

The	Dirichlet	
Ca	tegorial	
Ν	Aodel	

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

The Dirichlet Categorial Model

Christoph Teichmann Antoine Venant

The	Diric	chlet
Ca	tegoi	rial
N	Лode	

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichle Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

Goals

Teaching Goals

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichler Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

- Basic properties of Dirichlet Distribution
- Dirichlet Categorial Model
- Chinese Restaurant Process
- How to build a simple language model

The	Diric	chlet
Ca	tegoi	rial
N	Лode	

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichle Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

Motivation

Categorial Variables in Computationl Linguistics

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichle Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

We want probabilites *P*(outcome₁), *P*(outcome₂), ... for random variables with discrete outcomes:

- Next word given previous ones
- Children given parent in binary constituent tree
- Next part-of-speech tag given previous ones

Mary sees { the, something, John, . } ...

Categorial Variables in Computationl Linguistics

The Dirichlet Categorial Model

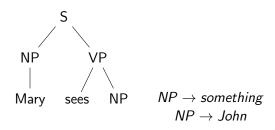
Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution


The Dirichle Process

Chinese Restaurant Process

Summary

We want probabilites *P*(outcome₁), *P*(outcome₂), ... for random variables with discrete outcomes:

- Next word given previous ones
- Children given parent in binary constituent tree
- Next part-of-speech tag given previous ones

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichle Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

A Simple Approach

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

- Find a dataset relevant to your problem
- Reduce your problem to estimating a random quantity of interest

• Build joint probabilistic model of the data and the quantity to estimate

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

- Find a dataset relevant to your problem
 - sentences from websites (tokenized) \checkmark
- Reduce your problem to estimating a random quantity of interest

• Build joint probabilistic model of the data and the quantity to estimate

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

• Find a dataset relevant to your problem

. . .

- sentences from websites (tokenized) \checkmark
- Reduce your problem to estimating a random quantity of interest
 - Probabilities for next word in context \checkmark
 - We want a probability $P(P(W_{next} = Mary) = 0.4)$, $P(P(W_{next} = Mary) = 0.5)$, $P(P(W_{next} = Mary) = 0.6)$
- Build joint probabilistic model of the data and the quantity to estimate

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichle[.] Process

Chinese Restaurant Process

Summary

• Find a dataset relevant to your problem

- sentences from websites (tokenized) \checkmark
- Reduce your problem to estimating a random quantity of interest
 - Probabilities for next word in context \checkmark
 - We want a probability $P(P(W_{next} = Mary) = 0.4)$, $P(P(W_{next} = Mary) = 0.5)$, $P(P(W_{next} = Mary) = 0.6)$
- Build joint probabilistic model of the data and the quantity to estimate
 - uh oh

. . .

Bayes Theorem

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichle Distribution

The Dirichle Process

Chinese Restaurant Process

Summary

v - value of interesting variable, d - value of data, we are interesting in $P(v \vert d)$

$$P(v, d) = P(v|d)P(d)$$

$$P(v, d) = P(d|v)P(v)$$

$$P(v|d) = \frac{P(d|v)P(v)}{P(d)}$$

$$P(v|d) = \underbrace{\frac{P(d|v)P(v)}{P(d)}}_{normalizer}$$

$$\underbrace{P(v|d)}_{v'} = \underbrace{\frac{P(d|v)P(v)}{P(v')}}_{v'}$$

What Do We Need

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

- P(text|probabilities)
- P(probabilities)

Simple Model *P*(*text*|*probabilities*)

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichle Process

Chinese Restaurant Process

Summary

- Text generated from n-Gram model random variable for i-th word concrete value for word • $P(\underbrace{W_i}_{W_{i-1}}, \dots, \underbrace{W_{i-(n-1)}}_{W_{i-1}}), \dots, w_0) =$
 - Let us start with n = 1, i.e., Unigram Model: $P(W_i|w_{i-1}, ..., w_0) = P(W)$
 - Text draw word by word from P(W)

We have model for data given word probabilities – need a model to give us probabilities for P(W = Mary) = 0.01 or P(W = Mary) = 0.5?

Simplest Choice – Set-UP

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

- Assume finite lexicon L possible outcomes
- Random variable over distributions P^X , P^x single outcome
 - P^{\times} could be $P^{\times}(Mary) = 0.1$, $P^{\times}(sees) = 0.3$...
- Probability word is "Mary" $P^{x}(W = Mary)$
- Full joint model $\mathsf{P}\left(\mathsf{P}^{X},\mathsf{W}_{1},\ldots,\mathsf{W}_{n}\right)$

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

- Let us start with an uniform model, i.e. $P(P^X = P^X) = \frac{1}{Z}$
 - Z is a constant to ensure integration to 1
 - We think $P^{x}(\text{the}) = 0.9$ is as likely as $P^{x}(\text{the}) = 0.2$ or $P^{x}(\text{the}) = 0.03$
 - We think $P^{x}(Mary) = 0.9$ and $P^{x}(the) = 0.1$ is as likely as $P^{x}(Mary) = 0.2$ and $P^{x}(the) = 0.8$

Similar to model from last session

How Does This Work – Example

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichle Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

- Lexicon: $L = \{Mary, sees, ., something, John\}$
- Dataset: D = "Mary sees something"

Relevant Questions:

How Does This Work – Example

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichle Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

- Lexicon: $L = \{Mary, sees, ., something, John\}$
- Dataset: D = "Mary sees something"

Relevant Questions:

 What is the posterior, i.e., what is *P*(*P^x*|something, sees, Mary) for a given *P^x*?

How Does This Work – Example

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichle Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

- Lexicon: $L = \{Mary, sees, ., something, John\}$
- Dataset: D = "Mary sees something"

Relevant Questions:

- What is the posterior, i.e., what is *P*(*P[×]*|something, sees, Mary) for a given *P[×]*?
- What is $P(W_{next}|$ something, sees, Mary)? predictive distribution

Posterior

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

The posterior is proportional to this (why?):

$$\underbrace{P(\mathsf{Posterior})}_{P(P^X = P^x | w_3, w_2, w_1)} \propto \left(\underbrace{\prod_{i \in \{1,2,3\}} P^x(w_i)}_{I \in \{1,2,3\}}\right) \underbrace{\frac{1}{Z}}_{I \in \{1,2,3\}}$$

D (

`

Posterior

1

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichle Process

Chinese Restaurant Process

Summary

The posterior is proportional to this (why?):

$$\underbrace{P(\text{Posterior})}_{P(P^{X} = P^{X} | w_{3}, w_{2}, w_{1})} \propto \left(\underbrace{\prod_{i \in \{1, 2, 3\}} P^{X}(w_{i})}_{I \in \{1, 2, 3\}}\right) \underbrace{\frac{P(\text{probs})}{1}}_{Z}$$

- What is the normalizer?
- What is the mean?
- Where is the maximum of this posterior?

Posterior

1

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichle Process

Chinese Restaurant Process

Summary

The posterior is proportional to this (why?):

$$\overline{P(P^{\text{osterior}})} \propto \left(\underbrace{\prod_{i \in \{1,2,3\}}^{P(\text{text}|\text{probs})}}_{I \in \{1,2,3\}} \right) \underbrace{\frac{P(p^{\text{probs}})}{1}}_{Z}$$

- What is the normalizer?
- What is the mean?
- Where is the maximum of this posterior?
- Maybe map this to known distribution?

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

The Dirichlet Distribution

Is This A Known Distribution?

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichle Process

Chinese Restaurant Process

Summary

Dirichlet Distribution – distribution over probability distributions P^x with different outcomes $w_1 \in L$:

$$P_{Dir}(P^{x}) = rac{\prod_{w \in L} P^{x}(w)^{\alpha_{i}-1}}{B(\alpha)}$$

 Here α_i > 0 are parameters – there are lots of Dirichlet Distributions

 B(α) is a normalizer depending on all the a_i – look it up on Wikipedia

Is This A Known Distribution?

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichle Process

Chinese Restaurant Process

Summary

Dirichlet Distribution – distribution over probability distributions P^x with different outcomes $w_1 \in L$:

$$P_{Dir}(P^{x}) = \frac{\prod_{w \in L} P^{x}(w)^{\alpha_{i}-1}}{B(\alpha)}$$

• Mean a probability distribution with $P^{x}(w) = \frac{\alpha}{\sum_{w' \in L} \alpha_{w'}}$

• Maximum = mean if α s all greater 1

It is a Dirichlet Distribution!

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichle Process

Chinese Restaurant Process

Summary

Let us work through this on the table:

$$P_{Dir}(P^{x}) = \frac{\prod_{w \in L} P^{x}(w)^{\alpha_{i}-1}}{B(\alpha)}$$
$$P(P^{x}|w_{3}, w_{2}, w_{1}) \propto \left(\prod_{i \in \{1, 2, 3\}} P^{x}(w_{i})\right) \frac{1}{Z}$$
$$\propto \frac{\prod_{w \in L} Px(w)^{\sum_{i \in [1, 3]} 1(w_{i}=w)}}{Z}$$

It is a Dirichlet Distribution!

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichle Process

Chinese Restaurant Process

Summary

Let us work through this on the table:

$$P_{Dir}(P^{x}) = \frac{\prod_{w \in L} P^{x}(w)^{\alpha_{i}-1}}{B(\alpha)}$$
$$P(P^{x}|w_{3}, w_{2}, w_{1}) = \frac{\prod_{w \in L} P^{x}(w)^{\sum_{i \in [1,3]} 1(w_{i}=w)}}{B(\text{sums}+1)}$$

 $\alpha {\rm s}$ correspond to frequency of each word +1

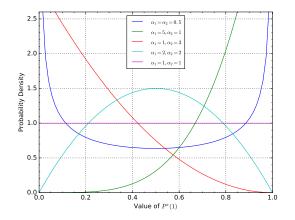
Visualizing a Dirichlet Distribution With Two Outcomes

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach


The Dirichlet Distribution

The Dirichle Process

Chinese Restaurant Process

Summary

Say we have $P^{\times}(1)$ and $P^{\times}(2)$

Generated with code based on code found at:

commons.wikimedia.org/wiki/File:Beta_distribution_pdf.svg by user Horas

Understanding the Behaviour of the Dirichlet

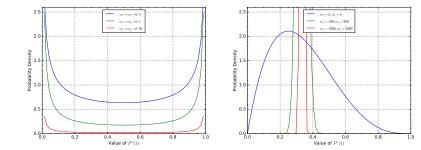
The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach


The Dirichlet Distribution

The Dirichl Process

Chinese Restaurant Process

Summary

- Increase $\alpha s \rightarrow$ concentrates at values proportional to αs
- If all α are less than 1, then we favour "sparse distributions" few outcomes likely

Back to the Example

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichle Process

Chinese Restauran Process

Summary

For our example our posterior is (table):

$$P(P^{x}) = \frac{\left(\prod_{w \in L} P^{x}(w)^{\alpha_{w_{i}}-1}\right)}{B(\alpha)}$$

Where $\alpha_{Mary} = \alpha_{sees} = \alpha_{something} = 2$ and $\alpha_{John} = \alpha_{.} = 1$

Next Step

The Dirichlet Categorial Model

- Christoph Teichmann, Antoine Venant
- Goals
- Motivation
- A Simple Approach

The Dirichlet Distribution

- The Dirichlet Process
- Chinese Restaurant Process
- Summary

- Have posterior probability for the different ${\cal P}^{\times}$
- Know it is a Dirichlet Distribution
- What are the probabilities for next word what is predictive distribution?

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

For a given P^{x} :

$$P(w_{next}, P^{x}|w_{1}, \dots, w_{n}) = \underbrace{P^{x}(w_{next})}_{P^{x}(w_{next})} \underbrace{P(P^{x}|w_{1}, \dots, w_{n})}_{P(P^{x}|w_{1}, \dots, w_{n})}$$

But we need to sum (actually integrate) over all possible P^{x}

Predictive Distribution

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichlet Process

Chinese Restauran Process

Summary

$$P(w_{next}) = \int_{P^{\times}} \underbrace{P^{\times}(w_{next})}_{P^{\times}(w_{next})} \underbrace{\frac{(\prod_{w \in L} P^{\times}(w)^{\alpha_{w}-1})}{B(\alpha)}}_{B(\alpha)} dP^{\times}$$

Combines a Categorial and Dirichlet Distribution – called a Dirichlet Categorial Model, well known

Predictive Distribution

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

$$P(w_{next}) = \int_{P^{\times}} \underbrace{P^{\times}(w_{next})}_{P^{\times}(w_{next})} \underbrace{\frac{(\prod_{w \in L} P^{\times}(w)^{\alpha_{w}-1})}{B(\alpha)}}_{B(\alpha)} dP^{\times}$$

Let us just look it up, e.g., the Dirichlet write up at https://people.eecs.berkeley.edu/~stephentu/

Predictive Distribution

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichle Process

Chinese Restaurant Process

Summary

$$P(w_{\text{next}}) = \int_{P^{\times}} P^{\times}(w_{\text{next}}) \frac{\left(\prod_{w \in L} P^{\times}(w)^{\alpha_{w}-1}\right)}{B(\alpha)} dP^{\times}$$
$$P(w_{\text{next}}) = \frac{\alpha_{w_{\text{next}}}}{\sum_{w \in L} \alpha_{w}}$$

 Probability of outcome is α for that outcome divided by sum of αs for all outcomes (finish example on table)

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

- Find a dataset relevant to your problem
 - $\, \bullet \,$ sentences from websites (tokenized) $\checkmark \,$
- Reduce your problem to estimating a random quantity of interest
 - Probabilities for next word in context \checkmark
- Build joint probabilistic model of the data and the quantity to estimate
 - $\bullet\,$ Unigram model with uniform prior $\checkmark\,$

The Next Word – The Bayesian Approach

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichlet Process

Chinese Restaurant Process

- Find a dataset relevant to your problem
 - $\, \bullet \,$ sentences from websites (tokenized) $\checkmark \,$
- Reduce your problem to estimating a random quantity of interest
 - Probabilities for next word in context \checkmark
- Build joint probabilistic model of the data and the quantity to estimate
 - $\bullet\,$ Unigram model with uniform prior $\checkmark\,$
- Get a posterior distribution
 - We get a Dirichlet Distribution posterior, which is well understood \checkmark
 - $\bullet\,$ We can predict the next word using knowledge about Dirichlet Categorial Model $\checkmark\,$

The Next Word – The Bayesian Approach

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichlet Process

Chinese Restaurant Process

- Find a dataset relevant to your problem
 - $\, \bullet \,$ sentences from websites (tokenized) $\checkmark \,$
- Reduce your problem to estimating a random quantity of interest
 - Probabilities for next word in context \checkmark
- Build joint probabilistic model of the data and the quantity to estimate
 - $\bullet\,$ Unigram model with uniform prior $\checkmark\,$
- Get a posterior distribution
 - We get a Dirichlet Distribution posterior, which is well understood \checkmark
 - $\bullet\,$ We can predict the next word using knowledge about Dirichlet Categorial Model $\checkmark\,$
- Check model quality and revise if necessary

Is Our Model Reasonable?

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichle Process

Chinese Restaurant Process

Summary

Predictive probabilities for any word position:

$$P(W_{\text{next}} = .) = \frac{1}{8}$$

 $P(W_{\text{next}} = \text{Mary}) = \frac{2}{8}$

Data may support this, but it seems unlikely given what we know about English

A Better Model

The Dirichlet Categorial Model

- Christoph Teichmann, Antoine Venant
- Goals
- Motivation
- A Simple Approach

The Dirichlet Distribution

- The Dirichlet Process
- Chinese Restaurant Process
- Summary

- We assumed that we have unigram word probabilities switch to e.g. a bigram model
- Instead of assuming uniform probability for different P^{\times} we could use Dirichlet as prior with different α s

New Model

The Dirichlet Categorial Model

- Christoph Teichmann, Antoine Venant
- Goals
- Motivation
- A Simple Approach

The Dirichlet Distribution

- The Dirichlet Process
- Chinese Restaurant Process
- Summary

- We will have a Dirichlet Prior with $\alpha {\rm s}$ proportional to observed word frequencies in some corpus
- We now have to find probabilities $P^{\times}(W_i = w_i | w_{i-1})$

New Model

The Dirichlet Categorial Model

- Christoph Teichmann, Antoine Venant
- Goals
- Motivation
- A Simple Approach

The Dirichlet Distribution

- The Dirichlet Process
- Chinese Restaurant Process
- Summary

- We will have a Dirichlet Prior with $\alpha {\rm s}$ proportional to observed word frequencies in some corpus
- We now have to find probabilities $P^{\times}(W_i = w_i | w_{i-1})$
- Let us work through that for the data:
 - "Mary saw something ."
 - "John saw"

Conjugate Model

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

What is the general posterior with the Dirichlet model after words w_1, \ldots, w_n ?

$$P(P^{x}) = \frac{\prod_{w \in L} P^{x}(w)^{\alpha_{w} - 1 + \sum_{i \in [1, n]} 1(w_{i} = w)}}{Z}$$

- Another Dirichlet Distribution
- $\bullet\,$ Prior and piosterior same type $\rightarrow\,$ conjugate model
- Dirichlet Distribution prior is conjugate for Categorial Distribution likelihood
- Understanding prior understanding posterior

The Next Word – The Bayesian Approach

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichlet Process

Chinese Restaurant Process

- Find a dataset relevant to your problem
 - $\, \bullet \,$ sentences from websites (tokenized) $\checkmark \,$
- Reduce your problem to estimating a random quantity of interest
 - $\bullet\,$ Probabilities for next word in context $\checkmark\,$
- Build joint probabilistic model of the data and the quantity to estimate
 - $\bullet\,$ unigram model with uniform prior $\checkmark\,$
- Get a posterior distribution
 - We get a Dirichlet Distribution posterior, which is well understood \checkmark
 - We can predict the next word using knowledge about Dirichlet Categorial model \checkmark
- Check model quality and revise if necessary
 - Larger n-grams with better prior \checkmark

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichle Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

The Dirichlet Process

Further Model Problems

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

"Mary saw a cake ."

- More than 5 words in language
- Maybe even infinitely many words

Moving to the Dirichlet Process

The Dirichlet Categorial Model

- Christoph Teichmann, Antoine Venant
- Goals
- Motivation
- A Simple Approach
- The Dirichle Distribution

The Dirichlet Process

- Chinese Restaurant Process
- Summary

- P(X) single outcome probability distribution
- $P(X_1, \ldots, X_n) \rightarrow$ multiple outcome probability distribution
- $P(X_1, X_2, X_3 \dots) \rightarrow$ stochastic process / random function

Extension to Infinite Number of Variables

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

We need a prior for P^x when L is infinite \rightarrow infinitely many probabilities \rightarrow need a stochastic process

- Use what we know about Dirichlet Distribution
- How can we define an infinite list of α s?
- How to define a process?

How Can We Define an Infinite List of α s?

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichle Distribution

The Dirichlet Process


Chinese Restaurant Process

Summary

- When you have a hammer ...
- Define a single concentration parameter α and a base probability distribution (measure) P(X)

•
$$\alpha_x = \alpha P(X = x)$$

• different α s always sum to concentration parameter

If $\alpha = 10$ what is α_{ab} ?

Extension to Infinite Number of Variables

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

• How can we define an infinite list of α s?

• Concentration parameter + probability distribution \checkmark

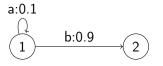
• How to define a process?

How to Define a Process

The Dirichlet Categorial Model

- Christoph Teichmann, Antoine Venant
- Goals
- Motivation
- A Simple Approach
- The Dirichle Distribution

The Dirichlet Process


- Chinese Restaurant Process
- Summary

- No need to define probability for a full outcome $P(X_1 = x_1, X_2 = x_2, ...)$
- If we pick a few values for a few variables and do not care about all the others what is the probability?
- Probability Distributions for any X¹, X²,..., X^m follow a Dirichlet

Making it Concrete

$$P_{Dir}(P_X) = \frac{\prod_{w \in L} P_X(w)^{\alpha_w}}{B(\alpha)}$$
$$\alpha = 10$$
$$^{\times}(b) = 0.2, P^{\times}(ab) = 0.5) = \frac{\overbrace{0.2^9}^{b} \times \overbrace{0.5^{0.9}}^{ab} \times \overbrace{0.3^{0.1}}^{everything else}}{B(\langle 9, 0.9, 0.1 \rangle)}$$

Extension to Infinite Number of Variables

The Dirichlet Categorial Model

- Christoph Teichmann, Antoine Venant
- Goals
- Motivation
- A Simple Approach
- The Dirichle Distribution

The Dirichlet Process

- Chinese Restaurant Process
- Summary

- How can we define an infinite list of $\alpha {\rm s}?$
 - Concentration parameter + probability distribution \checkmark
- How to define a process?
 - Define probability distribution for any finite selection of variables \checkmark

Applying for Next Word Prediction

The Dirichlet Categorial Model

- Christoph Teichmann, Antoine Venant
- Goals
- Motivation
- A Simple Approach
- The Dirichlet Distribution

The Dirichlet Process

- Chinese Restaurant Process
- Summary

- Bigram Model
- Infinitely many possible words w_i
- Probabilities for each P(W_i|w_{i-1}) come from Dirichlet Process
- Pick some concentration parameter α
- use a Markov Chain over morphems to define base probabilities *P*(*X*)

What is the predictive density / what is the posterior?

Predictive Density

The Dirichlet Categorial Model

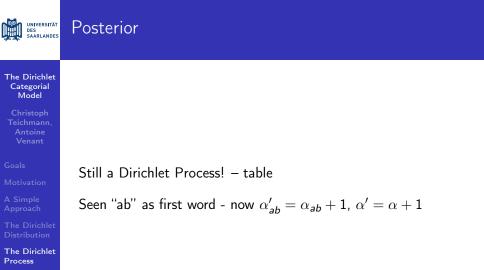
Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichlet Distribution


The Dirichlet Process

Chinese Restaurant Process

Summary

Still a Dirichlet Categorical Distribution!

$$P(W_0 = ab) = \frac{\alpha_{ab}}{\alpha}$$

Chinese Restaurant

The Dirichlet Categorial Model

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichle Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

Chinese Restaurant Process

Can We Make This Simpler?

The Dirichlet Categorial Model

- Christoph Teichmann, Antoine Venant
- Goals
- Motivation
- A Simple Approach
- The Dirichlet Distribution
- The Dirichlet Process
- Chinese Restaurant Process

- Chinese Restaurant Process metaphor for Dirichlet Categorial Model
- Model just for words
- Every word is a table
- Number of people at table x is α_x
- People are likely to sit at popular tables

Presentation in Papers

The Dirichlet Categorial Model

- Christoph Teichmann, Antoine Venant
- Goals
- Motivation
- A Simple Approach
- The Dirichlet Distribution
- The Dirichlet Process
- Chinese Restaurant Process

- Usual presentation: tables created when first costumer sits at them
- New table created with $\frac{\alpha}{\alpha+\text{seen}}$
- New table label according to base probability distribution
- Sitting at old table $\frac{\text{costumers old table}}{\alpha + \text{seen}}$

The	Dir	ich	let
Ca	tego	oria	
N	Лod	el	

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichle Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

Take Away

The Dirichlet Categorial Model

- Christoph Teichmann, Antoine Venant
- Goals
- Motivation
- A Simple Approach
- The Dirichlet Distribution
- The Dirichlet Process
- Chinese Restaurant Process
- Summary

- Important for NLP: categorial probability distributions
 - Handy prior: Dirichlet Distribution/Process
 - Works for infinite choices as well
 - Posterior is also Dirichlet Distribution/Process
 - $\bullet\,$ Predictive distribution easy to read off α
 - Chinese Restaurant metaphor used frequently

The	Diri	chlet
Ca	tego	rial
N	Aod	el

Christoph Teichmann, Antoine Venant

Goals

Motivation

A Simple Approach

The Dirichle Distribution

The Dirichlet Process

Chinese Restaurant Process

Summary

Questions!