review

the results of two new experiments that test the predictions of both the statistical
and modular aspects of the SLCM, and provide further support for our proposals.

Modularity, Constraints and Statistics

The issue of modularity continues to be a hotly debated topic within the

sentence processing literature.2 Parser-based models of human sentence
processing led to the tacit emergence of syntactic modularity, which was then
rationally defended by Fodor (1983). In particular, Fodor argued that cognitive

faculties are divided into input processes, which are modular, and central
processes, which are not. The divide between input and central processes is
roughly coextensive with the divide between perception and cognition; in the
case of language, Fodor located this divide between the subject matter of formal

linguistics and that of pragmatics and discourse analysis.
Recently, their has been a shift in consensus towards more interactionist,

                                                          
2 See Crocker (1999) for a more complete introduction to the issues presented in this section.
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non-modular positions. The term ‘constraint-based’ is often used to denote such
an interactionist position. The constraint-based position is tacitly assumed to
imply that all constraints can in principle apply immediately and simultaneously,
across all levels of linguistic representation, and possibly even across perceptual

faculties (Tanenhaus et al, 1995).
Modular and interactive positions are often associated with other

computational properties. Spivey-Knowlton and Eberhard (1996) argue that

modular positions tend to be symbolic, binary, unidirectional and serial. In
contrast, interactive models tend to be distributed, probabilistic, bi-directional
and parallel. Further, Spivey-Knowlton and Eberhard suggest that “when a
model is specified in enough detail to be associated with a region in this space,

that region’s projection onto the continuum of modularity indicates the degree to

which a model is modular” (pp. 39 – 40, their italics).
Spivey-Knowlton and Eberhard’s position turns a historical accident into a

definition. While existing models do pattern approximately along the lines they
propose, we suggest that their characterisation inaccurately represents the
underlying notion of modularity.3 We propose a simplified definition of
modularity that is independent of any commitment to orthogonal issues such as

the symbolic-distributed, binary-probabilistic, unidirectional-bidirectional and
serial-parallel nature of a particular theory. Rather our definition focuses purely
on information-flow characteristics:
• A module can only process information stated in its own representational

and informational vocabulary. For example, the syntactic processor can only
make use of grammatical information.

• A module is independently predictive. That is, we do not need to know about

any other component of the cognitive architecture to make predictions about
the behaviour of a module (provided we know the module’s input).

• A module has low bandwidth in both feedforward and feedback connections.
By this we mean that it passes a comparatively small amount of information

(compared to its internal bandwidth) on to subsequent and prior modules.

                                                          
3 Of course their characterisation does define a particular computational position which one

might dub ‘modular’, but the falsification of that position crucially does not falsify the general notion
of modularity, only the particular position they define.
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These three defining properties of a modular architecture overlap. If one
module cannot understand the representational vocabulary of another, then
information about its internal decision process is of no use; thus the cost of
passing such information on would not be warranted. Similarly, a module cannot

be independently predictive if its decisions depend on representations
constructed by other modules that are not part of its input — independent
prediction is therefore directly tied to low bandwidth feedback connections.

In sum, we propose a simple definition of modularity in which modules
process a specific representation and satisfy the relevant constraints which are
defined for that level of representation. Modules have high internal bandwidth
and are connected to each other by relatively low bandwidth: the lower the

bandwidth, the greater the modularity. This definition is independent of whether
we choose to state our modules in more distributed or symbolic terms, as it
should be.

Statistical Mechanisms
In the previous section, we noted Spivey-Knowlton and Eberhard’s (1996)

claim that modularity is normally associated with binary rather than probabilistic
decision procedures. This claim derives largely from the association of

constraint-based architectures with connectionist implementations (Tanenhaus et

al, in press; MacDonald et al, 1994) which in turn have a natural tendency to
exhibit frequency effects. We proposed a definition of modularity which is
consistent with statistical mechanisms. In this section, we argue that modularity

and statistical mechanisms are in fact natural collaborators.
The motivation for modularity is essentially one of computational

compromise, based on the assumption that an unrestricted constraint-satisfaction

procedure could neither operate in real-time (Fodor, 1983), nor could it acquire
such a heterogeneous system of constraints in the first place (Norris, 1990). It is
still reasonable to assume however, that modules will converge on highly
effective processing mechanisms; that is, a mechanism which can accurately and

rapidly arrive at the correct analysis of the input, based on the restricted
knowledge available within the module. For purposes of disambiguation, the
module should therefore use the best heuristics it can, again modulo any
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computational and informational limitations.
In the spirit of rational analysis (Anderson, 1991), one might therefore

choose to reason about such a mechanism as an optimal process in probabilistic
terms. This approach has been exploited both in the study of human sentence

processing (Chater et al, 1999; Jurafsky, 1996) and in computational linguistics
where statistical language models have been effectively applied to problems of
speech recognition, part-of-speech tagging, and parsing (see Charniak (1993;

1997) for an overview). We propose a specific hypothesis, in which modules
may make use of statistical mechanisms in their desire to perform as effectively
as possible in the face of restricted knowledge. We define statistical modularity
by introducing the ‘Modular Statistical Hypothesis’ (MSH):

The Modular Statistical Hypothesis : The human sentence processor is
composed of a number of modules, at least some of which use statistical

mechanisms. Statistical results may be communicated between modules,
but statistical processes are restricted to operating within, and not across,
modules.

This hypothesis encompasses a range of possible models, including the
coarse-grained architecture espoused by proponents of the Tuning Hypothesis
(Mitchell et al, 1995; Mitchell & Brysbaert, to appear). However, it excludes
interactive models such as those proposed by MacDonald et al. (1994),

Tanenhaus et al (in press) and Jurafsky (1996) – despite their probabilistic nature
– since the models that fall within the MSH are a necessarily subset of those that
are modular.

In the case of a statistical module we assume that heuristic decision strategies
are based on statistical knowledge accrued by the module, presumably on the
basis of linguistic experience. Assuming that the module collates statistics itself,
it must have access to some measure of the ‘correctness’ of its decision; this

could be informed by whether or not reanalysis was requested by later processes.
The most restrictive modular statistical model is therefore one in which modules
are fully encapsulated and only offer a single analysis to higher levels of
processing.

The statistical measures such a module depends on are thus architecturally
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limited. Such measures can not directly reflect information pertaining to higher
levels of processing, as these are not available to the module. Assuming very low
bandwidth feedforward connections, or shallow output, it is also impossible for
the module to collate statistics concerning levels of representation that are the

province of modules that precede it. A modular architecture therefore constrains
the representations for which statistics may be accrued, and subsequently used to
inform decision making processes; this contrasts with an interactive architecture,

where there are no such constraints on the decision process.
It is worth noting that we have argued for the use of statistical mechanisms in

modular architectures on primarily rational grounds. That is, such statistical
mechanisms have been demonstrated to provide highly effective heuristic

decisions in the absence of full knowledge, and their use is therefore highly
strategic, not accidental. Indeed, it might even be argued that such mechanisms
give good approximations of ‘higher-level’ knowledge. For example, simple

word bigrams will model those words that co-occur frequently or infrequently.
Since highly semantically plausible collocations are likely to be more frequent
than less plausible ones, such statistics can appear to be modelling semantic
knowledge, as well as just the distribution of word types.

In contrast, constraint-based, interactionist models motivate the existence of
frequency effects as an essentially unavoidable consequence of the underlying
connectionist architecture (see Seidenberg (1997) for general discussion), along
with other factors such as neighbourhood effects. Interestingly, this may lead to

some rather strong predictions. Since such mechanisms are highly sensitive to
frequency, they would seem to preclude probabilistic mechanisms that do not
select a “most-likely” analysis based on these prior frequencies. Pickering et al

(2000), however, present evidence against likelihood-based accounts, and
propose and alternative probabilistic model based on a rational analysis of the
parsing problem (Chater et al, 1999).

Lexical Category Ambiguity
The debate concerning the architecture of the human language processor has

typically focused on the syntax-semantics divide. Here, however, we consider
the problem of lexical category ambiguity, and argue for the plausibility of a
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distinct lexical category disambiguation module. Lexical category ambiguity
occurs when a word can be assigned more than one part of speech (noun, verb,
adjective etc.). Consider, for example, the following sentence:

(1) He saw her duck.

There are two obvious, plausible readings for sentence 1. In one reading,
‘her’ is a possessive pronoun and ‘duck’ is a noun (cf. 2a); in the other reading,
‘her’ is a personal pronoun and ‘duck’ is a verb (cf. 2b).

(2) a) He saw herPOSS apple.
b) He saw herPRON leave.

Lexical Category Ambiguity and Lexical Access

Lexical access is the stage of processing at which lexical entries for input

words are retrieved. Evidence suggests that multiple meanings for a given word
are activated even when semantic context biases in favour of a single meaning
(Swinney, 1979; Seidenberg et al., 1982; but see Kawamoto (1993) for more

thorough discussion). The evidence does not, however, support the determination
of grammatical class during lexical access. Tanenhaus, Leiman and Seidenberg
(1979) found that when subjects heard sentences such as those in (3), containing
a locally ambiguous word in an unambiguous syntactic context, they were able to

name a target word which was semantically related to either of the possible
meanings of the ambiguous target (e.g. SLEEP or WHEEL) faster than they were
able to name an unrelated target.

(3) a) John began to tire.

b) John lost the tire.
This suggests that words related to both meanings had been primed; both

meanings must therefore have been accessed, despite the fact that only one was

compatible with the syntactic context. Seidenberg, Tanenhaus, Leiman and
Bienkowski (1982) replicated these results, and Tanenhaus and Donnenworth-
Nolan (1984) demonstrated that they could not be attributed to the ambiguity
(when spoken) of the word ‘to’ or to subjects inability to integrate syntactic

information fast enough prior to hearing the ambiguous word.
Such evidence is consistent with a model in which lexical category

disambiguation occurs after lexical access. The tacit assumption in much of the
sentence processing literature has been that grammatical classes are determined



8  Matthew W. Crocker and Steffan Corley

during parsing (see Frazier (1978) and Pritchett (1992) as examples). If grammar
terminals are words rather than lexical categories, then such a model requires no
augmentation of the parsing mechanism. Alternatively, Frazier and Rayner
(1987) proposed that lexical category disambiguation has a privileged status

within the parser; different mechanisms are used to arbitrate such ambiguities
from those concerned with structure building.

Finally, lexical categories may be determined after lexical access, but prior to

syntactic analysis. That is, lexical category disambiguation may constitute a
module in its own right.

The Privileged Status of Lexical Category Ambiguity

There are essentially three possible positions regarding the relationship

between syntax and lexical category.
1. Lexical categories are syntactic: The terminals in the grammar are words

and it is the job of the syntactic processes to determine the lexical category

that dominates each word (Frazier, 1978; Pritchett, 1992).
2. Syntactic structures are in the lexicon: The bulk of linguistic competence is

in the lexicon, including rich representations of the trees projected by lexical
items. Parsing is reduced to connecting trees together (MacDonald et al,

1994; Kim and Trueswell, this volume).
3. Syntax and lexical category determination are distinct: Syntax and the

lexicon have their own processes responsible for initial structure building
and ambiguity resolution.

If we take the latter view of lexical category ambiguities, one possibility is
that a pre-syntactic modular process makes lexical category decisions. These
decisions would have to be made on the basis of a simple heuristic, without the

benefit of syntactic constraints. In common with all modules, such a process will
make incorrect decisions when potentially available information (such as
syntactic constraints) could have permitted a correct decision. It does, however,
offer an extremely low cost alternative to arbitration by syntactic and other

knowledge. That is, disambiguation on the basis of full knowledge potentially
entails the integration of constraints of various types, across various levels of
representation. It may be the case that such processes cannot converge rapidly
enough on the correct disambiguated form.
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For this argument to be compelling, it must also be the case that lexical
category ambiguities are frequent enough to warrant a distinct resolution process.
This can be verified by determining the number of words that occur with more
than one category in a large text corpus. DeRose (1988) has produced such an

estimate from the Brown corpus; he found that 11.5% of word types and 40% of
tokens occur with more than one lexical category. As the mean length of the
sentences in the Brown corpus is 19.4 words, DeRose’s figures suggest that there

are 7.75 categorially ambiguous words in an average corpus sentence.
Our own investigations suggest the extent of the problem is even greater.

Using the TreeBank version of the Brown corpus, we discovered 10.9%
ambiguity by type, and a staggering 65.8% by token. To obtain these results, we

used the coarsest definition of lexical category possible — just the first letter of
the corpus tag (i.e. nouns were not tagged separately as singular, plural, etc.).
Given the high frequency of lexical category ambiguity, a separate decision

making process makes computational sense, if it can achieve sufficient accuracy.
If category ambiguities are resolved prior to parsing, the time required by the
parser is reduced (Charniak et al, 1996).

A Statistical Lexical Category Module
In this section we outline a specific proposal for a Statistical Lexical

Category Module (SLCM). The function of the SLCM is to determine the best
possible assignment of lexical part-of-speech categories for the words of an input
utterance, as they are encountered. The model differs from other theories of

sentence processing, in that lexical category disambiguation is postulated as a
distinct modular process, which occurs prior to syntactic processing but
following lexical access.

We argued earlier for a model of human sentence processing that is (at least
partially) statistical on both rational and empirical grounds: such a model appears
sensible and has characteristics which may explain some of the behaviour
patterns of the HSPM. We therefore propose that the SLCM employs a

statistically-based disambiguation mechanism, as such a mechanism can operate
efficiently (in linear time) and achieve near optimal performance (most words
disambiguated correctly, see next section), and we assume such a module would
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strive for such a rational behaviour.

What Statistics?

If we accept that the SLCM is statistical, a central question concerns what
statistics condition its decisions. Limitations of the modular architecture we are

proposing constrain the choice. The SLCM has no access to structural
representations; structurally-based statistics could therefore not be expressed in
its representational vocabulary. We will assume that the input to the module is

extremely shallow — just a word and a set of candidate grammatical classes. In
this case, the module also has no access to low level representations including
morphs, phonemes and graphic symbols; the module may only make use of
statistics collated over words or lexical categories, or combinations of the two.

It seems likely that the SLCM collates statistics concerning the frequency of
co-occurrence of individual words and lexical categories. One possible model is
therefore that the SLCM just picks the most frequent class for each word; for

reasons that will become apparent, we will call this the ‘unigram’ approach. The
SLCM may also gather statistical information concerning prior context. For
example, decisions about the most probable lexical category for a word may also
consider the previous word. Alternatively, such decisions may only consider the

category assigned to the previous word, or a combination of both the prior word
and its category may be used.

Probability Theory and the SLCM

The problem faced by the SLCM is to incrementally assign the most likely

sequence of lexical categories to a given sequence of words as they are
encountered. That is, as each word is input to the SCLM, it outputs the most
likely category for it. Research in computational linguistics has concentrated on

a (non-incremental) version of this problem for a number of years and a number
of successful and accurate ‘part-of-speech taggers’ have been built (e.g.
Weischedel et al, 1993; Brill, 1995). While a number of heuristic tagging
algorithms have been proposed, the majority of modern taggers are statistically

based, relying on distributional information about language (DeRose, 1988;
Weischedel et al, 1993; Ratnarparkhi, 1996; see also Charniak, 1997 for
discussion). It is this set of taggers that we suggest is most suitable for an initial
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model of statistical lexical category disambiguation. They provide a
straightforward learning algorithm based on prior experience, are comparatively
simple, employ a predictive and uniform decision strategy (i.e. don’t make use of
arbitrary or ad hoc rules), and can be naturally adapted to assign preferred lexical

category tags incrementally.
The SLCM, as with part-of-speech taggers, is based on a Hidden Markov

Model (HMM), and operates by probabilistically selecting the best sequence of

category assignments for an input string of words.4 Let us briefly consider the
problem of tag assignment from the perspective of probability theory. The task
of the SLCM is to find the best category sequence (t1 … tn) for an input sequence
of words (w1 … wn). We assume that the ‘best’ such sequence is the one that is

most likely, based on our prior experience. Therefore the SLCM must find the
sequence (t1 … tn) such that P(t1 … tn, w1 … wn) is maximised. That is, we want to
find the tag sequence that maximises the joint probability of the tag sequence and

the word sequence.
One practical problem, however, is that determining such a probability

directly is difficult, if we wish to do so on the basis of frequencies in a corpus (as
in the case of taggers) or in our prior experience (as would be the case for the

psychological model). The reason is that we may have seen very few (or quite
often no) occurrences of a particular word-tag sequence, and thus probabilities
will often be estimated as zero. It is therefore common practice to approximate
this probability with another which can be estimated more reliably. Corley and

Crocker (2000) argue that the SLCM approximates this probability using
category bigrams, as follows:

The two terms in the right hand side of the equation are the two statistics that
we hypothesise to dominate lexical category decisions in the SLCM. P(wi|ti) –
the unigram or word-category probability – is the probability of a word given a

                                                          
4 See Corley and Crocker (in press) or Corley (1998) for a more thorough exposition of HMM

taggers and the model being assumed here. See also Charniak (1993;1997), for more general and
more formal discussion.

P(t0,...tn,w0,...wn) ≈ P(wi | ti)P(ti | t i − 1

i =1

n

∏ )
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particular tag.5 P(ti|ti-1) – the bigram or category co-occurrence probability – is
the probability that two tags occur next to each other in a sentence. While the
most accurate HMM taggers typically use trigrams (Brants, 1999), Corley and
Crocker (2000) argue that the bigram model is sufficient to explain existing data

and is simpler (requires fewer statistical parameters). It is therefore to be
preferred as a cognitive model, until evidence warrants a more complex model.

Estimates for both of these terms are typically based on the frequencies

obtained from a relatively small training corpus in which words appear with their
correct tags. This equation can be applied incrementally. That is, after perceiving
each word we may calculate a contingent probability for each tag path
terminating at that word; an initial decision may be made as soon as the word is

seen. Figure 1 depicts tagging of the phrase “that old man”.

Each of the words has two possible lexical categories, meaning that there are

eight tag paths. In the diagram, the most probable tag path is shown by the
sequence of solid arcs. Other potential tags are represented by dotted arcs.

The tagger’s job is to find this preferred tag path. The probability of a

sentence beginning with the start symbol is 1.0. When ‘that’ is encountered, the
tagger must determine the likelihood of each reading for this word when it
occurs sentence initially. This results in probabilities for two tag paths – start
followed by a sentence complementiser and start followed by a determiner. The

calculation of each of these paths is shown in Table 1.

                                                          
5 The use of P(w|t) makes the model appear top-down. See Corley (1998, pp. 85-87) for how this

(apparently generative) statistical model is actually derived from an equation based on bottom-up
recognition. See also Charniak (1997) for discussion.

Figure 1: Tagging the sequence "that old man"

start that old man

s-comp                   adj                         verb

 det                       noun                       noun
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Table 1: Tagging "that old man"; stage 1 - "that"

Path Probability
1 scomp P(“that”|scomp)P(scomp|start)
2 det P(“the”|scomp)P(det|start)

While “that” occurs more frequently as a sentence complementiser than as a
determiner in absolute terms, sentence complementisers are relatively
uncommon at the beginning of a sentence. Therefore tag path 2 is likely to have

a greater probability.
The next word, “old”, is also category ambiguous as either an adjective or a

noun. There are therefore four possible tag paths up until this point. Table 2
shows the calculations necessary to determine the probability of each of them.

Table 2: Tagging "that old man"; stage 2 - "old"

Path Probability
1.1 scomp-adj P(“old”|adj)P(adj|scomp)P(path1)
1.2 scomp-noun P(“old”|noun)P(noun|scomp)P(path1)
2.1 det-adj P(“old”|adj)P(adj|det)P(path2)
2.2 det-noun P(“old”|noun)P(noun|det)P(path2)

In this case, “old” is far more frequently an adjective than a noun, and so this
is the most likely reading. As an adjective following a determiner is more likely

than one following a sentence complementiser, path 2.1 becomes far more
probable than 1.1.

The process is identical when “man” is encountered. There are now eight tag

paths to consider, shown in Table 3. As “man” occurs more frequently as a noun
than a verb, and this reading is congruent with the preceding context, path 2.1.2
is preferred.

Table 3: Tagging "that old man"; stage 3 - "man"

Path Probability
1.1.1 scomp-adj-verb P(“man”|verb)P(verb|adj)P(path1.1)
1.1.2 scomp-adj-noun P(“man”|noun)P(noun|adj)P(path1.1)
1.2.1 scomp-noun-verb P(“man”|verb)P(verb|noun)P(path1.2)
1.2.2 scomp-noun-noun P(“man”|noun)P(noun|noun)P(path1.2)
2.1.1 det-adj-verb P(“man”|verb)P(verb|adj)P(path2.1)
2.1.2 det-adj-noun P(“man”|noun)P(noun|adj)P(path2.1)
2.2.1 det-noun-verb P(“man”|verb)P(verb|noun)P(path2.2)
2.2.2 det-noun-noun P(“man”|noun)P(noun|noun)P(path2.2)
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So far, we have assumed that it is necessary to keep track of every single tag
path. This would make the algorithm extremely inefficient and psychologically
implausible; as the length of the sentence grows, the number of possible tag

paths increases exponentially. However, a large number of paths which will
never be ‘most probable’ can rapidly be discarded, using a standard dynamic
programming solution – the Viterbi (1967) algorithm (see Charniak (1993) for

explanation). This algorithm is linear; this means that the amount of work
required to determine a tag for each word is essentially constant, no matter how
long the sentence is. Indeed, this property contributes directly to the
psychological plausibility of this mechanism over more complex alternatives.

We have argued that taggers such as the SLCM are, in general, extremely
accurate (approaching 97% – see Charniak (1997), Brants (1999)). However,
they have distinctive breakdown and repair patterns. Corley and Crocker (2000)

argue that these patterns are very similar to those displayed by people upon
encountering sentences containing lexical category ambiguities. In particular,
they show how the SLCM, when trained on a standard corpus of English, models
the following experimental results:

 ‘That’ Ambiguity (Juliano & Tanenhaus, 1993):  In this study, Juliano and
Tanenhaus investigated the initial decisions of the HSPM when it encounters the
categorially ambiguous word “that”, in both sentence initial and post verbal
contexts. In sentence initial position, “that” is more likely to be a determiner,

while post-verbally, it is more likely to be a complementiser. Corley and Crocker
provide a simulation demonstrating that the proposed bigram model accounts for
the findings, while a simpler unigram model does not.

Noun-Verb Ambiguities (MacDonald, 1993): Following the study of Frazier
and Rayner (1987), MacDonald investigated the processing of words that are
ambiguous between noun and verb categories, e.g. as in “warehouse fires”, to
determine if semantic bias affected initial decisions. Corley and Crocker show

how the SLCM can straightforwardly account for the findings. This is discussed
in more detail in the next section.

Post-Ambiguity Constraints (MacDonald, 1994): Reanalysis may occur in the
SLCM when the most probable tag sequence at a given point requires revising an

adjacent, previous tag. Corley and Crocker (2000) demonstrate how such



Modular Architectures and Statistical Mechanisms 15

reanalysis in the SLCM can simulate the post-ambiguity constraints investigated
by MacDonald, in which reduced relative clause constructions were rendered
easier to process when the word following the ambiguous verb (simple past vs.
participle) made the participle reading more likely.

New Evidence for the SLCM
The Modular Statistical Hypothesis posits the existence of identifiable

subsystems within the human language processor, and argues for the use of

statistical mechanisms within modules as optimal heuristic knowledge. For the
task of lexical category disambiguation, we have presented a particular modular
statistical mechanism. While our model accounts well for a range of relevant
existing findings, as outlined in the previous section, many of those results were

based on experiments designed to test rather different hypotheses, and as such
provide imperfect and indirect support for the mechanism we have developed.

In this section we review two recent experimental results from Corley (1998)

which directly test the central predictions of the theory. These predictions are:
• The Statistical Lexical Category Hypothesis (SLCH): Initial lexical

category decisions are made on the basis of frequency-based statistics.
• The Modular Lexical Category Hypothesis (MLCH): Lexical category

decisions are made by a pre-syntactic module.

Experiment 1 is concerned with the SLCH; it is designed to determine
whether initial lexical category decisions are affected by the statistical bias of

individual words. Experiment 2 more directly tests the MLCH; the experiment
determines whether initial decisions are made on the basis of lexical statistical
bias even in the face of strong syntactic evidence to the contrary.

Experiment 1: The Statistical Lexical Category Hypothesis

Words that are ambiguous between noun and verb readings are very common
in English. Frazier and Rayner (1987) and MacDonald (1993) both employed
this ambiguity in their experiments; their results were taken as support for the

delay strategy and an interactive constraint-based view respectively. The SLCH
simply asserts that the initial decisions of the HSPM will be strongly influenced
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by frequency-based statistics. For this ambiguity, all other things being equal, the
HSPM will initially prefer a noun reading for a word that is frequency-biased
towards a noun reading, and a verb reading for a verb-biased one.6

Previous studies of this ambiguity have not fully tested this hypothesis. For

example, MacDonald’s (1993) experimental items included only noun-biased
words. In contrast, Corley (1998) produced a controlled set of experimental
items in which both noun-biased and verb-biased conditions were represented.

Example materials are shown below.

Experiment 1: Materials

(a) The woman said that the German makes the beer she likes best.
(b) The woman said that the German makes are cheaper than the rest.

(c) The foreman knows that the warehouse prices the beer very modestly.
(d) The foreman knows that the warehouse prices are cheaper than the others.

In (a) and (b), the ambiguous word (“makes”) is biased towards a verb

reading. In (a) the disambiguating region (“the beer”) also favours this reading.
In contrast, the disambiguating region in (b) favours a noun reading. (c) and (d)
are analogous except that the ambiguous word is noun-biased.

The frequency bias of each of the ambiguous words used in this experiment
was determined from the British National Corpus, chosen for both its size (100
million words) and its relatively balanced and British content. As this experiment
is only designed to test whether statistical bias does have an effect, and not

whether other constraints do not, only strongly biased items were used. The
experimental items were further controlled to ensure that the possible noun
compounds (“German makes”, “warehouse prices”) were plausible but
infrequent and non-idiomatic. This control ensured that contextual bias effects

(MacDonald, 1993) would not be expected to influence the outcome of the
experiment.

                                                          
6 While the model we have presented uses P(wi|ti) and P(t i|ti-1), the second measure has no effect

in this experiment, where the ambiguous word always follows a noun.  This is because P(noun|noun)
and P(verb|noun) are approximately equal (as determined from the BNC and Brown corpora). This
experiment therefore does not bear on the use of the bigram measure which was independently
motivated in Corley and Crocker (in press).
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If the SLCH is correct, reading times in the disambiguating region should
reflect an interaction between bias and disambiguation. In other words, subjects’
initial decisions should depend on the bias of the ambiguous words; we would
therefore expect reading time increases reflecting reanalysis to occur only when

the disambiguating region forces a reading at odds with the bias of the
ambiguous word.

In contrast, a non-statistical model such as the Garden Path theory (Frazier,

1979) predicts the same initial decision in all four conditions. A main effect of
disambiguation would be anticipated, but not one of bias, and no interaction
between bias and disambiguation. Frazier and Rayner’s (1987) delay strategy
also does not predict a main effect of bias or an interaction; any main effect of

disambiguation is compatible with, rather than predicted by, the strategy.
32 subjects took part in the experiment, which was performed as a self-paced

reading study, using a moving window display (Just, Carpenter and Woolley,

1982). The resulting reading times were adjusted for word length using a
procedure described in Ferreira and Clifton (1986).
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Figure 2: Experiment 1 length-adjusted reading times

Results and Discussion

Average length-adjusted reading times obtained for experiment 1 are shown

in Figure 2. Here, c1 is the word preceding the ambiguous word, c2 is the
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ambiguous word and d1…dn is the disambiguating region. V-V indicates that c2
is verb biased, and that the item is disambiguated as a verb, and so on.

The SLCH predicts effects at the start of the disambiguating region; the
results for the first word of the disambiguating region are shown in Figure 3.

These results show a highly significant interaction between bias and
disambiguation (F1 = 8.05, p < .01; F2 = 27.99, p < .001). A planned comparison
of means also revealed a highly significant difference in reading times between

the verb disambiguation conditions (F1 = 8.27, p < .01; F2 = 10.86, p < .01) and a
significant difference between the noun disambiguation conditions (F1 = 4.72, p
< .05; F2 = 7.46, p < .02).

These results indicate that initial lexical category decisions are strongly

influenced by the frequency-bias of the individual ambiguous words; the results
are exactly as predicted by the SLCH and therefore provide very strong support
for it. They are not compatible with any non-statistical model, including the

delay strategy.
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Figure 3: Experiment 1 results for the first word of the disambiguating
region (d1)

Experiment 2: The Modular Lexical Category Hypothesis

The SLCH posits that initial lexical category decisions are made on the basis
of frequency-based preferences. It does not require that no other constraints
influence these decisions; nor does it entail a modular architecture. If we
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presuppose the modular architecture argued for earlier, the SLCH still does not
indicate the existence of a Statistical Lexical Category Module; lexical category
decisions could be made by a statistical parser (e.g. Jurafsky, 1996).

The MLCH addresses the question of modularity, stating that a pre-syntactic

module is responsible for lexical category decisions. Initial lexical category
decisions should not be affected by syntax and ‘higher’ levels of processing. The
MLCH therefore makes interesting predictions where syntactic constraints and

frequency-based lexical category bias are in opposition. For example, in a
syntactically unambiguous sentence containing words that display lexical
category ambiguity, the MLCH asserts that reanalysis effects will be observed if
the initial decision of the lexical category module is syntactically illicit.

Corley’s (1998) experiment 2 examined materials of this nature, again
concerning the noun–verb ambiguity. Examples are given below.

Experiment 2: Materials

(a) The woman said that the German makes are cheaper than the rest.

(b) The woman said that the German make is cheaper than the rest.
(c) The foreman knows that the warehouse prices are cheaper than the others.
(d) The foreman knows that the warehouse price is cheaper than the others.

Example (a) is identical to (b) in experiment 1 – the ambiguous word is verb-
biased, but the disambiguation favours a noun reading. In contrast, (b) is
unambiguous; the plural verb “make” is not syntactically licit following the

singular noun “German”; “make” must therefore be a noun. If (all) syntactic
constraints affect initial lexical category decisions, we would expect this decision
to favour the noun reading despite the verb bias of the lexically ambiguous word.

Examples (c) and (d) both contain noun-biased ambiguous words. In (c) the

disambiguating material favours a noun reading. (d) is again unambiguous – the
plural verb “price” cannot follow the singular noun “warehouse”; “price” must
therefore be a noun.

Experiment 1 determined initial lexical category decisions in the absence of
syntactic constraints. The MLCH asserts that these preferences should not be
changed by the presence of syntactic constraints. We therefore predict that in (a)
and (b), a verb reading will be initially preferred whereas in (c) and (d) a noun
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reading will be preferred.
As all materials are (eventually) only compatible with the noun reading, we

would expect processing difficulty, realised as a reading time increase, to be
evidenced downstream from the ambiguous word in the verb-bias conditions. (a)

is identical to the materials in experiment 1, and we would therefore predict
reading time increases at the disambiguating region. In (b), reading time
increases may appear on the ambiguous word itself. This is because there is

sufficient evidence for higher levels of processing to demand lexical category
reanalysis as soon as the ambiguous word is read. We would therefore predict
that reanalysis, reflected by reading time increases, would start on the ambiguous
word in the verb-biased unambiguous condition. We do not predict any reading

time increases on the noun-biased conditions.
In contrast, any model in which syntax affects initial lexical category

decisions, including interactive constraint-based models, must predict no

reanalysis effects on the unambiguous conditions. The delay strategy predicts
decreased reading times for the ambiguous word and increased reading time for
the disambiguating region in the ambiguous conditions compared to the
unambiguous ones.

Results and Discussion

The method used was the same as that for experiment 1. Average length-
adjusted reading times obtained for experiment 2 are shown in Figure 4. On the
first word of the disambiguating region, a highly significant main effect of bias

was observed (F1 = 20.1, p < .001; F2 = 18.68, p < .001), but there was no main
effect of ambiguity (F1 = 0.26, p > .6; F2 = 0.16, p > .6). This suggests that initial
decisions are based on word bias and ignore syntactic constraints. By the second

word of the disambiguating region, recovery in the verb-bias unambiguous
condition appears complete. In contrast, recovery in the verb-bias ambiguous
condition lags into this word. This suggests that syntax does have a rapid effect
on lexical category decisions, but only after the initial decision has been made.
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Figure 4: Experiment 2 length-adjusted reading times

A planned comparison of means for the ambiguous word (see Figure 5)
reveals a significant difference in reading times for the two verb-biased
conditions (F1 = 5.24, p < .03; F2 = 7.16, p < .015) but not for the noun-biased

conditions (F1 = 0.12, p > .7; F2 = 0.10, p > .75). In the unambiguous verb-bias
condition, subjects experience difficulty reading the lexically-ambiguous word.
This is predicted by the MLCH; syntactic constraints result in a rapid reanalysis

effect but do not affect the initial decision.7

                                                          
7 Thanks to one of the reviewers for pointing out that, as all temporarily ambiguous sentences are

disambiguated towards the noun reading, it might be argued that these results arise from an
experimental-internal bias. However, we believe this suggestion is implausible. If the subjects
developed a strategy of preferring the noun reading when encountering ambiguous items, we would
not expect to observe a significant effect at the start of the disambiguating condition in both verb bias

conditions. Furthermore, this strategy would not explain the crucial observation of a reanalysis effect
in the verb-bias unambiguous condition on the ambiguous word. Development of such a strategy is
also unlikely due to the large number of filler items (80) compared to experimental items (24)
presented to each subject.
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Figure 5: Experiment 2 results for the ambiguous word (c2)

These results are predicted by and strongly support the MLCH (and the

SLCH). They are not compatible with the delay strategy, which predicts a main
effect of ambiguity on both the ambiguous word and the disambiguating region.
These results are also incompatible with any model in which syntax determines
initial lexical category decisions, including some possible interactive constraint-

based models. Finally, the observed effect on the ambiguous word is not
explained by a model in which reading times are sensitive to syntactic
complexity (Just & Carpenter, 1980; MacDonald, 1993). Such a model might

(incorrectly) predict an increased reading time on the ambiguous word in the
verb-bias ambiguous condition (as a verb phrase must be constructed). However,
the observed increase on the verb-bias unambiguous condition compared to the
verb-bias ambiguous condition cannot arise directly from syntactic complexity.

Number agreement might have an effect even in a pre-syntactic module if
contextual information affects initial decisions (as in the SLCM). This is because
the lexical category sequence singular noun followed by plural verb has very low
frequency. If we accept that contextual information is used, then this experiment

provides evidence that it is in some ways coarse-grained. In particular, the lexical
category tags used by the SLCM cannot include number.

Summary of Results

Experiment 1 strongly supported the SLCH and the results were not
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compatible with a model in which frequency-based bias does not affect initial
lexical category decisions. Non-statistical models of lexical category
disambiguation are therefore disconfirmed.

One such model is the delay model, proposed by Frazier and Rayner (1987).

MacDonald’s (1993) study demonstrated that Frazier and Rayner’s results might
have arisen from an artefact in their experiment. Experiment 1 also produced
results that are incompatible with the delay model. In contrast, constraint-based

models tend to be frequency-based and are therefore compatible with the results
reported in experiment 1.

Experiment 2 provided clear evidence that lexical category decisions are
made without regard to syntactic constraints – they are therefore pre-syntactic.

This result supports the MLCH. The experiment also provided initial evidence
that any contextual information used alongside lexical frequency bias (such as
the category bigrams of the SLCM) in determining initial lexical category

decisions must be coarse-grained.
In supporting the MLCH and SLCH, the experiments reported here also

provide direct support for the more general Modular Statistical Hypothesis
proposed at the beginning of this paper. In particular, the results of experiment 2

do not appear compatible with interactive models in which syntactic constraints
may non-modularly resolve lexical category ambiguities.

Summary and Conclusions
We have argued that while statistical mechanisms are commonly taken to be

the province of connectionist, constraint-based models of sentence processing,
they are also highly consistent with a modular perspective. Rather than being
unavoidable side effects of the computational machinery, we argue that statistical

mechanisms will be rationally exploited by modular architectures precisely
because they provide near optimal heuristic decisions in the absence of full
knowledge. Indeed this is a central motivation for the use of statistical language
models in computational linguistics. We have dubbed this general proposal the

Modular Statistical Hypothesis (MSH).
To investigate the MSH, we proposed a specific theory of human sentence

processing, in which lexical category ambiguities are resolved by a post-lexical
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access/pre-syntactic module. In particular we have argued for the Statistical
Lexical Category Module, which adopts the standard tagger algorithm and
exploits word-category unigrams and category bigrams to incrementally estimate
the probability of the most likely category sequence for a given sentence. We

have reviewed the operation of the SLCM, and how it accounts for relevant
existing experimental findings.

We then reviewed the results of two new experiments from Corley (1998)

designed to directly test both our modular and statistical claims concerning
lexical category disambiguation. In both experiments, the predictions of the
SLCM were confirmed, thereby supporting both our specific account of category
disambiguation and the MSH more generally. The results also have implications

for other theories of human sentence processing. While it is true that a
constraint-based, interactive framework can be made to account for these
findings, it does not predict them. That is, such a framework could equally have

been made to account for the opposite findings, while such results would have
disconfirmed our more predictive (and therefore, we argue, methodologically
preferable) modular theory. Regardless, our findings do narrow the space of
possible models, suggesting in particular the systematic priority of ‘bottom-up’

information (e.g. lexical frequency) over ‘top-down’ (e.g. syntactic and
semantic) constraints. Again this follows directly from a modular account, and
requires stipulation within a constraint-based framework (though it may follow
from particular computational realisations of a constraint-based model).

The findings of experiment 2 also present a challenge for linguistic and
psycholinguistic theories which deny the lexical-syntactic divide. These include
syntactic theories such as Head-Driven Phrase Structure Grammar, Lexicalised

Tree Adjoining Grammar, and Categorial Grammars, to the extent that they
claim to be psychologically real (but see Kim and Trueswell (this volume) for a
contrary view). Our findings suggest that category decisions are resolved prior to
decisions concerning syntactic structures, and also suggest that the categories

themselves are relatively coarse-grained, e.g. not including number features.
Finally, we suggest that there is undeniable evidence for the central role of

statistical information in human sentence processing. This is a result which needs
to be incorporated into the range of existing ‘symbolically-based’ models.

However, such statistical mechanisms should not automatically be taken as
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evidence against rational and modular theories. On the contrary, statistics may be
a module’s best friend.
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