Variational Inference

Christoph Teichmann Antoine Venant

November 29, 2017

Past Lectures and Today

1. General Principles of Bayesian Inference: define a random quantity of interest \rightarrow define a joint density of probability \rightarrow condition on observed data to obtain a predictive posterior density.
2. The Dirichlet-Multinomial model: how to define prior densities over discrete (finite or countably infinite) probability distributions.
3. MCMC Methods: how to Sample from (and compute expected values under) the posterior distribution when direct computation of the posterior density is not directly feasible.

Past Lectures and Today

1. General Principles of Bayesian Inference: define a random quantity of interest \rightarrow define a joint density of probability \rightarrow condition on observed data to obtain a predictive posterior density.
2. The Dirichlet-Multinomial model: how to define prior densities over discrete (finite or countably infinite) probability distributions.
3. MCMC Methods: how to Sample from (and compute expected values under) the posterior distribution when direct computation of the posterior density is not directly feasible.
4. Variational Inference: Approximate the posterior distribution.

Problem Reminder

- Recall the HMM language model from last session:

- (observed) words $w_{i} \in L$. hidden tags / latent variables $h_{i} \in H$.
- Transition probabilities $\delta\left(h_{i+1} \mid h_{i}\right)$ from hidden states to hidden states.
- Emission probabilities $e\left(w_{i} \mid h_{i}\right)$ in every hidden states.
- prior densities $p_{0}(\delta(\cdot \mid h))$ (over probability vectors over H) for every h.
- prior densities $p_{0}(e(\cdot \mid h))$ (over probability vectors over L) for every h.

Problem Reminder (cont'd)

Inference

After observing the sequence of words $\mathbf{w}=w_{0} \ldots w_{n}$, what are the posterior densities over transitions and emission probabilities?

- Assume for simplicity $w_{0}=$ start, $t_{0}=\langle S\rangle$ with prob. 1.

$$
\begin{aligned}
& p\left(\langle\delta(\cdot \mid h)\rangle_{h \in H},\left\langle e(\cdot \mid h)_{h \in H}\right\rangle \mid \mathbf{w}\right)=\frac{p\left(\langle\delta(\cdot \mid h)\rangle_{h \in H},\left\langle e(\cdot \mid h)_{h \in H}\right\rangle, \mathbf{w}\right)}{p(\mathbf{w})} \\
& =\frac{\prod_{h \in H} p_{0}(\delta(\cdot \mid h)) \times p_{0}(e(\cdot \mid h)) \times \overbrace{\sum_{\mathbf{h}_{0} \ldots \mathbf{h}_{\mathrm{n}}} \prod_{i=1}^{n} \delta\left(h_{i} \mid h_{i-1}\right) \times e\left(w_{i} \mid h_{i}\right)}^{\text {computable in } O\left(n|H|^{2}\right) \text { (forward-backward algo.) }}}{p(\underbrace{p(\mathbf{w})}} .
\end{aligned}
$$

Expensive computation: marginalize twice over $|H|-1$ simplex.

More generally

- Z random variable describing latent variables.
- X random variable describing observed events.
- Joint density $p(\mathbf{X}=\mathbf{x}, \mathbf{Z}=\mathbf{z})=\overbrace{p(\mathbf{Z}=\mathbf{z})}^{\text {prior }} \times p(\mathbf{X}=\mathbf{X} \mid \mathbf{Z}=\mathbf{z})$.
- We're interested in posterior density $p(\mathbf{Z}=\mathbf{z} \mid \mathbf{X}=\mathbf{x})=\frac{p(\mathbf{Z}=\mathbf{z}, \mathbf{X}=\mathbf{x})}{p(\mathbf{X}=\mathbf{x})}$. But too expensive to compute (in particular $p(\mathbf{X}=\mathbf{x})$).
- Last time: find way to sample without explicit computation.
- Today, variational inference: find $q^{*}(\mathbf{Z}=\mathbf{z})$ the best approximation of $p(\mathbf{Z}=\mathbf{z} \mid \mathbf{X}=\mathbf{x})$ over a family of probability densities \mathcal{Q}.

Why another inference technique?

- Metropolis-Hastings guarantees convergence in probability, but convergence time might be very slow (random walk effect).
- Variational inference generally faster but yield approximate distribution.
- Hence variational inference can be useful to quickly evaluate a wide range of model over large data.
- Sometimes Gibbs Sampling not possible, MCMC methods not straightforwardly usable.

Variational Inference

1. Define a set of probability densities over latent variables \mathcal{Q} (in pratice $\mathcal{Q}=\left\{\boldsymbol{q}_{\theta}(\mathbf{Z}) \mid \theta \in \Theta\right\}, \theta$ vector of so called variational parameters).
2. Search for $q^{*} \in \mathcal{Q}$ s.t. q^{*} mimizes the Kullback-Leibler divergence to $p(\mathbf{Z} \mid \mathbf{x})$.

$$
q^{*}=\operatorname{argmin}_{q \in \mathcal{Q}} K L(q(\mathbf{Z}) \| p(\mathbf{Z} \mid \mathbf{x}))
$$

KL divergence

$$
\begin{aligned}
K L\left(p_{1}(\mathbf{Z}) \| p_{2}(\mathbf{Z})\right) & \triangleq \int p_{1}(\mathbf{z})\left(\log \left(p_{1}(\mathbf{z})\right)-\log \left(p_{2}(\mathbf{z})\right)\right) d \mathbf{z} \\
& =\mathbb{E}_{p_{1}}\left(\log \left(p_{1}(\mathbf{Z})\right)\right)-\mathbb{E}_{p_{1}}\left(\log \left(p_{2}(\mathbf{Z})\right)\right) .
\end{aligned}
$$

- Information theoretic quantity.
- is O only when densities are equal.
- is always positive.

Evidence Lower Bound

- $K L\left(q(\mathbf{Z}) \| p(\mathbf{Z} \mid \mathbf{x})=\mathbb{E}_{q}(\log (q(\mathbf{Z})))-\mathbb{E}_{q}(\log (p(\mathbf{Z} \mid \mathbf{x})))\right.$ depends on $p(\mathbf{Z} \mid \mathbf{x})$ which we don't know how to compute.
- KL(q(Z) \|p(Z|x)= $\mathbb{E}_{q}(\log (q(\mathbf{Z})))-\mathbb{E}_{q}(\log (p(\mathbf{Z}, \mathbf{X}=\mathbf{x})))+\log (p(\mathbf{x}))$ (Exercise).
- We can mimize instead $\mathbb{E}_{q}(\log (q(\mathbf{Z})))-\mathbb{E}_{q}(\log (p(\mathbf{Z}, \mathbf{X}=\mathbf{x}))$, or equivalently maximize

$$
\begin{aligned}
\operatorname{elb}(q) & =\mathbb{E}_{q}(\log (p(\mathbf{Z}, \mathbf{X}=\mathbf{x})))-\mathbb{E}_{q}(\log (q(\mathbf{Z}))) \\
& =\mathbb{E}_{q}(\log (p(\mathbf{X}=\mathbf{x} \mid \mathbf{Z})))-K L(q(\mathbf{Z}) \| p(\mathbf{Z}))
\end{aligned}
$$

(Exercise: proove this).

Evidence Lower Bound (cont'd)

$$
e l b(q)=\mathbb{E}_{q}(\log (p(\mathbf{X}=\mathbf{x} \mid \mathbf{Z})))-K L(q(\mathbf{Z}) \| p(\mathbf{Z}))
$$

- Does not depend on the normalization factor $p(\mathbf{x})$ anymore!
- $e l b(q) \leq \log (p(\mathbf{x}))$ (Exercise).
- But what should \mathcal{Q} look like? How do we find optimal q^{*} ?

Mean-field Variational Inference

- Assume $\mathbf{Z}=\left\langle Z_{1}, \ldots, Z_{n}\right\rangle$.
- Simplifying assumption: let \mathcal{Q} be such that latent variables Z_{i} and Z_{j} are independant under every $q \in \mathcal{Q}$.
- $\mathcal{Q}=\prod_{i=1}^{n} \mathcal{Q}_{i}$, for every $q=\left\langle q_{1}, \ldots, q_{n}\right\rangle \in \mathcal{Q}$

$$
q\left(Z_{1}=z_{1}, \ldots, z_{n}=z_{n}\right)=\prod_{i=1}^{n} q_{i}\left(Z_{i}=z_{i}\right)
$$

- This is known has the mean-field variational family.
- Idea: can approximate marginals $p\left(Z_{i} \mid x\right)$ closely, but won't account for dependence of the latent variables on one another under the true joint posterior $p(\mathbf{Z} \mid x)$.

Optimization

Recall Gibbs Sampling from last session:

Optimization

Recall Gibbs Sampling from last session:

- From current state $\left\langle z_{1}^{t+1}, \ldots, z_{i-1}^{t+1}, z_{i}^{t}, \ldots, z_{n}^{t}\right\rangle$.

Optimization

Recall Gibbs Sampling from last session:

- From current state $\left\langle z_{1}^{t+1}, \ldots, z_{i-1}^{t+1}, z_{i}^{t}, \ldots, z_{n}^{t}\right\rangle$.
- $\operatorname{Fix} \mathbf{z}_{\neg i}=\left\langle z_{1}^{t+1}, \ldots, z_{i-1}^{t+1}, z_{i+1}^{t}, \ldots, z_{n}^{t}\right\rangle$.

Optimization

Recall Gibbs Sampling from last session:

- From current state $\left\langle z_{1}^{t+1}, \ldots, z_{i-1}^{t+1}, z_{i}^{t}, \ldots, z_{n}^{t}\right\rangle$.
- $\operatorname{Fix} \mathbf{z}_{-i}=\left\langle z_{1}^{t+1}, \ldots, z_{i-1}^{t+1}, z_{i+1}^{t}, \ldots, z_{n}^{t}\right\rangle$.
- Sample z_{i}^{t+1} from conditional distribution $p\left(z^{t+1} \mid \mathbf{z}_{\neg i}, x\right)$.

Optimization

Recall Gibbs Sampling from last session:

- From current state $\left\langle z_{1}^{t+1}, \ldots, z_{i-1}^{t+1}, z_{i}^{t}, \ldots, z_{n}^{t}\right\rangle$.
- $\operatorname{Fix} \mathbf{z}_{-i}=\left\langle z_{1}^{t+1}, \ldots, z_{i-1}^{t+1}, z_{i+1}^{t}, \ldots, z_{n}^{t}\right\rangle$.
- Sample z_{i}^{t+1} from conditional distribution $p\left(z^{t+1} \mid \mathbf{z}_{\neg i}, x\right)$.

Successive (manageable) coordinate updates yield new samples!

Optimization (cont'd)

Coordinate Ascent Mean-field V.I.
To find a (local) optimum $q^{*}=\left\langle q_{1}^{*}, \ldots, q_{n}^{*}\right\rangle \in \mathcal{Q}$:

Optimization (cont'd)

Coordinate Ascent Mean-field V.I.
To find a (local) optimum $q^{*}=\left\langle q_{1}^{*}, \ldots, q_{n}^{*}\right\rangle \in \mathcal{Q}$:

- Assume approximation after step $t: q_{0}^{t}=\left\langle q_{1}^{t}, \ldots q_{n}^{t}\right\rangle$.

Optimization (cont'd)

Coordinate Ascent Mean-field V.I.
To find a (local) optimum $q^{*}=\left\langle q_{1}^{*}, \ldots, q_{n}^{*}\right\rangle \in \mathcal{Q}$:

- Assume approximation after step $t: q_{0}^{t}=\left\langle q_{1}^{t}, \ldots q_{n}^{t}\right\rangle$.
- Update coordinate $1, \ldots, n$ successively.

Optimization (cont'd)

Coordinate Ascent Mean-field V.I.
To find a (local) optimum $q^{*}=\left\langle q_{1}^{*}, \ldots, q_{n}^{*}\right\rangle \in \mathcal{Q}$:

- Assume approximation after step $t: q_{0}^{t}=\left\langle q_{1}^{t}, \ldots q_{n}^{t}\right\rangle$.
- Update coordinate $1, \ldots, n$ successively.
- If coordinate $1, \ldots, i-1$ have been updated:

$$
q_{i-1}^{t}=\left\langle q_{1}^{t+1}, \ldots, q_{i-1}^{t+1}, q_{i}^{t}, q_{i+1}^{t}, \ldots, q_{n}^{t}\right\rangle
$$

Optimization (cont'd)

Coordinate Ascent Mean-field V.I.
To find a (local) optimum $q^{*}=\left\langle q_{1}^{*}, \ldots, q_{n}^{*}\right\rangle \in \mathcal{Q}$:

- Assume approximation after step $t: q_{0}^{t}=\left\langle q_{1}^{t}, \ldots q_{n}^{t}\right\rangle$.
- Update coordinate $1, \ldots, n$ successively.
- If coordinate $1, \ldots, i-1$ have been updated:

$$
q_{i-1}^{t}=\left\langle q_{1}^{t+1}, \ldots, q_{i-1}^{t+1}, q_{i}^{t}, q_{i+1}^{t}, \ldots, q_{n}^{t}\right\rangle
$$

- Then update coordinate i following

$$
q_{i}^{t+1}=\operatorname{argmax}_{q_{i}^{\prime} \in \mathcal{Q}_{i}} e l b\left(\left\langle q_{1}^{t+1}, \ldots, q_{i-1}^{t+1}, q_{i}^{\prime}, q_{i+1}^{t}, \ldots, q_{n}^{t}\right\rangle\right)
$$

Optimization (cont'd)

Coordinate Ascent Mean-field V.I.
To find a (local) optimum $q^{*}=\left\langle q_{1}^{*}, \ldots, q_{n}^{*}\right\rangle \in \mathcal{Q}$:

- Assume approximation after step $t: q_{0}^{t}=\left\langle q_{1}^{t}, \ldots q_{n}^{t}\right\rangle$.
- Update coordinate $1, \ldots, n$ successively.
- If coordinate $1, \ldots, i-1$ have been updated:

$$
q_{i-1}^{t}=\left\langle q_{1}^{t+1}, \ldots, q_{i-1}^{t+1}, q_{i}^{t}, q_{i+1}^{t}, \ldots, q_{n}^{t}\right\rangle
$$

- Then update coordinate i following

$$
q_{i}^{t+1}=\operatorname{argmax}_{q_{i}^{\prime} \in \mathcal{Q}_{i}} e l b\left(\left\langle q_{1}^{t+1}, \ldots, q_{i-1}^{t+1}, q_{i}^{\prime}, q_{i+1}^{t}, \ldots, q_{n}^{t}\right\rangle\right)
$$

Successive (manageable) coordinate updates yield refined approximations!

Update Rule

Update rule

- How find $q_{i}^{t+1}=\operatorname{argmax}_{q_{i}^{\prime} \in \mathcal{Q}_{i}} \operatorname{llb}\left(\left\langle q_{1}^{t+1}, \ldots, q_{i-1}^{t+1}, q_{i}^{\prime}, \ldots, q_{n}^{t}\right\rangle\right)$?
- (depending on time) we admit the following result:

$$
\log \left(q_{i}^{t+1}\left(Z_{i}=\mathbf{z}_{i}\right)\right)=\frac{\overbrace{\mathbb{E}_{q_{-i}}\left(\log \left(p\left(Z_{i}=\mathbf{z}_{i}, \mathbf{Z}_{-\mathrm{i}}=\mathbf{z}_{-\mathrm{i}}, \mathbf{x}\right)\right)\right)}^{\text {Will generally decompose over the } q_{i}}}{\underbrace{\int_{z} \mathbb{E}_{q_{-i}}\left(\log \left(p\left(Z_{i}=\mathbf{z} \mid \mathbf{z}_{-\mathrm{i}}, \mathbf{x}\right)\right)\right) d z}_{\text {Summation over one coordinate only }}}
$$

Back to the HMM example

- We let priors follow Dirichlet distributions:

$$
p_{0}(\delta(\cdot \mid h))=\frac{\prod_{h^{\prime} \in H} \delta\left(h^{\prime} \mid h\right)^{\alpha_{h}^{h^{\prime}}}}{B\left(\alpha_{\mathbf{h}}^{\delta}\right)} \quad p_{O}(e(\cdot \mid h))=\frac{\prod_{w \in L} \delta(w \mid h)^{\alpha_{h}^{w}}}{B\left(\alpha_{\mathbf{h}}^{\mathbf{e}}\right)}
$$

with $\alpha_{h}^{\delta}=\left\langle\alpha_{h}^{h^{\prime}}\right\rangle_{h^{\prime} \in H}$ and $\alpha_{h}^{e}=\left\langle\alpha_{h}^{w}\right\rangle_{w \in L}$.

