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Teaching Goals

Basic properties of Dirichlet Distribution
Dirichlet Categorial Model
Chinese Restaurant Process
How to build a simple language model
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Categorial Variables in Computationl Linguistics

We want probabilites P(outcome1), P(outcome2), . . . for
random variables with discrete outcomes:

Next word given previous ones
Children given parent in binary constituent tree
Next part-of-speech tag given previous ones

Mary sees { the, something, John, . } . . .
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Categorial Variables in Computationl Linguistics

We want probabilites P(outcome1), P(outcome2), . . . for
random variables with discrete outcomes:

Next word given previous ones
Children given parent in binary constituent tree
Next part-of-speech tag given previous ones

S

NP

Mary

VP

sees NP NP → something
NP → John
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A Simple Approach
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The Next Word – The Bayesian Approach

Find a dataset relevant to your problem

sentences from websites (tokenized) X

Reduce your problem to estimating a random quantity of
interest

Probabilities for next word in context X
We want a probability P(P(Wnext = Mary) = 0.4),
P(P(Wnext = Mary) = 0.5), P(P(Wnext = Mary) = 0.6)
. . .

Build joint probabilistic model of the data and the quantity
to estimate

uh oh
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Bayes Theorem

v - value of interesting variable, d - value of data, we are
interesting in P(v |d)

P(v , d) = P(v |d)P(d)
P(v , d) = P(d |v)P(v)

P(v |d) = P(d |v)P(v)
P(d)

P(v |d) =

likelihood︷ ︸︸ ︷
P(d |v)

prior︷︸︸︷
P(v)

normalizer︷ ︸︸ ︷∑
v ′

P(v ′, d)
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What Do We Need

P(text|probabilities)
P(probabilities)
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Simple Model P(text|probabilities)

Text generated from n-Gram model

P(

random variable for i-th word︷︸︸︷
Wi |

concrete value for word︷︸︸︷
wi−1 , . . . ,w0) =

P(Wi |wi−1, . . . ,wi−(n−1))

Let us start with n = 1, i.e., Unigram Model:
P(Wi |wi−1, . . . ,w0) = P(W )

Text draw word by word from P(W )

We have model for data given word probabilities – need a model
to give us probabilities for P(W = Mary) = 0.01 or
P(W = Mary) = 0.5?
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Simplest Choice – Set-UP

Assume finite lexicon L – possible outcomes
Random variable over distributions PX , Px single outcome

Px could be Px(Mary) = 0.1, Px(sees) = 0.3 . . .

Probability word is “Mary” Px(W = Mary)
Full joint model P

(
PX,W1, . . . ,Wn

)
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Simplest Choice – Everything Equally Likely

Let us start with an uniform model, i.e. P
(
PX = Px

)
= 1

Z

Z is a constant to ensure integration to 1
We think Px(the) = 0.9 is as likely as Px(the) = 0.2 or
Px(the) = 0.03
We think Px(Mary) = 0.9 and Px(the) = 0.1 is as likely as
Px(Mary) = 0.2 and Px(the) = 0.8

Similar to model from last session
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How Does This Work – Example

Lexicon: L = {Mary, sees, ., something, John}
Dataset: D =“Mary sees something”

Relevant Questions:

What is the posterior, i.e., what is
P(Px |something, sees,Mary) for a given Px?
What is P(Wnext |something, sees,Mary)? - predictive
distribution
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Posterior

The posterior is proportional to this (why?):

P(Posterior)︷ ︸︸ ︷
P(PX = Px |w3,w2,w1) ∝


P(text|probs)︷ ︸︸ ︷∏

i∈{1,2,3}

Px(wi )


P(probs)︷︸︸︷

1
Z

What is the normalizer?
What is the mean?
Where is the maximum of this posterior?
Maybe map this to known distribution?
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The Dirichlet Distribution
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Is This A Known Distribution?

Dirichlet Distribution – distribution over probability distributions
Px with different outcomes w1 ∈ L:

PDir (P
x) =

∏
w∈L P

x(w)αi−1

B(α)

Here αi > 0 are parameters – there are lots of Dirichlet
Distributions
B(α) is a normalizer depending on all the ai – look it up
on Wikipedia
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Is This A Known Distribution?

Dirichlet Distribution – distribution over probability distributions
Px with different outcomes w1 ∈ L:

PDir (P
x) =

∏
w∈L P

x(w)αi−1

B(α)

Mean a probability distribution with Px(w) = α∑
w′∈L αw′

Maximum = mean if αs all greater 1



The Dirichlet
Categorial

Model

Christoph
Teichmann,

Antoine
Venant

Goals

Motivation

A Simple
Approach

The Dirichlet
Distribution

The Dirichlet
Process

Chinese
Restaurant
Process

Summary

It is a Dirichlet Distribution!

Let us work through this on the table:

PDir (P
x) =

∏
w∈L P

x(w)αi−1

B(α)

P(Px |w3,w2,w1) ∝

 ∏
i∈{1,2,3}

Px(wi )

 1
Z

∝
∏

w∈L Px(w)
∑

i∈[1,3] 1(wi=w)

Z
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It is a Dirichlet Distribution!

Let us work through this on the table:

PDir (P
x) =

∏
w∈L P

x(w)αi−1

B(α)

P(Px |w3,w2,w1) =

∏
w∈L Px(w)

∑
i∈[1,3] 1(wi=w)

B(sums+ 1)

αs correspond to frequency of each word +1
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Visualizing a Dirichlet Distribution With Two
Outcomes

Say we have Px(1) and Px(2)

0.0 0.2 0.4 0.6 0.8 1.0
Value of Px(1)
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0.5
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α1 =α2 = 0. 5

α1 = 5, α2 = 1

α1 = 1, α2 = 3

α1 = 2, α2 = 2

α1 = 1, α2 = 1

Generated with code based on code found at:

commons.wikimedia.org/wiki/File:Beta_distribution_pdf.svg by user Horas

commons.wikimedia.org/wiki/File:Beta_distribution_pdf.svg
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Understanding the Behaviour of the Dirichlet

Increase αs → concentrates at values proportional to αs
If all α are less than 1, then we favour “sparse
distributions” few outcomes likely
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Back to the Example

For our example our posterior is (table):

P(Px) =

(∏
w∈L P

x(w)αwi
−1)

B(α)

Where αMary = αsees = αsomething = 2 and αJohn = α. = 1
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Next Step

Have posterior probability for the different Px

Know it is a Dirichlet Distribution
What are the probabilities for next word – what is
predictive distribution?
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For a given Px :

P(wnext ,P
x |w1, . . . ,wn) =

P(text|probs)︷ ︸︸ ︷
Px(wnext)

posterior for Px︷ ︸︸ ︷
P(Px |w1, . . . ,wn)

But we need to sum (actually integrate) over all possible Px
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Predictive Distribution

P(wnext) =

∫
Px

Categorial︷ ︸︸ ︷
Px(wnext)

Dirichlet︷ ︸︸ ︷(∏
w∈L P

x(w)αw−1)
B(α)

dPx

Combines a Categorial and Dirichlet Distribution – called a
Dirichlet Categorial Model, well known
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Predictive Distribution

P(wnext) =

∫
Px

Categorial︷ ︸︸ ︷
Px(wnext)

Dirichlet︷ ︸︸ ︷(∏
w∈L P

x(w)αw−1)
B(α)

dPx

Let us just look it up, e.g., the Dirichlet write up at
https://people.eecs.berkeley.edu/~stephentu/

https://people.eecs.berkeley.edu/~stephentu/
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Predictive Distribution

P(wnext) =

∫
Px

Px(wnext)

(∏
w∈L P

x(w)αw−1)
B(α)

dPx

P(wnext) =
αwnext∑
w∈L αw

Probability of outcome is α for that outcome divided by
sum of αs for all outcomes (finish example on table)
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The Next Word – The Bayesian Approach

Find a dataset relevant to your problem
sentences from websites (tokenized) X

Reduce your problem to estimating a random quantity of
interest

Probabilities for next word in context X
Build joint probabilistic model of the data and the quantity
to estimate

Unigram model with uniform prior X

Get a posterior distribution

We get a Dirichlet Distribution posterior, which is well
understood X
We can predict the next word using knowledge about
Dirichlet Categorial Model X

Check model quality and revise if necessary
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The Next Word – The Bayesian Approach

Find a dataset relevant to your problem
sentences from websites (tokenized) X

Reduce your problem to estimating a random quantity of
interest

Probabilities for next word in context X
Build joint probabilistic model of the data and the quantity
to estimate
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Is Our Model Reasonable?

Predictive probabilities for any word position:

P(Wnext = .) =
1
8

P(Wnext = Mary) =
2
8

Data may support this, but it seems unlikely given what we
know about English
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A Better Model

We assumed that we have unigram word probabilities –
switch to e.g. a bigram model
Instead of assuming uniform probability for different Px we
could use Dirichlet as prior with different αs
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New Model

We will have a Dirichlet Prior with αs proportional to
observed word frequencies in some corpus
We now have to find probabilities Px(Wi = wi |wi−1)

Let us work through that for the data:

“Mary saw something .”
“John saw”
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New Model

We will have a Dirichlet Prior with αs proportional to
observed word frequencies in some corpus
We now have to find probabilities Px(Wi = wi |wi−1)

Let us work through that for the data:
“Mary saw something .”
“John saw”
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Conjugate Model

What is the general posterior with the Dirichlet model after
words w1, . . . ,wn?

P(Px) =

∏
w∈L P

x(w)αw−1+
∑

i∈[1,n] 1(wi=w)

Z

Another Dirichlet Distribution
Prior and piosterior same type → conjugate model
Dirichlet Distribution prior is conjugate for Categorial
Distribution likelihood
Understanding prior – understanding posterior
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The Next Word – The Bayesian Approach

Find a dataset relevant to your problem
sentences from websites (tokenized) X

Reduce your problem to estimating a random quantity of
interest

Probabilities for next word in context X
Build joint probabilistic model of the data and the quantity
to estimate

unigram model with uniform prior X
Get a posterior distribution

We get a Dirichlet Distribution posterior, which is well
understood X
We can predict the next word using knowledge about
Dirichlet Categorial model X

Check model quality and revise if necessary
Larger n-grams with better prior X
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The Dirichlet Process



The Dirichlet
Categorial

Model

Christoph
Teichmann,

Antoine
Venant

Goals

Motivation

A Simple
Approach

The Dirichlet
Distribution

The Dirichlet
Process

Chinese
Restaurant
Process

Summary

Further Model Problems

“Mary saw a cake .”

More than 5 words in language
Maybe even infinitely many words
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Moving to the Dirichlet Process

P(X ) single outcome probability distribution
P(X1, . . . ,Xn) → multiple outcome probability distribution
P(X1,X2,X3 . . . ) → stochastic process / random function



The Dirichlet
Categorial

Model

Christoph
Teichmann,

Antoine
Venant

Goals

Motivation

A Simple
Approach

The Dirichlet
Distribution

The Dirichlet
Process

Chinese
Restaurant
Process

Summary

Extension to Infinite Number of Variables

We need a prior for Px when L is infinite → infinitely many
probabilities → need a stochastic process

Use what we know about Dirichlet Distribution
How can we define an infinite list of αs?
How to define a process?
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How Can We Define an Infinite List of αs?

When you have a hammer . . .
Define a single concentration parameter α and a base
probability distribution (measure) P(X )

αx = αP(X = x)

different αs always sum to concentration parameter

1 2

a:0.1

b:0.9

If α = 10 what is αab?
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Extension to Infinite Number of Variables

How can we define an infinite list of αs?
Concentration parameter + probability distribution X

How to define a process?
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How to Define a Process

No need to define probability for a full outcome
P(X1 = x1,X2 = x2, . . . )

If we pick a few values for a few variables and do not care
about all the others – what is the probability?
Probability Distributions for any X 1,X 2, . . . ,Xm follow a
Dirichlet
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Making it Concrete

1 2

a:0.1

b:0.9

PDir (PX ) =

∏
w∈L PX (w)αw

B(α)

α = 10

P(Px(b) = 0.2,Px(ab) = 0.5) =

b︷︸︸︷
0.29 ×

ab︷ ︸︸ ︷
0.50.9×

everything else︷ ︸︸ ︷
0.30.1

B(〈9, 0.9, 0.1〉)
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Extension to Infinite Number of Variables

How can we define an infinite list of αs?
Concentration parameter + probability distribution X

How to define a process?
Define probability distribution for any finite selection of
variables X
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Applying for Next Word Prediction

Bigram Model
Infinitely many possible words wi

Probabilities for each P(Wi |wi−1) come from Dirichlet
Process
Pick some concentration parameter α
use a Markov Chain over morphems to define base
probabilities P(X )

What is the predictive density / what is the posterior?
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Predictive Density

Still a Dirichlet Categorical Distribution!

P(W0 = ab) =
αab

α
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Posterior

Still a Dirichlet Process! – table

Seen “ab” as first word - now α′ab = αab + 1, α′ = α+ 1
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Chinese Restaurant Process
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Can We Make This Simpler?

Chinese Restaurant Process – metaphor for Dirichlet
Categorial Model
Model just for words
Every word is a table
Number of people at table x is αx

People are likely to sit at popular tables
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Presentation in Papers

Usual presentation: tables created when first costumer sits
at them
New table created with α

α+seen

New table label – according to base probability distribution
Sitting at old table costumers old table

α+seen
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Take Away

Important for NLP: categorial probability distributions
Handy prior: Dirichlet Distribution/Process
Works for infinite choices as well
Posterior is also Dirichlet Distribution/Process
Predictive distribution easy to read off α
Chinese Restaurant metaphor used frequently
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Questions!
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