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The Bayesian way of life

1. Find a dataset "relevant" to your problem.

2. Reduce your problem to estimating the distribution of some variable
quantity of interest X.

3. Build a joint prior probabilistic model p(X,Y) describing both the
data O and the quantity X you want to estimate.

→ Obviously, the data and quantity of interrest should not be
independent and step 3 should reflect that fact!

4. Condition on all observed data o, and get a posterior distribution for
X: p(X ∣ O = o).

5. (Ideally) Assert how fit your model it, critize it and make a more
realistic one.

6. Use the posterior distribution of Y to solve your problem.
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A toy example: Bayesian dating service.

Problem
In order to build an automatic online dating service, we would like to assess
a matching score between two registered users, as a basis for the system to
determine whether it should propose these two users a date with each
other. The score should be a real bumber ranging between 0 and 1.

Data
When registering to the dating website, each of the two user answered the
same set of n multiple choice questions, and we dispose of these answers.

Our data look like:

Q ans. User 0 ans. User 1
Q1 a) b)
Q2 c) c)
⋮ ⋮ ⋮
Qn a) d)

(e.g.: Q1 ∶ You prefer a)a good movie, b)a nice book, c)a delicious meal.)
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Simplified data

▸ To achieve maximal simplicity, we will not use the particular content
of questions.

▸ We will use only the information of whether the two users’ answers
for a given question are the same or not.

▸ We thus extract a simplified dataset as follows:
Q ans. User 0 ans. User 1
Q1 a) b)
Q2 c) c)
⋮ ⋮ ⋮
Qn a) d)

⇒

Q Match
Q1 no
Q2 yes
⋮ ⋮
Qn no

Antoine Venant Introduction to Bayesian Inference November 15, 2017 4 / 11



First step: target and observations as random variables

▸ Assume an underlying probability space ⟨Ω,p⟩.
▸ Our problem reduces to estimating the distribution of a matching score

random variable Φ ∶ Ω↦ [0, 1] after observing the answers made by
both users.

▸ Observed data is represented as a sequence ⟨o1, . . .on⟩ ∈ {0, 1}n

▸ on = 1 means that both users choosed the same answer to the nth

question of the questionaire, on = 0 means that they did not.
▸ Accordingly, assume that the observed data is in fact one outcome of

a random vector O ∶ Ω↦ {0, 1}n. Equivalently, we can see O as a
vector of random variables (O1, . . . ,On) where (Oi ∶ Ω↦ {0, 1}).
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Second step: build the joint Model
▸ So far we only said “there exists some joint distribution”. Did not

precise which one.
▸ Idea: assume that both users answers each question independently of

other questions, and that probability of choosing matching answer
equals the matching score.

▸ This translates into:

p(O = (o1, . . .on) ∣ Φ = φ) = φα(1 − φ)n−α

where α = Σn
i=1oi

▸ We also need to set a prior probability on Φ. Simply assume it
uniform on [0, 1]: for I ⊆ [0, 1]

P(Φ ∈ I) = ∫
I
1dx

(for instance P(Φ ≤ 1/2) = ∫ 1/2
o 1dx = [x]1/2

0 = 1/2)
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Mixing continuous and discrete models

Not so obvious:
▸ ∀φ ∈ [0, 1]P(Φ = φ) = ∫ φφ 1dx = 0.

▸ So shouldn’t P(o ∣ Φ = φ) = P(o,Φ=φ)
P(Φ=φ) be undefined if P(Φ = φ) = 0?

▸ So far, no full model: what is for instance P(O = (o1, . . .on))?

Short answer:
▸ True that ’classic’ conditioning does not define P(o ∣ Φ = φ).
▸ But P(o,Φ = φ) = P(o ∣ Φ = φ)P(φ) = 0 still true under our definition.

So we’re not arming the axioms of probability theory.
▸ define P(O = (o1, . . . ,on),Φ ∈ I) = ∫I p(O = (o1, . . . ,on) ∣ Φ = x)dx.

(Exercise: check that this is a probability distribution).
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Third step: conditioning on observations o1, . . . ,on.

p(Φ ∈ I ∣ O = (o1, . . . ,on)) =
p(Φ ∈ I,O = (o1, . . . ,on))

p(O = (o1, . . . ,on))

= ∫I p(O = (o1, . . . ,on) ∣ Φ = φ)dφ
p(O = (o1, . . . ,on))

= ∫
I

p(O = (o1, . . . ,on) ∣ Φ = φ)
N

dφ

Where N = p(O = (o1, . . . ,on))
▸ We see that the posterior distribution of the matching score Φ admits

a density fpost = p(O=(o1,...,on)∣Φ=φ)
N = φα(1−φ)n−α

N
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Predictions

▸ Need to determine normalizing factor
N = p(O = (o1, . . . ,on)) = ∫ 1

0 p(O = (o1, . . . ,on) ∣ Φ = φ)dφ
▸ Hard to do in general! We’ll use different techniques to avoid this

computation in the seminar.
▸ But easy, in the present case. Closed form solution: N = 1

(n+1)Cα
n

(Exercise: proove it!).

▸ Posterior density fpost(φ) = φα(1−φ)n−α

N is an instance of the Beta
distribution (obtained with pair of parameters (α + 1, n − α + 1)). We’ll
encounter this again in the future!

▸ (Posterior-) Expected value for φ: α−1
n−1 .
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The more data...
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Posterior distributions:

α = 4,n = 9
I P(Φ ∈ I)
[0,0.1] 0.0016
[0.1,0.2] 0.0312
[0.2,0.3] 0.1175
[0.3,0.4] 0.2166
[0.4,0.5] 0.2562
[0.5,0.6] 0.2107
[0.6,0.7] 0.1189
[0.7,0.8] 0.0410
[0.8,0.9] 0.0062
[0.9, 1.0] 0.0001

α = 40,n = 90
I P(Φ ∈ I)
[0,0.1] 0.0000
[0.1,0.2] 0.0000
[0.2,0.3] 0.0017
[0.3,0.4] 0.1880
[0.4,0.5] 0.6630
[0.5,0.6] 0.1458
[0.6,0.7] 0.0014
[0.7,0.8] 0.0000
[0.8,0.9] 0.0000
[0.9, 1.0] 0.0000
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