Introduction to Bayesian Inference

Christoph Teichmann Antoine Venant

November 15, 2017

The Bayesian way of life

1. Find a dataset "relevant" to your problem.

The Bayesian way of life

1. Find a dataset "relevant" to your problem.
2. Reduce your problem to estimating the distribution of some variable quantity of interest X.

The Bayesian way of life

1. Find a dataset "relevant" to your problem.
2. Reduce your problem to estimating the distribution of some variable quantity of interest X.
3. Build a joint prior probabilistic model $p(X, Y)$ describing both the data O and the quantity X you want to estimate.

The Bayesian way of life

1. Find a dataset "relevant" to your problem.
2. Reduce your problem to estimating the distribution of some variable quantity of interest X.
3. Build a joint prior probabilistic model $p(X, Y)$ describing both the data O and the quantity X you want to estimate.
\rightarrow Obviously, the data and quantity of interrest should not be independent and step 3 should reflect that fact!

The Bayesian way of life

1. Find a dataset "relevant" to your problem.
2. Reduce your problem to estimating the distribution of some variable quantity of interest X.
3. Build a joint prior probabilistic model $p(X, Y)$ describing both the data O and the quantity X you want to estimate.
\rightarrow Obviously, the data and quantity of interrest should not be independent and step 3 should reflect that fact!
4. Condition on all observed data o, and get a posterior distribution for $X: p(X \mid O=0)$.

The Bayesian way of life

1. Find a dataset "relevant" to your problem.
2. Reduce your problem to estimating the distribution of some variable quantity of interest X.
3. Build a joint prior probabilistic model $p(X, Y)$ describing both the data O and the quantity X you want to estimate.
\rightarrow Obviously, the data and quantity of interrest should not be independent and step 3 should reflect that fact!
4. Condition on all observed data o, and get a posterior distribution for $X: p(X \mid O=0)$.
5. (Ideally) Assert how fit your model it, critize it and make a more realistic one.

The Bayesian way of life

1. Find a dataset "relevant" to your problem.
2. Reduce your problem to estimating the distribution of some variable quantity of interest X.
3. Build a joint prior probabilistic model $p(X, Y)$ describing both the data O and the quantity X you want to estimate.
\rightarrow Obviously, the data and quantity of interrest should not be independent and step 3 should reflect that fact!
4. Condition on all observed data o, and get a posterior distribution for $X: p(X \mid O=0)$.
5. (Ideally) Assert how fit your model it, critize it and make a more realistic one.
6. Use the posterior distribution of Y to solve your problem.

A toy example: Bayesian dating service.

Problem

In order to build an automatic online dating service, we would like to assess a matching score between two registered users, as a basis for the system to determine whether it should propose these two users a date with each other. The score should be a real bumber ranging between O and 1 .

Data
When registering to the dating website, each of the two user answered the same set of n multiple choice questions, and we dispose of these answers.

Our data look like: | | ans. User O | ans. User 1 |
| :--- | :--- | :--- |
| | Q_{1} | $a)$ |
| Q_{2} | c) | $b)$ |
| \vdots | \vdots | $\vdots)$ |
| | Q_{n} | $a)$ |
| \vdots | $d)$ | |

(e.g.: Q_{1} : You prefer a)a good movie, b)a nice book, c)a delicious meal.)

Simplified data

- To achieve maximal simplicity, we will not use the particular content of questions.
- We will use only the information of whether the two users' answers for a given question are the same or not.
- We thus extract a simplified dataset as follows:

Q	ans. User O	ans. User 1			
Q_{1}	$a)$	$b)$			
Q_{2}	$c)$	$c)$			
\vdots	\vdots	\vdots			
Q_{n}	$a)$	$d)$	\Rightarrow	Q	Match
:---	:---				
Q_{1}	no				
Q_{2}	yes				
\vdots	\vdots				
Q_{n}	no				

First step: target and observations as random variables

- Assume an underlying probability space $\langle\Omega, p\rangle$.
- Our problem reduces to estimating the distribution of a matching score random variable $\Phi: \Omega \mapsto[0,1]$ after observing the answers made by both users.
- Observed data is represented as a sequence $\left\langle o_{1}, \ldots o_{n}\right\rangle \in\{0,1\}^{n}$
- $o_{n}=1$ means that both users choosed the same answer to the $n^{\text {th }}$ question of the questionaire, $o_{n}=0$ means that they did not.
- Accordingly, assume that the observed data is in fact one outcome of a random vector $O: \Omega \mapsto\{0,1\}^{n}$. Equivalently, we can see O as a vector of random variables $\left(O_{1}, \ldots, O_{n}\right)$ where $\left(O_{i}: \Omega \mapsto\{0,1\}\right)$.

Second step: build the joint Model

- So far we only said "there exists some joint distribution". Did not precise which one.
- Idea: assume that both users answers each question independently of other questions, and that probability of choosing matching answer equals the matching score.
- This translates into:

$$
p\left(O=\left(o_{1}, \ldots o_{n}\right) \mid \Phi=\phi\right)=\phi^{\alpha}(1-\phi)^{n-\alpha}
$$

where $\alpha=\sum_{i=1}^{n} o_{i}$

- We also need to set a prior probability on Φ. Simply assume it uniform on $[0,1]$: for $I \subseteq[0,1]$

$$
P(\Phi \in I)=\int_{I} 1 d x
$$

(for instance $P(\Phi \leq 1 / 2)=\int_{0}^{1 / 2} 1 d x=[x]_{0}^{1 / 2}=1 / 2$)

Mixing continuous and discrete models

Not so obvious:

- $\forall \phi \in[0,1] P(\Phi=\phi)=\int_{\phi}^{\phi} 1 d x=0$.
- So shouldn't $P(o \mid \Phi=\phi)=\frac{P(o, \Phi=\phi)}{P(\Phi=\phi)}$ be undefined if $P(\Phi=\phi)=0$?
- So far, no full model: what is for instance $P\left(O=\left(o_{1}, \ldots o_{n}\right)\right)$?

Short answer:

- True that 'classic' conditioning does not define $P(o \mid \Phi=\phi)$.
- But $P(o, \Phi=\phi)=P(o \mid \Phi=\phi) P(\phi)=0$ still true under our definition. So we're not arming the axioms of probability theory.
- define $P\left(O=\left(o 1, \ldots, o_{n}\right), \Phi \in I\right)=\int_{l} p\left(O=\left(o_{1}, \ldots, o_{n}\right) \mid \Phi=x\right) d x$. (Exercise: check that this is a probability distribution).

Third step: conditioning on observations o_{1}, \ldots, o_{n}.

$$
\begin{aligned}
p\left(\Phi \in I \mid O=\left(o_{1}, \ldots, o_{n}\right)\right) & =\frac{p\left(\Phi \in I, O=\left(o_{1}, \ldots, o_{n}\right)\right)}{p\left(O=\left(o_{1}, \ldots, o_{n}\right)\right)} \\
& =\frac{\int_{I} p\left(O=\left(o_{1}, \ldots, o_{n}\right) \mid \Phi=\phi\right) d \phi}{p\left(O=\left(o_{1}, \ldots, o_{n}\right)\right)} \\
& =\int_{I} \frac{p\left(O=\left(o_{1}, \ldots, o_{n}\right) \mid \Phi=\phi\right)}{N} d \phi
\end{aligned}
$$

Where $N=p\left(O=\left(o_{1}, \ldots, o_{n}\right)\right)$

- We see that the posterior distribution of the matching score Φ admits
a density $f_{\text {post }}=\frac{p\left(O=\left(o_{1}, \ldots, o_{n}\right) \mid \Phi=\phi\right)}{N}=\frac{\phi^{\alpha}(1-\phi)^{n-\alpha}}{N}$

Predictions

- Need to determine normalizing factor

$$
N=p\left(O=\left(o_{1}, \ldots, o_{n}\right)\right)=\int_{0}^{1} p\left(O=\left(o_{1}, \ldots, o_{n}\right) \mid \Phi=\phi\right) d \phi
$$

- Hard to do in general! We'll use different techniques to avoid this computation in the seminar.
- But easy, in the present case. Closed form solution: $N=\frac{1}{(n+1) C_{n}^{\alpha}}$ (Exercise: proove it!).
- Posterior density $f_{\text {post }}(\phi)=\frac{\phi^{\alpha}(1-\phi)^{n-\alpha}}{N}$ is an instance of the Beta distribution (obtained with pair of parameters ($\alpha+1, n-\alpha+1$)). We'll encounter this again in the future!
- (Posterior-) Expected value for $\phi: \frac{\alpha-1}{n-1}$.

The more data...

Posterior distributions:

$\alpha=4, n=9$
l
$[0,0.1]$
:---
$[0.1,0.2]$
$[0.2,0.3]$
$[0.3,0.4]$
$[0.4,0.5]$
$[0.5,0.6]$
$[0.6,0.7]$
$[0.7,0.8]$
$[0.8,0.9]$
$[0.9,1.0]$

$\alpha=40, n=90$

I	$P(\phi \in I)$
$[0,0.1]$	0.0000
$[0.1,0.2]$	0.0000
$[0.2,0.3]$	0.0017
$[0.3,0.4]$	0.1880
$[0.4,0.5]$	0.6630
$[0.5,0.6]$	0.1458
$[0.6,0.7]$	0.0014
$[0.7,0.8]$	0.0000
$[0.8,0.9]$	0.0000
$[0.9,1.0]$	0.0000

