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The Bayesian way of life

1. Find a dataset "relevant" to your problem.
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The Bayesian way of life

1. Find a dataset "relevant" to your problem.

2. Reduce your problem to estimating the distribution of some variable
quantity of interest X.

3. Build a joint prior probabilistic model p(X, Y) describing both the
data O and the quantity X you want to estimate.

— Obviously, the data and quantity of interrest should not be
independent and step 3 should reflect that fact!

4. Condition on all observed data o, and get a posterior distribution for
X:p(X|0=0).

5. (Ideally) Assert how fit your model it, critize it and make a more
realistic one.

6. Use the posterior distribution of Y to solve your problem.
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A toy example: Bayesian dating service.

Problem

In order to build an automatic online dating service, we would like to assess
a matching score between two registered users, as a basis for the system to
determine whether it should propose these two users a date with each
other. The score should be a real bumber ranging between O and 1.

Data

When registering to the dating website, each of the two user answered the
same set of n multiple choice questions, and we dis

Our data look like:

pose of these answers.

Q | ans.User O | ans. User 1
Q | a) b)
Q| o) c)
Q, | a) d)

(e.g.: @y : You prefer a)a good movie, b)a nice book, c)a delicious meal.)
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Simplified data

» To achieve maximal simplicity, we will not use the particular content
of questions.

» We will use only the information of whether the two users answers
for a given question are the same or not.

» We thus extract a simplified dataset as follows:

Q | ans.User O | ans. User 1 Q | Match
Q | a) b) Q@ | no
Q | ©) C) = | Q; | yes
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First step: target and observations as random variables

» Assume an underlying probability space (2, p).

» Our problem reduces to estimating the distribution of a matching score
random variable ¢ : Q — [0, 1] after observing the answers made by
both users.

» Observed data is represented as a sequence (04, ...05) € {O,1}"

» 0p = 1 means that both users choosed the same answer to the nt
question of the questionaire, 0, = O means that they did not.

» Accordingly, assume that the observed data is in fact one outcome of

arandom vector O : Q — {0, 1}". Equivalently, we can see O as a
vector of random variables (Oy, ..., 0,) where (O; : Q — {0, 1}).
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Second step: build the joint Model

» So far we only said “there exists some joint distribution”. Did not
precise which one.

» Idea: assume that both users answers each question independently of
other questions, and that probability of choosing matching answer
equals the matching score.

» This translates into:

p(O=(01,...0p) | ®=0¢)=¢"(1-9¢)"“

where o = 7,0
» We also need to set a prior probability on ®. Simply assume it
uniformon [0, 1]: for/ < [0,1]

P(¢e/):f1dx

(for instance P($ < 1/2) = [1/21dx 1/2 =1/2)
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Mixing continuous and discrete models

Not so obvious:
> Vo e [0,1]P(®=¢) = [{1dx=0.
> So shouldn't P(0 | @ = ¢) = £2:2=%) be undefined if P(¢ = ¢) = 0?
» So far, no full model: what is for instance P(O = (o4, ...05))?

Short answer:

» True that classic’ conditioning does not define P(o | ¢ = ¢).

» ButP(o,® =¢)=P(o| P =¢)P(p) = O still true under our definition.
So we're not arming the axioms of probability theory.

» define P(O = (ol,...,0,),®€l) = [,p(O=(01,...,0p) | ® =x)dx.
(Exercise: check that this is a probability distribution).
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Third step: conditioning on observations oy, . . ., 0p.

):p(cbel,O: (01,-.-,0n))
p(O =(o0y,...,0n))
_Jip(0=(01,....05) | ® = §)do
p(O = (o1,...,0p))
~ [p(O=(01,...,0n) | P =0¢)
‘// N de

p(®el|O=(oy,...,0n)

Where N =p(O = (0y,...,0p))

» We see that the posterior distribution of the matching score ¢ admits

a density fpost — P(O:(O1,.N,On)|¢:¢) _ > (1_N¢)n—a
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Predictions

» Need to determine normalizing factor
N=p(O=(0,...,00)) = [3p(O = (01,...,00) | ® = $)dop

» Hard to do in general! Well use different techniques to avoid this
computation in the seminar.

» But easy, in the present case. Closed form solution: N = m
(Exercise: proove it!).
» Posterior density foost(¢) = w is an instance of the Beta

distribution (obtained with pair of parameters (o + 1, n — a + 1)). We'll
encounter this again in the future!

> (Posterior-) Expected value for ¢: 2=1.
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The more data...
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Posterior distributions:

a=4n=9
I P(® <)
[0,01] | 0.0016
[0.1,0.2] | 0.0312
[0.2,0.3] | 0.1175
[0.3,0.4] | 0.2166
[0.4,0.5] | 0.2562
[0.5,0.6] | 0.2107
[0.6,0.7] | 0.1189
[0.7,0.8] | 0.0410
[0.8,0.9] | 0.0062
[0.9,1.0] | 0.0001

a=40,n=90
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0.0000
0.0000
0.0017
0.1880
0.6630
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0.0000
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0.0000
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