
Lecture 11: Introduction to 
Connectionist Models

Afra Alishahi
January 26, 2009

(based on slides by Matthew Crocker and Marshall Mayberry)

Computational Psycholinguistics



Connectionist Modeling

• Connectionism was proposed as an alternative to 
the symbolic accounts of information processing

• Motivation: design computers inspired by brain

• Key ideas: distributed, implicit representations; dense 
connectivity; communication of ‘real values’ not 
‘symbols’; single mechanism for rules and exceptions

• A functionalist assumption of language:
•  knowledge of language develops in the course of 

learning how to perform primary communicative 
tasks of comprehension and production



Connectionist Information 
Processing

• The idea of connectionist models is based on 
simple neuronal processing in the brain

• Basic computational operation: one neuron receives 
input signals, processes them and passes the resulting 
information to other neurons

• Learning: changing the strength of the connections 
between neurons

• Cognitive processes: using large numbers of neurons 
to perform these basic computations in parallel

• Information is distributed across many neurons and 
connections



Assumptions about the brain ...

• Neurons integrate information: all neuron types 
sum inputs and compute an output

• Neurons encode the strength of their input in the 
output they pass to other neurons: firing rate

• Brain structure is layered: information passes 
through sequences of independent structures

• Influence of one neuron upon another depends 
on connection strength

• Learning is accomplished through changing 
connection strengths



Neurons versus Nodes



Basic Structure of Nodes

• Input connections represent the flow of activation from 
other nodes or some external source

• Each input connection has a weight, which determines its 
influence on the node

• A node i has an output activation ai = f(neti) which is a 
function of the weighted sum of its input activations, neti

net i = wijaj
j
∑

∑ƒ(neti)Node
inputs

Node
output

wi1

wi2

wi3

a1

a2

a3

ai



An example

• A one-layer network:

• So the net input for a2 is:

• Consider this network:

• The net input for node a2 is:
1 x .5 + 1 x .25 = 0.75

a0

w20

a1

w21

a3a2

Input nodes

Output nodes
net i = wijaj

j
∑

€ 

net input a2 = w2 0 ⋅ a0 + w2 1 ⋅ a1

1

.5

1

.25

a3a2

Input nodes

Output nodes



About weights

• Node j influences node i by passing information 
about its activity level

• The degree of influence it has is determined by 
the weight connecting node j to node i.

• Weights can be either positive or negative

• Positive weights contribute activation to the net input

• Negative weights lead to a reduction of the net input 
activation



Calculating the Activation

€ 

f (neti) = net i
f (1.25) =1.25

€ 

IF neti > T then f (net i) = neti − T
ELSE f (neti) = 0
f (1.25) =1.25 −0.5 = 0.75

€ 

IF neti > T then f (net i) =1
ELSE f (neti) = 0
f (1.25) =1

€ 

f (neti) =
1

1+ e−neti
f (1.25) = 0.777

netinput

ac
tiv

ity

netinput

ac
tiv

ity

netinput

ac
tiv

ity

• Linear activation

• Linear threshold 
(T=0.5)

• Binary threshold 
(T=0.5)

• Nonlinear activation 
(Sigmoid or “logistic”)



About activation functions

• The activation function defines the relationship 
between the net input to a node, and its 
activation level (which is also its output)

• Most common in connectionist modeling:  
sigmoid/logistic

• Activation ranges between 0 and 1

• Rate of activation change is highest for net inputs 
around 0

• Models neurons by implementing thresholding, a 
maximum activity, and smooth transition between 
states.



Summary of network architecture

• The activation of a unit i is 
represented by the symbol ai

• The extent to which unit j 
influences unit i is determined by 
the weight wij

• The input from unit j to unit i is 
the product: aj * wij

• For a node i in the network:

• The output activation of node i is 
determined by the activation 
function, e.g. the logistic:

€ 

neti = wija j
j
∑

€ 

ai = f (neti) =
1

1+ e−neti



Learning in Neural Networks

• Supervised learning in connectionist networks:
• Adjusting connection weights to reduce the 

discrepancy between the actual output activation 
and the target output activation

• Procedure:
• An input is presented to the network
• Activations are propagated through the network
• Outputs are compared to ‘correct’ outputs
• Weights are adjusted to reduce error



The Delta Rule

• The Delta Rule:

• (ti - ai) is the difference between the target 
output activation and the actual activation 
produced by the network

• aj is the activity of the contributing unit j

• ε is the learning rate parameter. 

• How rapidly do we want to make changes?

€ 

Δwij = ti − ai( )a jε



Training the Network

• Consider the AND function
• Present stimulus: 0  0
• Compute output activation
• Compared with desired output (0)
• Use Delta rule to change weights
• Present next stimulus:  0  1
• ...

• Key terms: 
• Epoch: a single presentation of all training examples

• Sweep: a presentation of a single training example

Input 1 Input 2 Output

0 0 0
0 1 0
1 0 0
1 1 1



15

Perceptrons (Rosenblatt, 1958)

aout

ain

w

€ 

net out = w ⋅ ain
in
∑

€ 

aout =1 if netout > θ

     = 0 otherwise

€ 

The error, δ = (tout − aout )
Δθ = −εδ

Δw = εδain

• Perceptron: a simple, one-layer network:

• Binary threshold activation function:

• Learning: the perceptron convergence rule
• Two parameters can be adjusted:

• The threshold
• The weights



Global Error

• We can define the global error of the network, as 
the average error across all input patterns, k:

• One common measure is the square root of mean error 
or Root Mean Square (RMS)

• Squaring avoids positive and negative errors canceling 
each other out

  

€ 

rms error =

(
r 
t k −

r 
o k )

k
∑ 2

k



Learning in a nutshell

• Patterns are vectors on [0,1]

• Input pattern is passed through a weight matrix

• Net values are summed and squashed to [0,1]
• Output pattern is compared to target pattern

• Error between output and target is propagated back 
through weight matrix

• Weights are changed to                                               
minimize error



Hidden Units 

O

h1 h2

+1 +1

i1 i2

+1+1 -1 -1

€ 

Δw = 2εδF *ain

• One-layer networks can only simulate simple 
problems, whereas multi-layer networks can learn 
any mapping function 

• Consider the following network:
• two-layer, feedforward
• 2 units in a ‘hidden’ layer

• Current learning rule can’t be used for hidden units:
• We don’t know what the ‘error’ is at these nodes 

• Delta rule requires that we know the desired activation



Backpropagation of Error

€ 

(a) Forward propagation of activity :

net out = woh ⋅ ahidden∑
aout = f (net out )

€ 

(b) Backward propagation of error :

errhidden = woh ⋅ δout∑
δhidden = ′ f (net hidden ) ⋅ errhidden

i1

i2

i3

h1

h2

h3

o1

o2

o3

i1

i2

i3

h1

h2

h3

o1

o2

o3



20

Example: Learning the Past Tense

• The problem of English past tense formation:
• Regular formation:  stem + ‘ed’
• Irregulars do show some patterns:

• No-change: hit » hit (all end in a ‘t’ or ‘d’)
• Vowel-change: ring » rang,  sing » sang 
• Arbitrary: go » went

• Over-regularizations are common:  “goed”
• These errors often occur after the child has already 

produced the correct irregular form:  “went”

• The U-shaped learning curve has to be explained



A Symbolic Account:  Dual-Route 
Model

• General pattern of behaviour:

• At first, children learn past tenses by rote learning (i.e. 
memorizing each form)

• Later they  recognize ‘the rule’, and form a general 
device to add the ‘ed’ suffix to each verb form

• Forms do not need to be memorized anymore, but this 
leads to overgeneralization

• Finally, they distinguish which forms can be generated 
by the rule, and which must be stored as exceptions



A Symbolic Account:  Dual-Route 
Model

List of exceptions
(Associative memory)

Regular route
(Rule based)

Input stem

Output past tense

Blocking

• Errors result from the transition from rote learning to 
rule-governed

• Recovery occurs after sufficient exposure to irregulars
• More frequency results in increased ‘strength’

• Prediction: faster recovery for frequent irregulars



Learning the Rule

• This model requires two qualitatively different 
types of mechanisms

• It accounts for the U-shaped curve and the 
observed dissociation 

• Children make mistakes on irregular forms only
• No explicit account of how the rule is learned 
• Perhaps the notion of inflection is innately 

specified, and need not itself be learned: 
• The inflectional mechanism is triggered by the 

environment or maturation
• The language specific manifestation must be learned



Criticisms

• Early learning tends to be focussed on irregular 
verbs

• Irregular sub-classes (hit, sing, ring) might lead to 
incorrect rule learning

• These do occur, but typically late in learning
• How are ‘good’ rules distinguished and selected?

• English is unusual in possessing a large class of 
regular verbs (only 180 irregulars)

• Only 20% of plurals in Arabic are regular
• Norwegian has 2 regular forms for verbs:  3-route 

model ?



Rummelhart and McClelland 
(1986)

• A single-layer feed-forward network (perceptron)
• Input:  a phonological representation of the stem 
• Output:  a phonological representation of the past tense 

• Training:
• First trained on 10 high frequency verbs, then on 420 

(medium frequency) verbs (80% regular)

• Early in training, shows tendency to overgeneralize
• End of training, exhibits near perfect performance
• Generalized reasonably well to 86 low frequency verbs



26

Rummelhart and McClelland 
(1986)



Performance of R&M (1986)

• Criticisms:
• U-shape performance depends on sudden changes 

from 10-420 in the training regime

• Most of the 410 new verbs are regular, overwhelming 
the network and leading to overgeneralization

• Justification:  children do exhibit vocabulary 
spurt at end of year 2

• But errors typically occur at end of year 3

• Vocabulary spurt is mostly due to nouns



Plunkett and Marchman (1993)

• A standard feedforward network                      
with one hidden layer

• Initially, the model is trained to                                  
learn the past tense of 10 regular                         
and 10 irregular verbs

• Training proceeds using the standard backprop 
algorithm, in response to error between actual 
and desired output

• Is this plausible?

20 phonological units

30 hidden units

20 phonological units



Properties of P & M

• Highly sensitive to training environment:
• Onset of overgeneralization is closely bound to a 

‘critical mass’ of regular verbs learned by the child

• Requires more training on arbitrary irregulars (go/
went), which are highly frequent in the language

• More robust for no-change verbs (hit, put) which are 
more numerous (type) and less frequent (token)

• Models the frequency × regularity interaction:
• Faster reaction time for high frequency irregulars than 

low frequency ones

• No advantage for regulars



Criticism

• Pinker & Prasada argue that the (idiosyncratic) 
statistical properties of English help the model:

• Regulars have low token frequency but high type 
frequency: facilitates generalization

• Irregulars have low type frequency but high token 
frequency: facilitates rote learning mechanism 

• They argue no connectionist model can 
accommodate default generalization for a class 
which has both low type and token frequency

• Default inflection of plural nouns in German appear to 
have this property



Competitive Networks: Overview

• Operation:
• Given a particular input, output units compete with 

each other for activation
• The winning output unit is the one with the greatest 

response activation

• During training:
• Connections to the winning unit from the active input 

units are strengthened
• Connections from inactive units are weakened 

• Training is unsupervised
• The network will categorize inputs based on similarity
• Learns to capture statistical properties of input space



32

Architecture of Competitive 
Networks

€ 

netinput i = a jwijj∑

• A simple network:

• Inputs are fully connected to outputs
by feed-forword connections

• Outputs may be connected to each other
by inhibitory connections

• Outputs compete until only one remains active

• Or, simply the unit with highest activation wins

• Active units force other units to become inactive



33

An example

0 1 2

3 4

0.5
0.50.30.20.2

0.3

0 1 2

3 4

0.75
0.50.650.20.1

0.3

Consider the following network:
• Input pattern: (0 1 1)

netinput3  =  (0x0.3+1x0.2+1x0.5)
           = 0.7
netinput4  =  (0x0.2+1x0.3+1x0.5)
           = 0.8

• Since unit4 wins, no changes in connections to unit3 
• For connections to unit4:

• ∆wij  = ε (aj - wij)
• ∆wij  = 0.5 (0.0−0.2  1.0−0.3  1.0−0.5)
• ∆wij  = 0.5 (−0.2  0.7  0.5)
• ∆wij  = (−0.1  0.35  0.25)



Overall Behaviour

• Net input to an output unit is greatest when its 
weight vector is most similar to the input vector

• Training makes the weight vector for a particular 
winning unit more similar to the input pattern

• The weight vector for a particular output unit 
learns to respond to similar input patterns

• The learned weights will be an average of the patterns, 
based on the frequency of presentation during training

• The competitive network can therefore learn to 
categorize similar inputs without any ‘teacher’



Summary

• Connectionism is inspired by information 
processing in the brain

• An input stimulus causes a pattern of activation 
on the first layer

• Activations are then propagated through the network
• Weights determine the influence of unit on each other
• The output is the pattern of activation on final layer

• Learning aims to reduce the discrepancy between 
actual and desired output patterns of activation

• Delta rule changes the weights of successive epochs
• Training is complete when error is sufficiently reduced


