Humor Detection Classification Approaches

Miriam Käshammer

Course: Computational Approaches to Creative Language Universität des Saarlandes

June 29, 2010

Humor Detection/Humor Recognition

Automatically decide whether a document (e.g. text, paragraph, sentence etc.) is humorous or not.

Challenging task

- What is humor?
 - Most commonly: what makes people laugh is humorous.
 - Many definitions and theories of humor (philosophy, linguistics, psychology)
 - Here: verbally expressed humor; subclass: jokes
- Sense of humor varies from person to person.
- Humor recognition is not an easy task for humans.

Motivation

Humor is an essential element of all verbal communication.

- Natural language systems should be able to handle humor.
 - Improve user-friendliness
 - Improve human-computer interaction
 - Develop better intelligent systems
 - Improve second language learning
- Information retrieval: Discard unnecessary or irrelevant information
- Search for unintended humor in serious text, i.e. diplomatic note, presidential speech

Approaches

Classification techniques

Learning to Laugh (Automatically): Computational Models for Humor Recognition Mihalcea, R. and Strapparava, C. (2006)

Identification of "Knock-Knock" jokes, heuristics based on the particular joke structure

Computationally Recognizing Wordplay in Jokes Taylor, J. M. and Mazlack, L. J. (2004)

Ontological semantics

Computational Detection of Humor: A Dream or A Nightmare? Taylor, J. M. (2009)

Outline

Introduction

2 Classification Approaches

Data Sets

- A. Classification Using Heuristics
- B. Text Classification
- C. Combination

Outline

- 2 Classification Approaches
- 3 Evaluation

4 Conclusion

Data Sets A. Classification Using Heuristics B. Text Classification C. Combination

Overall idea

Hypothesis: Automatic classification techniques represent a viable approach to distinguish between humorous and non-humorous text.

- 4 Labels: humorous vs. non-humorous
- Oefine features:
 - A. humor-specific stylistic features (heuristics)
 - B. content-based features
 - C. combined stylistic and content-based features
- **③** Use labeled data to train a classifier:
 - A decision tree
 - B. Naive Bayes and SVM
 - C. stacked machine learning framework
- Ose the classifier to label the test data and evaluate

Data Sets A. Classification Using Heuristics B. Text Classification C. Combination

Restrictions on the Type of Humor

One-liner

```
Take my advice; I don't use it anyway.
```

"[...] a short sentence with comic effects and an interesting linguistic structure [...]"

- simple syntax
- deliberate use of rhetoric devices (alliteration, rhyme etc.)
- frequent use of creative language constructions to attract the readers' attention
- Humor in general: too ambitious
- Humor-producing features are present in this one and only sentence.

Data Sets

- A. Classification Using Heuristics
- B. Text Classification
- C. Combination

Outline

Introduction

- 2 Classification Approaches
 - Data Sets
 - A. Classification Using Heuristics
 - B. Text Classification
 - C. Combination

3 Evaluation

- Experimental Results
- Discussion

Data Sets

- A. Classification Using Heuristics
- B. Text Classification
- C. Combination

Humorous Data

Web-based bootstrapping process [Mihalcea and Strapparava, 2005]

- \Rightarrow 16.000 one-liners for the experiments
 - I get enough exercise just pushing my luck. Beauty is in the eye of the beer holder. Take my advice; I don't use it anyway.

Data Sets

- A. Classification Using Heuristics
- B. Text Classification
- C. Combination

Non-humorous Data

Four collections of 16.000 sentences from different sources

- Reuters/BNC/Proverbs/OMCS
- similar in structure and composition to the one-liners, but different in their comic effect
- average length of 10-15 words
- \Rightarrow Enforce the classifiers to identify humor-specific features

Data Sets

- A. Classification Using Heuristics
- B. Text Classification
- C. Combination

Non-humorous Data contd.

Reuters titles

from articles published in the Reuters newswire

- short sentences with simple syntax
- phrased to catch the readers' attention

Oil prices slip as refiners shop for bargains.

Data Sets

- A. Classification Using Heuristics
- B. Text Classification
- C. Combination

Non-humorous Data contd.

Reuters titles

from articles published in the Reuters newswire

- short sentences with simple syntax
- phrased to catch the readers' attention

Oil prices slip as refiners shop for bargains.

BNC

sentences from the British National Corpus

no added creativity

The train arrives three minutes early.

Data Sets

- A. Classification Using Heuristics
- **B.** Text Classification
- C. Combination

Non-humorous Data contd.

Proverbs

from an online proverb collection

- condensed sayings
- Some one-liners reproduce proverbs with a comic effect.

Beauty is in the eye of the beholder.

Data Sets

- A. Classification Using Heuristics
- **B.** Text Classification
- C. Combination

Non-humorous Data contd.

Proverbs

from an online proverb collection

- condensed sayings
- Some one-liners reproduce proverbs with a comic effect.

Beauty is in the eye of the beholder.

OMCS

commonsense assertions in English

- simple single sentences
- Jokes often break commonsense understandings.

A file is used for keeping documents.

Data Sets

A. Classification Using Heuristics

- B. Text Classification
- C. Combination

Outline

Introduction

- 2 Classification Approaches
 - Data Sets
 - A. Classification Using Heuristics
 - B. Text Classification
 - C. Combination

3 Evaluation

- Experimental Results
- Discussion

Data Sets A. Classification Using Heuristics B. Text Classification

C. Combination

Stylistic Features

Linguistic theories of humor have suggested stylistic features that characterize humorous text.

Significant and feasible to implement:

- Alliteration
- Antonymy
- Adult slang

Data Sets A. Classification Using Heuristics B. Text Classification C. Combination

Stylistic Features: Alliteration

- Structural and phonetic properties of jokes are at least as important as their content.
- One-liners often rely on attention-catching sounds, enforced through alliteration and word repetition.

Veni, Vidi, Visa: I came, I saw, I did a little shopping.

- Identify and count the alliteration chains in each example in the data set.
- Automatically achieved with a pronunciation dictionary, a longest string matching device and a stopword list of functional words.

Data Sets A. Classification Using Heuristics B. Text Classification

C. Combination

Stylistic Features: Antonymy

• Humor often relies on some form of incongruity, opposition or contradiction.

Always try to be modest and be proud of it.

- Identify the presence of antonyms in a sentence.
- Antonymy relation (and similar-to relation for adjectives) of WordNet.
- Problem of coverage: antonymy feature cannot always be identified.

Introduction Data Sets Classification Approaches A. Classifi Evaluation B. Text C Conclusion C. Combin

Data Sets A. Classification Using Heuristics B. Text Classification C. Combination

Stylistic Features: Adult Slang

 Humor based on adult slang (= sexual-oriented lexicon) is popular.

The sex was so good that even the neighbors had a cigarette.

- Extract the synsets labeled with the domain SEXUALITY from WordNet.
- Check for the presence of these words in each sentence and annotate them accordingly.
- Problem of coverage: adult slang feature cannot always be identified.

Data Sets A. Classification Using Heuristics B. Text Classification C. Combination

Classification Using Heuristics

- Numerical features that act as heuristics
- Parameters to learn: Threshold indicating the minimum value admitted for a sentence to be classified as humorous (or non-humorous).

Data Sets A. Classification Using Heuristics B. Text Classification C. Combination

Classification Using Heuristics

- Numerical features that act as heuristics
- Parameters to learn: Threshold indicating the minimum value admitted for a sentence to be classified as humorous (or non-humorous).
 - $\Rightarrow \text{Decision tree}$

```
alliteration = 0
adult slang = 0
antonymy <= 1 : no
antonymy > 1 : yes
adult slang > 0 : yes
alliteration > 0 : yes
```

Figure: A sample decision tree

Data Sets

- A. Classification Using Heuristics
- **B.** Text Classification
- C. Combination

Outline

Introduction

- 2 Classification Approaches
 - Data Sets
 - A. Classification Using Heuristics
 - B. Text Classification
 - C. Combination

3 Evaluation

- Experimental Results
- Discussion

Data Sets A. Classification Using Heuristics B. Text Classification C. Combination

Content-based Features

Formulation of the humor recognition task as a traditional text classification problem.

 \Rightarrow The sentences themselves represent feature vectors encoding term presence or absence.

Classifiers: Naive Bayes and SVM

Data Sets

- A. Classification Using Heuristics
- **B.** Text Classification
- C. Combination

Outline

Introduction

2 Classification Approaches

- Data Sets
- A. Classification Using Heuristics
- B. Text Classification
- C. Combination

3 Evaluation

- Experimental Results
- Discussion

Introduction Data Sets Classification Approaches A. Classification Using Heuristics Evaluation B. Text Classification Conclusion C. Combination

Combining Stylistic with Content Features

- Jointly exploit stylistic and content features for humor recognition
- Stacked learner:
 - Apply the text classifier
 - 2 Join the output of the text classifier with the stylistic features
 - **③** Feed the newly created vector to a machine learning tool

Experimental Results Discussion

Outline

- 2 Classification Approaches
 - Data Sets
 - A. Classification Using Heuristics
 - B. Text Classification
 - C. Combination

3 Evaluation

- Experimental Results
- Discussion

Experimental Results Discussion

A. Classification Using Heuristics

Humor recognition accuracy using alliteration, antonymy and adult slang

Heuristic	One-Liners			
	Reuters	BNC	Proverbs	OMCS
Alliteration	74.31%	59.34%	53.30%	55.57%
Antonymy	55.65%	51.40%	50.51%	51.84%
Adult slang	52.74%	52.39%	50.74%	51.34%
All	76.73%	60.63%	53.71%	56.16%

Experimental Results Discussion

A. Classification Using Heuristics

Humor recognition accuracy using alliteration, antonymy and adult slang

Heuristic	One-Liners			
	Reuters	BNC	Proverbs	OMCS
Alliteration	74.31%	59.34%	53.30%	55.57%
Antonymy	55.65%	51.40%	50.51%	51.84%
Adult slang	52.74%	52.39%	50.74%	51.34%
All	76.73%	60.63%	53.71%	56.16%

- Training on 1.000 examples, evaluation on the remaining 15.000 examples
- Proverbs and one-liners have the most similar style.
- Reuters titles and one-liners have the most different style.
- Alliteration feature: the most useful indicator of humor

Experimental Results Discussion

B. Text Classification

Humor recognition accuracy using content-based features

	One-liners			
	Reuters	BNC	Proverbs	OMCS
Naive Bayes	96.67%	73.22%	84.81%	82.39%
SVM	96.09%	77.51%	84.48%	81.86%

Experimental Results Discussion

B. Text Classification

Humor recognition accuracy using content-based features

	One-liners			
	Reuters	BNC	Proverbs	OMCS
Naive Bayes	96.67%	73.22%	84.81%	82.39%
SVM	96.09%	77.51%	84.48%	81.86%
Stylistic F.	76.73%	60.63%	53.71%	56.16%

Experimental Results Discussion

B. Text Classification

Humor recognition accuracy using content-based features

	One-liners				
	Reuters BNC Proverbs OMCS				
Naive Bayes	96.67%	73.22%	84.81%	82.39%	
SVM	96.09%	77.51%	84.48%	81.86%	
Stylistic F.	76.73%	60.63%	53.71%	56.16%	

- Again: Reuters titles seem to be the most different from one-liners.
- BNC sentences represent the most similar data set.
 ⇒ Joke content tends to be similar to regular text.
- Interesting: Proverbs and one-liners seem to deal with different topics (despite their stylistic similarity)

Experimental Results Discussion

C. Combination

Humor recognition accuracy using content-based and stylistic features

	O ne-liners			
	Reuters	BNC	Proverbs	OMCS
Combination	96.95%	79.15%	84.82%	82.37%

Experimental Results Discussion

C. Combination

Humor recognition accuracy using content-based and stylistic features

	O ne-li ners			
	Reuters	BNC	Proverbs	OMCS
Combination	96.95%	79.15%	84.82%	82.37%
Text Classif.	96.67%	77.51%	84.81%	82.39%
Stylistic Feat.	76.73%	60.63%	53.71%	56.16%

 No improvement for One-liners/Proverbs and One-liners/OMCS ⇒ not surprising (see first experiment)

Experimental Results Discussion

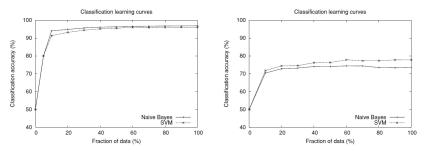
Discussion

- Results prove that automatic classification techniques represent a viable approach for the task of humor recognition.
- Good performance using stylistic and content-based features.
- Initial intuition: one-liners are most similar to other creative text (e.g. Reuters titles or proverbs)
- But: it is more difficult to distinguish humor from regular text (e.g. BNC sentences)
 Still: significant improvement over the baseline with the combined classifier

Experimental Results Discussion

Discussion contd.

Learning curve for humor recognition using text classification (Reuters & BNC)



- Similar-shaped curves for the other negative data sets
- Steep ascent: humorous and non-humorous texts are well-distinguishable
- Plateau: more data is not likely to improve the quality of humor detection

Experimental Results Discussion

Discussion contd.

Additional experiments and results:

Experiment using sentences drawn randomly from the four non-humorous collections

 \Rightarrow Results similar to the results with One-liners/BNC before

- 2 Experiment using uneven class distributions: 75% non-humorous/25% humorous
 - \Rightarrow Still improvement over the baseline

Experimental Results Discussion

Discussion contd.

- Sources of humor in cases where the stylistic and content-based features failed (manual inspection): irony, ambiguity, incongruity, idiomatic expressions, commonsense knowledge
- Semantic classes of the most discriminative content-based features (useful for humor generation): human-centric vocabulary, negation, negative polarity, professional communities, human "weakness"

Outline

- 2 Classification Approaches
 - Data Sets
 - A. Classification Using Heuristics
 - B. Text Classification
 - C. Combination

3 Evaluation

- Experimental Results
- Discussion

Conclusion

A conclusion is simply the place where you got tired of thinking.

(anonymous one-liner, from [Mihalcea and Strapparava, 2006])

- Automatic classification techniques can be successfully applied to the humor recognition task.
- More training data is not likely to improve the performance
 identification of more sophisticated humor-specific features

But:

- Can this approach generalize from one-liners to humor in general?
- How would it be used in the mentioned applications?

References

Mihalcea, R. and Strapparava, C. (2005).

Bootstrapping for Fun: Web-based Construction of Large Data Sets for Humor Recognition.

Proceedings of the Workshop on Negotiation, Behaviour and Language.

Mihalcea, R. and Strapparava, C. (2006).

Learning to Laugh (Automatically): Computational Models for Humor Recognition.

Computational Intelligence, 22(2).

Taylor, J. M. (2009).

Computational Detection of Humor: A Dream or A Nightmare?

International Conference on Web Intelligence and Intelligent Agent Technology - Workshops.

Taylor, J. M. and Mazlack, L. J. (2004).

Computationally Recognizing Wordplay in Jokes.

Proceedings of Cognitive Science Conference, pages 2166-2171.