Computational Psycholinguistics

Lecture 12: Connectionist Models of Language Processing

Afra Alishahi February 2, 2009

(based on slides by Matthew Crocker and Marshall Mayberry)

Connectionist Modeling

- Connectionism was proposed as an alternative to the symbolic accounts of information processing
 - Motivation: design computers inspired by brain
 - Key ideas: distributed, implicit representations; dense connectivity; communication of 'real values' not 'symbols'; single mechanism for rules and exceptions
- A functionalist assumption of language:
 - knowledge of language develops in the course of learning how to perform primary communicative tasks of comprehension and production

Overview

- An input stimulus causes a pattern of activation on the first layer
 - Activations are then propagated through the network
 - Weights determine the influence of unit on each other
 - The output is the pattern of activation on final layer
- Learning aims to reduce the discrepancy between actual and desired output patterns of activation
 - Delta rule changes the weights of successive epochs
 - Training is complete when **error** is sufficiently reduced

Representing Time

- Many cognitive functions involve processing sequences of inputs/outputs over time:
 - Sequences of sounds to produce a particular word
 - Sequences of words encountered incrementally
- Represent the serial order of the input with the dimensionality of the input vector
- E.g., Allen (1997)

Time as Spatial Order

- **Buffering** of events before processing, and processing the input all at once
 - Maximum sequence length (duration) is fixed
 - Does not easily distinguish relative versus absolute temporal position, e.g.

 $\begin{array}{c} 0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \\ \end{array}$

- Similar patterns are spatially distant
- Most importantly, in contrast with incrementality
- We need a more general representation of time

Providing Context

- Output depends on the activation pattern in hidden units, which in turn depends on the current input
- Ideally, we want the previous activities to also affect the output

Providing Context

- Simple Recurrent Networks: Elman (1989)
 - keep a copy of the hidden units from the previous step

Simple Recurrent Networks

- Simple Recurrent Networks (SRNs) are trained to predict the next item
 - SRNs can learn any input sequence
- Hidden units are connected to context units:
 - These correspond to states: they remember the state of the network on the previous time step
 - **Dynamic memory**: identical inputs can be treated differently depending on context

SRNs

- Context units are direct copies of hidden units
 - Connections are one-to-one
 - Weights are fixed at 1.0, and not modified during training

- Connections from context units to hidden units are modifiable
 - Weights are learned just like all other connections
 - Network is trained via the back-propagation learning

Structure in Letter Sequences

- Training an SRN to learn simple transitions between adjacent letters in a sequence
 - Rules for word formation: $b \rightarrow ba$ $d \rightarrow dii$ $g \rightarrow guuu$
 - The 3 consonants were randomly combined to generate a 1000 letter sequence

dbgbdd... → diibaguuubadiidii...

 Each letter was converted to a 6 bit representation Consonant Vowel Interrupted High Back Voiced
1 0 1 0 0 1
1 0 1 0 1
1 0 1 1 0 1
1 0 1

Training & Performance

• Architecture:

- Training:
 - Each input vector is presented
 - Network is trained to predict the next input
 - 200 passes through the sequence

• Tested on another random sequence

Error Pattern

• Global error of the network for the test sequence:

- Predict which (and how many) vowels follow a consonant is easier than predicting consonants
 - Low error on predicting vowels
 - High error on predicting consonants

Deeper analysis of performance

• We can examine the error for the individual bits, e.g. bit 1 (Consonant) and 4 (High)

- All consonants have the same value for feature 1 but not 4
- Network has learned that after the correct number of vowels, *some* consonant is expected

Discovering Word Boundaries

- Existence of words is often taken for granted, but infants face an unsegmented acoustic stream
 - How do they learn to identify word boundaries?
- Simulation: predicting the next sound Manyyearsagoaboyandgirllivedbytheseatheyplayedhappily
 - Task: receive a phoneme and predict the next one
- At time *t*, the network knows the current input (phoneme at time *t*) and the results of processing at time *t* -1 (context units)

Structure of Network & Input

- Input: an approximation of the acoustic signal
 - 200 sentences of length 4 to 9 words, from a lexicon of 15 words
 - Each letter converted to a random 5 bit vector
- Training: 10 complete passes through the sequence

nt	Out	put
m	0000	a
а	0111	n
п	1100	y
У	1100	y .
У	0010	e
0	0000	8
а	1001	r
7	1001	5
s	0000	a
а	0011	g
g	0111	0
	nt a n y y o a r s a g	m Out; m 0000 a 0111 n 1100 y 1100 y 0010 e 0000 a 1001 r 1001 s 0000 a 0011 g 0111

Predicting the Next Sound

• High error at the onset of words, but error decreases during a word

 High error at word onset demonstrates the network has discovered word boundaries

Remarks

- Network learns statistics of co-occurrences
 - Criteria for boundaries is relative
 - Mistakes common compounds as individual words
 - Similar pattern in early child language acquisition
- Not a model of word acquisition
 - Listeners sometimes make 'predictions' from partial input, but it is not the main goal of language learning
 - Sound co-occurrences are only part of what identifies words

Discovering Lexical Classes

- Surface word order is influenced by many factors
 - Syntax, selectional and subcategorization restrictions, discourse factors ...
 - Symbolic treatments appeal to relatively abstract, interacting rules which often depend on rich, hierarchical representations
- Can lexical classes be inferred from word order?
 - Verbs typically follow auxiliaries and precede determiners, nouns are often preceded by determiners
 - Also, selectional information: verbs are followed by specific kinds of nouns

Network Architecture

• Architecture:

Input:

- 1000 sentences of length 2-3, based on 29 words from 13 classes
- Localist representation of each word (31 bits)
- A sequence of 27,354 vectors

Input Structure

Categories of lexical items

Category	Examples	
NOUN-HUM	man,woman	
NOUN-ANIM	cat,mouse	
NOUN-INANIM	book,rock	
NOUN-AGRESS	dragon,monster	
NOUN-FRAG	glass,plate	
NOUN-FOOD	cookie,sandwich	
VERB-INTRAN	think,sleep	
VERB-TRAN	see,chase	
VERB-AGPAT	move,break	
VERB-PERCEPT	smell,see	
VERB-DESTROY	break,smash	

Template for sentence generator

WORD 1	WORD 2	WORD 3
NOUN-HUM	VERB-EAT	NOUN-FOOD
NOUN-HUM	VERB-PERCEPT	NOUN-INANIM
NOUN-HUM	VERB-DESTROY	NOUN-FRAG
NOUN-HUM	VERB-INTRAN	
NOUN-HUM	VERB-TRAN	NOUN-HUM
NOUN-HUM	VERB-AGPAT	NOUN-ANIM
NOUN-HUM	VERB-AGPAT	
NOUN-ANIM	VERB-EAT	NOUN-FOOD
NOUN-ANIM	VERB-TRAN	NOUN-ANIM
NOUN-ANIM	VERB-AGPAT	NOUN-INANIM
NOUN-ANIM	VERB-AGPAT	

Predictions

- Prediction is non-deterministic: next input is not random, but cannot be precisely predicted
 - Word order and selectional restrictions should partially constrain what words can appear next
 - The network should learn the frequency of occurrence of each possible successor
 - Output bit should be activated for all possible following words, with varying probability

Evaluation Procedure

- Compare network output to the probability vectors for each possible next word, given the current word and and context
 - Train the network on the input stream, and adjust weights
 - After training, for each word in a context, save the activation pattern of the hidden units as a vector
 - Hierarchically cluster the resulting vectors
- Lexical items with similar properties (i.e., contexts) are expected to be clustered together

Cluster Analysis

 The network has discovered nouns vs. verbs, verb subcategorization, animates/inanimates, humans/animals, foods/breakables/objects...

Unknown Words

- In test data, replace *man* with a novel word *zog*
 - *Zog* is represented by a new input vector
 - *Zog* bears the same relationship to other words as *man* did in the original training set
- The new word's internal representation is based on its behaviour
- *Zog* is clustered in the exact same way as *man*

General discussion

- The network learns hierarchical lexical classes
 - Classes are inferred from word order / co-occurrence
 - Learning is purely based on observable data
 - No pre-specified localist representations, etc.
- Network predictions:
 - Context effects in processing: human lexical access is sensitive to context (e.g., Tabossi),
 - but there is evidence against immediate context effects in lexical access (e.g. Swinney)
 - Word classes are predicted, not individual words

Summary of SRNs ...

- Finding structure in time/sequences:
 - Learns dependencies spanning over many transitions
 - Learns dependencies of variable length
 - Learns to make partial predictions from input
- Learning from various input encodings:
 - Structured: letter sequences where consonants have a distinguished feature
 - Random: words mapped to random 5 bit sequence
- Learns both general categories (types) and specific behaviours (tokens) based on context

Summary of Connectionist Models

- Connectionist models have appealing properties
 - Distributed computation and representation, single mechanism for the learning and use of knowledge
- But they have many limitations
 - Importance of starting small: more complex structures can only be learned after learning the simple ones
 - Scalability: they are not easily expandable to larger vocabularies and grammars
- Outstanding problems
 - Is grammatical structure really being learned?
 - Full linguistic complexity is hard to model (e.g., ambiguity, structural dependencies, ...)

Moving to Probabilistic Models

- Statistical/Probabilistic Models
 - Connectionist models have a highly probabilistic nature:
 - Learn regularities in a way which is sensitive to and reflect frequency
 - We can model language by directly applying probabilistic theory
 - We can combine symbolic and probabilistic approaches to achieve hybrid symbolic/sub-symbolic systems.