
Advances in Logical Grammar: Review of
Typed Lambda Calculus

Carl Pollard

Department of Linguistics
Ohio State University

June 6, 2012

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



The Two Sides of Typed Lambda Calculus

A typed lambda calculus (TLC) can be viewed in two
complementary ways:

model-theoretically, as a system of notation for functions

proof-theoretically, as an elaboration of natural deduction
for intuitionistic propositional logic (IPL)

In our linguistic application, we’ll view it both ways
simultaneously.

But first, what is a TLC?

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



A TLC is a Lot Like a First-Order Logic

A TLC has a lot in common with a FOL, starting with
having both a syntax and a semantics.

The syntax of a TLC has a lot in common with the syntax
of a FOL, including constants, variables, variable binding,
and rules for forming terms.

The semantics of a TLC has a lot in common with the
semantics of a FOL, including a class of set-theoretic
interpretations and variable assignments.

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



What a TLC has that an FOL doesn’t

A FOL only has two types of terms: individual terms
(often just called terms) and truth-value terms (often
called formulas); whereas a TLC has an infinite number of
types of terms, formed with type constructors by
starting with a finite number of basic types.

A TLC has the binding operator λ (lambda), which is the
crucial ingredient for notating functions.

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



What a FOL has that a TLC doesn’t

A FOL has a special type of term – truth value terms
(also called formulas) that can be used to express theories.

A FOL has an equality symbol which can be used to form
formulas (by placing it between two individual terms).

A FOL has logical connectives and quantifiers for forming
more complex formulas.

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



The Best of Both Worlds

Before long, we’ll see how to construct systems—higher
order logics (HOLs) that combine all the features of
TLCs and FOLs.

We’ll use one of these, the pheno logic, to notate (and
theorize about) phenogrammar.

We’ll use another one, the semantic logic, to notate (and
theorize about) meanings.

the tecto linear logic makes three.

When we analyze signs, we’ll be doing proofs in all three of
these logics, in parallel.

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



Specifying the Syntax of a TLC

1. We start by specifying the basic types.

2. We use the type constructors to recursively define the full
set of types.

3. We specify a finite number of constants and assign each
constant a type.

4. Finally, we use the term-forming rules to recursively define
the full set of terms and assign each term a type.

As running examples, we’ll go through this process for two
different TLCs (one for pheno and one for semantics).

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



Basic Types

In the simplest approach to pheno, the pheno TLC has just
one basic type s (string). (Eventually it becomes necessary
to add more basic pheno types, e.g. for phonological words,
clitics, pitch accents, etc.).

The semantic TLC has the two basic types e (entities, the
meanings of (uses of) proper nouns), and p (propositions,
the meanings of (uses of) declarative sentences).

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



Defining the Full Set of Types of a TLC

T is a type.

If A and B are types, then so are:

A→ B
A ∧B
A ∨B

Nothing else is a type (in particular, we don’t make use of
F, negation, or quantifiers).

Note: The set of types is the same as the set of IPL formulas
obtained by taking the basic types to be the atomic formulas.

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



TLC Constants

Note: we write ‘` a : A’ to mean term a is of type A.

Every TLC has the logical constant ` ∗ : T.

Constants of the pheno TLC:

` e : s (null string)
` · : s→ s→ s (concatenation)
Note: usually written infix, e.g. s · t for (· s t)
constants for strings of single phonological words,
e.g. ` pig : s for the string of /pIg/.

Constants of the semantic TLC, e.g.

` fido : e
` bark : e→ p
` maybe : p→ p
` bite : e→ e→ p
` give : e→ e→ e→ p
` believe : e→ p→ p

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



TLC Terms (1/2)

a. For each constant a of type A, ` a : A.

b. For each type A there are variables ` xiA : A (i ∈ ω).

c. If ` f : A→ B and ` a : A, then ` app(f, a) : B.

Note: app(f, a) is abbreviated to (f a).

d. If ` x : A is a variable and ` b : B, then ` λx .b : A→ B.

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



TLC Terms (2/2)

e. If ` a : A ∧B, then ` π(a) : A.

f. If ` a : A ∧B, then ` π′(a) : B.

g. If ` a : A and ` b : B, then ` (a, b) : A ∧B.

h. If ` x : A and ` y : B are variables, ` d : A ∨B, ` c : C,
and ` c′ : C, then [case d (ι(x) c) (ι′(y) c′)] : C.

i. If ` a : A, then ` ιA,B (a) : A ∨B
j. If ` b : B, then ` ι′A,B (b) : A ∨B

Note: subscripted A,B on π, π′, ι, and ι′ are suppressed for the
sake of readability.

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



TLC Term Equivalences (1/3)

Here t, a, b, p, and f are metavariables ranging over terms.

a. Equivalences for the term constructors:

1. t ≡ ∗ (for t a term of type T)

2. π(a, b) ≡ a

3. π′(a, b) ≡ b

4. (π(p), π′(p)) ≡ p

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



TLC Term Equivalences (2/3)

b. Equivalences for the variable binder (‘lambda conversion’)

(α) λx .b ≡ λy .[x/y]b

(β) (λx .b) a ≡ [x/a]b

(η) λx .(f x) ≡ f , provided x is not free in f

Note 1: The notation ‘[x/a]b’ means the term resulting
from substitution in b of all free occurrences of x : A by
a : A. This presupposes a is free for x in b.

Note 2: ‘Free’ and ‘bound’ are defined just as in FOL,
except that λ is the variable binder rather than ∀ and ∃.

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



TLC Term Equivalences (3/3)

c. Equivalences of Equational Reasoning

(ρ) a ≡ a
(σ) If a ≡ a′, then a′ ≡ a.

(τ) If a ≡ a′ and a′ ≡ a′′, then a ≡ a′′.
(ξ) If b ≡ b′, then λx .b ≡ λx .b′.
(µ) If f ≡ f ′ and a ≡ a′, then (f a) ≡ (f ′ a′).

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



Set-Theoretic Interpretation of a TLC

A (set-theoretic) interpretation I of a TLC assigns to each
type A a set I(A) and to each constant ` a : A a member I(a)
of I(A), subject to the following constraints:

1. I(T) is a singleton

2. I(A ∧B) = I(A)× I(B)

3. I(A ∨B) = I(A) + I(B) (disjoint union)

4. I(A→ B) ⊆ I(A)→ I(B)

Note: The set inclusion in the last clause can be proper, as long
as there are enough functions to interpret all terms.

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



Assignments

An assignment relative to an interpretation is a function that
maps each variable to a member of the set that interprets that
variable’s type.

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



Extending an Interpretation Relative to an Assignment

Given an assignment α relative to an interpretation I, there is a
unique extension of I, denoted by Iα, that assigns
interpretations to all terms, such that:

1. for each variable x, Iα(x) = α(x)

2. for each constant a, Iα(a) = I(a)

3. if ` a : A and ` b : B, then Iα((a, b)) = 〈Iα(a), Iα(b)〉
4. if ` p : A∧B, then Iα(π(p)) = the first component of Iα(p);

and Iα(π′(p)) = the second component of Iα(p)

5. if ` f : A→ B and ` a : A, then Iα((f a)) = (Iα(f))(Iα(a))

6. if ` b : B, then Iα(λx∈A.b) is the function from I(A) to
I(B) that maps each s ∈ I(A) to Iβ(b), where β is the
assignment that coincides with α except that β(x) = s.

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



Observations about Interpretations

Two terms ` a : A and ` b : B of TLC are term-equivalent
iff A = B and, for any intepretation I and any assignment
α relative to I, Iα(a) = Iα(b).

Another way of stating the preceding is to say that term
equivalence (viewed as an equational proof system) is
sound and complete for the class of set-theoretic
interpretations described earlier.

For any term a, Iα(a) depends only on the restriction of α
to the free variables of a.

In particular, if a is a closed (i.e. has no free variables),
then Iα(a) is independent of α so we can simply write I(a).

Thus, an interpretation for the basic types and constants
extends uniquely to all types and all closed terms.

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



Sequent-Style ND with Proof Terms for IPL

This is a style of ND designed to analyze not just
provability, but also proofs.

It is an elaboration of the sequent-style ND for IPL already
introduced.

We’ll see that in addition to being thought of as denoting
elements of models, TLC terms can also be thought of as
notations for proofs.

This idea was first articulated by Curry (1934, 1958), then
elaborated by Howard (1969 [1980]), Tait (1967), etc..

We’ll use this kind of ND for phenos and meanings in
linear grammar derivations.

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



Preliminary Definitions

1. A (TLC) term is called closed if it has no free variables.

2. A closed term is called a combinator if it contains no
nonlogical constants.

3. A type is said to be inhabited if there is a closed term of
that type.

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



Curry-Howard Correspondence (1/2)

Types are (the same thing as) formulas.

Type constructors are logical connectives.

(Equivalence classes of) terms are proofs.

The free variables of a term are the undischarged
hypotheses on which the proof depends.

The nonlogical constants of a term are the nonlogical
axioms used in the proof.

A type is a theorem iff it is inhabited.

A type is a pure theorem (requires no nonlogical axioms to
prove it) iff it is inhabited by a combinator.

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



Curry-Howard Correspondence (2/2)

Application corresponds to Modus Ponens.

Abstraction corresponds to Hypothetical Proof (discharge
of hypothesis).

Pairing corresponds to Conjunction Introduction.

Projections correspond to Conjunction Eliminations.

Case corresponds to Disjunction Elimination.

Canoniical injections correspond to Disjunction
Introductions

Identification of free variables corresponds to collapsing of
duplicate hypotheses (Contraction).

Vacuous abstraction corresponds to discharge of a
nonexistent hypothesis (Weakening).

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



Notation for Sequent-Style ND with Proof Terms

Judgments are of the form Γ ` a : A, read ‘a is a proof of A
with hypotheses Γ’, where

1. A is a formula (= type)

2. a is a term (= proof)

3. Γ, the context of the judgment, is a set of variable/formula
pairs of the form x : A, with a distinct variable in each pair.

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



Axiom Schemas

Hypotheses:

x : A ` x : A

(x a variable of type A)

Nonlogical Axioms:

` a : A

(a a nonlogical constant of type A)

Logical Axiom:

` ∗ : T

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



Rule Schemas for Implication

→-Elimination or Modus Ponens:

Γ ` f : A→ B ∆ ` a : A
→E

Γ,∆ ` (f a) : B

This presupposes no variable occurs in both Γ and ∆.

→-Introduction or Hypothetical Proof:

x : A,Γ ` b : B
→I

Γ ` λx .b : A→ B

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus



Other Rule Schemas

There are also schemas (which we will introduce as needed) for:

pairing/conjunction introduction

projections/conjunction elimination

case/disjunction elimination

canonical injections/disjunction introduction

identifying variables/contraction

useless hypotheses/weakening

Carl Pollard Advances in Logical Grammar: Review of Typed Lambda Calculus


