Computational Psycholinguistics

Lecture 7: Probabilistic Models of Human Sentence Processing

Afra Alishahi December 15, 2008

Probabilistic Syntax Processing

- Lexical frequencies can contribute to resolving many ambiguities, but not all.
- Does human parser keep track of structural as well as lexical frequencies?
 - Sometimes in contrast with previously suggested principles, such as Late Closure (Frazier)

Someone shot the servant of the actress who was on the balcony.

Relative Clause Attachment

Cross-linguistic RC Preferences

Language	Off-line	On-line
Spanish	high	low
French	high	low
Italian	high	low
Dutch	high	
German	high	low(early), high(late)
English	low	low
Arabic	low	
Norwegian	low	
Swedish	low	
Romanian	low	

• Experienced-based treatment of structural ambiguity?

Tuning Hypothesis

- Tuning Hypothesis (Mitchell et al., 1995):
 - human parser deals with ambiguity by initially selecting the syntactic analysis that has worked most frequently in the past.
 - Further evidence: school children's preferences before and after a period of two weeks in which exposure to high/low examples was increased (Cuetos et al., 1996)

• How to formalize this hypothesis?

The Competition Model

- The Competition Model (MacWhinney et al. 1984)
 - Goal: map from the formal level (surface forms, syntactic constructions, etc) to functional level (meaning, intention)
 - Approach: probabilistically combine various surface cues for choosing the correct functional interpretation
- Focus on the combination of cues, and how the probabilities vary from language to language
 - E.g., assigning thematic roles to grammatical positions (English: word order; German: morphological cues)

Cue Validity

- Cue validity v(c,i): contribution of a cue c to an interpretation i
 - $v(c,i) = \text{availability}(c) \times \text{reliability}(c,i)$
 - $P(c) \times P(i|c) = P(c,i)$
- Combining various cues: $\prod_i P(A|c_i)$
- Comparing two interpretations A and B:

$$P(A|C) = \frac{\prod_i P(A|c_i)}{\prod_i P(A|c_i) + \prod_i P(B|c_i)}$$

Probabilistic Parsing

• Considering the N sentences seen in the past, choose the structure with the highest probability

- How to calculate the probability of a sentence?
 - Maximum likelihood estimation: P(S) = C(S) / N
 - Grain problem: C(S1) = C(S2) = 0; better use probabilities of the smaller chunks, but how small?

Stochastic CFGs

• Augment standard context free grammars by annotating grammar rules with probabilities.

S→NP VP	1.0	NP → NP PP	0.4
PP → P NP	1.0	NP \rightarrow astronomers	0.1
VP → VP NP	0.7	NP → ears	0.18
$VP \rightarrow VP NP$	0.3	NP → saw	0.04
$P \rightarrow with$	1.0	NP -> stars	0.18
V → saw	1.0	$NP \rightarrow telescopes$	0.1

- Probabilities of all rules with the same LHS sum to one
- Probability of a parse is the product of the probabilities of all rules applied

Parse Ranking

 $P(t_1) = 1.0 \times 0.1 \times 0.7 \times 1.0 \times 0.4 \times 0.18 \times 1.0 \times 1.0 \times 0.18 = 0.0009072$

Parse Ranking

 $P(t_1) = 1.0 \times 0.1 \times 0.3 \times 0.7 \times 1.0 \times 0.18 \times 1.0 \times 1.0 \times 0.18 = 0.0006804$

Jurafsky (1996)

- Psycholinguistic model of lexical and syntactic access and disambiguation
- Probability of a parse is a combination of
 - Stochastic CFGs
 - Frame probabilities of individual items
- Architecture: incremental, bounded parallel
 - Computation of parse probabilities is incremental
 - Least probable parses are pruned

Frame Preferences

The women discussed the dogs on the beach.

*t*₁: The women discussed them (the dogs) while on the beach.
*t*₂: The women discussed the dogs which were on the beach.

Frame Preferences

The women kept the dogs on the beach.

*t*₁: The women kept them (the dogs) on the beach.
 *t*₂: The women kept the dogs which were on the beach.

Construction Preferences

Construction Preferences

Beam Search and Garden Path

- Prune low probability parses via beam search
 - Assumption: if the relative probability of a parse with respect to the best parse drops below a certain threshold, it will be pruned
- Pruned parses are predicted to reflect gardenpath sentences

Frame and Construction Probs

The horse raced past the barn fell.

 $p(race, \langle NP NP \rangle) = 0.08$ $NP \rightarrow NP XP 0.14$ t_2 : S NP NΡ VP the horse raced $p(t_1) = 0.0112$ (dispreferred)

Frame and Construction Probs

The bird found in the room died.

Setting Beam Width

sentence	probability ratio
the complex houses	267:1
the horse raced	82:1
the warehouse fires	3.8:1
the bird found	3.7:1

Claim: a tree is pruned, and therefore a gardenpath, if the probability ration is greater than **5:1**

Open Issues

- Incrementality: can we make more fine grained predictions about the time course of ambiguity
- Relative difficulty: Jurafsky doesn't distinguish the relative difficulty of parses/interpretations that remain in the beam
- Memory: no account for memory load within a sentence (e.g. centre embeddings)
- Coverage: small, manually designed lexicon and grammar; tested on a handful of examples

A wide-coverage model: ICMM

- ICMM: Incremental Cascaded Markov Model (Crocker & Brants, 2000)
 - Standard HMM POS tagger for lexical categories, similar to SLCM
 - Structural probabilities computed as in a SCFG
- Wide coverage:
 - A fully implemented parser, trained on parsed corpora (Brown, WSJ, NEGRA)
 - Adapted to operate incrementally

Probabilistic Tagging & Parsing

 Markov Models for part-of-speech tagging use `horizontal' probabilities (e.g., SLCM)

- Stochastic CFGs use `vertical' probabilities (e.g., Jurafsky)
- Cascaded Markov Models apply `horizontal' probabilities to levels higher than parts-of-speech

Incremental Cascaded Markov Models

- A parse consists of different layers of nodes
 - Each Markov model layer consists of a series of nodes corresponding to phrasal (syntactic) categories
 - Transitions correspond to trigram category probabilities
- Incremental (word-by-word) processing
 - Build hypotheses for all layers as soon as a word is read
 - Use each Markov model layer as a probabilistic filter, where only highest probability sequences are passed to the next layer

ICMM: Summary

- Advantages:
 - Wide coverage: accounts for a range of experimental findings concerning lexical and syntactic ambiguities
 - Cognitive plausibility: the model is incremental and uses limited memory
- Limitations:
 - Makes predictions about time course, but only at a coarse-grained level
 - Does not include verb subcategorization preferences

Summary & Conclusions

- Motivation: People process language: rapidly, robustly, and accurately
 - Experimental evidence for probabilistic mechanisms
- SLCM: Simple, robust account of lexical category disambiguation
- Jurafsky: Probabilistic parser that models a range of local ambiguities
- ICMM: Incremental, broad coverage parser, combines SLCM & Jurafsky

Remaining Problems

- Integrating plausible parsing mechanisms:
 - Either bounded parallel, or serial (momentary parallel) with reanalysis
- Investigating more plausible `optimal functions'
 - More linguistically informed probabilistic models (lexical, semantic ...)
 - Integration with non-probabilistic decision strategies (e.g., recency)
 - More sophisticated integration of memory load constraints