
Pheno Technology

Carl Pollard

Department of Linguistics
Ohio State University

June 25, 2012

Carl Pollard Pheno Technology



Beyond Strings

We can’t keep pretending that all there is to pheno is
strings and functions over strings.

Often we need to ask: strings of what? Syllables?
Phonological words? Intonation phrases?

And it’s not enough just to stick things together; often we
need to know ‘how tightly’ or by ‘what flavor of glue’
things are stuck together.

For example, there is a difference between putting two
phonological words (a type we’ll now call p) next to each
other and attaching a clitic (which we’ll call type c) to a
phonological word.

Also there is the issue of non-determinism: sometimes
there is some freedom of variation in how things are
ordered which does not affect the meaning.

We need to develop some technology for talking about such
things within the higher-order pheno theory.

Carl Pollard Pheno Technology



The String Type Constructor

Instead of just having a type s of strings, we assume that
for each phenotype A there is a type StrA of A-strings.

That is, Str is not a type, but rather a unary type
constructor.

In terms of the Curry-Howard correspondence, Str can be
thought of as similar to a modal operator.

` eA : StrA (the null A-string)

` ·A : StrA → StrA → StrA (concatenation, written infix)

` toSA : A→ StrA maps each A to an A-string.
Intuitively, this can be thought of as a string of length one.

We usually drop the subscript ‘A’ when it can be inferred
from the context.

Carl Pollard Pheno Technology



Axiom Schemas for Strings

Our previous string axioms now must be schematized over the
type metavariable A (here the variables are of type StrA):

` ∀xyz .(x · y) · z = x · (y · z)
` ∀x .x · eA = x

` ∀x .eA · x = x

Carl Pollard Pheno Technology



Notation for Phenotypes

We revive the notation s as an abbreviation for Strp,
i.e. strings of phonological words.

For any phenotype A, StrA → t is the type of
A-languages, i.e. sets of A-strings.

We write S as an abbreviation for s→ t, the type of
p-languages, i.e. sets of strings of phonological words.

We write z as an abbreviation for StrS, i.e. strings of
p-languages.

We write Z as an abbreviation for z→ t, the type of
S-languages, i.e. sets of strings of p-languages!

Carl Pollard Pheno Technology



Conventions for Pheno Variables

We use c as a variable of type c.

We use p and q as variables of type p.

We use s, t, and u as variables of type s.

We use P , Q, and R as variables of type S.

We use w, x, y, and z as variables of type z.

We use W , X, Y , and Z as variables of type Z.

Carl Pollard Pheno Technology



Representing the Natural Numbers

Often it’s useful to be able to identify a numerical position
in a string or to know the length of a string.

We can represent the natural numbers as the type StrT ,
which we abbreviate as n.

We represent 0 as eT .

We define the successor function suc : n→ n by

suc =def λn .(toSn ∗) · n

Then we write 0, 1, 2, 3, etc. as abbreviations for eT ,
toSn ∗, ∗∗, ∗ ∗ ∗, etc.

If necessary we can define the usual arithmetic functions
(addition, multiplication, exponential) by mimicking in
HOL the way they are recursively defined in set theory.

Carl Pollard Pheno Technology



Abbreviations for Pheno Terms

ep, the null p-string, is abbreviated to e.

·p, concatenation of p-strings, is abbreviated to ·.
·S, concatenation of S-strings, is abbreviated to ◦.
toSp : p→ s is abbreviated to toS.

toSS : S→ z is abbreviated to toZ.

For a phonological word foo:

toS foo is abbreviated to foos

the singleton p-language λs .s = foos is abbreviated to FOO

toZ FOO is abbreviated FOOz

` toS : p→ s (abbreviates toSp)

` toZ : S→ z (abbreviates toSS)

If a0 , . . . , an are terms of type A (n > 0), then a0 . . . an
abbreviates the term (toS a0 ) · . . . · (toS an) of type StrA.

Carl Pollard Pheno Technology



Operations on p-Languages

` 0p : S (the empty p-language)

` 1p : S (the singleton language λs .s = e)

` •p : S→ S→ S (language fusion)

•p =def λPQs .∃tu .(P t) ∧ (Q u) ∧ (s = t · u)

` ∪p : S→ S→ S (language union)

∪p =def λPQs .(P s) ∨ (Q s)

` perp : s→ S

For any p-string s, (per s) is the set of permutations of s.

All these have counterparts when p is replaced by any other
pheno type (most often, S).

Carl Pollard Pheno Technology



Standard String Functions

The following are all schematized over a phenotype A.

cns : A→ StrA → StrA: sticks an A onto the left edge of
an A-string

fst : StrA → A: returns the first A of a (non-null) A-string

rst : StrA → StrA returns all but the first A of a (non-null)
A-string, in the same order

snc : A→ StrA → StrA: sticks an A onto the right edge of
an A-string

lst : StrA → A: returns the last A of a (non-null) A-string

tsr : StrA → StrA returns all but the last A of a (non-null)
A-string, in the same order

Carl Pollard Pheno Technology



Some Relationships between String Functions

∀ps .(cns p s) = (toS p) · s

∀ps .(snc p s) = s · (toS p)

∀p .(toS p) = (cns p e)

∀s .s = (cns (fst s) (rst s))

∀s .s = (snc (lst s) (tsr s))

Note: the last two are not quite correct, because they have to
be restricted to the case where s is non-null.

This calls for a slightly more sophisticated approach in which
each string type is decomposed into a coproduct (i.e. disjoint
union) of a null string type and a non-null string type.

Carl Pollard Pheno Technology



Linguification

` L : z→ S

This fuses a string of p-languages into a single language:

` (L eS) = 1S

` ∀Pz .(L (cns P z)) = P • (L z)

So for any p-language P :

(L (toZ P )) = P

And for any string of p-languages P 0 . . . P n (n > 0),

(L P 0 . . . P n) = P 0 • . . . • P n

Carl Pollard Pheno Technology



Compaction

` k : Z→ S

Compaction fuses an S-language (i.e. a set of strings of p
languages) into a single planguage by unioning together the
linguifications of all the strings in the set:

` (k 0Z) = 0S

Here 0Z is the empty set of strings of languages.

` ∀Zw .(k (Z ∪ (λz .z = w))) = (k Z) ∪ (L w)

Carl Pollard Pheno Technology



The Length of a String

We can define the length function lenA : StrA → n by the
axioms:

` (len e) = 0

` ∀xs .(len (cns x s)) = (suc (len s))

Carl Pollard Pheno Technology



Cliticization

Pro- and en-cliticization to a phonological word are
distinguished contextually, not typographically:

` # : c→ p→ p (procliticization, written infix)
` # : p→ c→ p (encliticization, written infix)

Likewise for pro- and en-cliticization to a p-string:

` + : c→ s→ s (procliticization, written infix)
` + : s→ c→ s (encliticization, written infix)

which are defined, respectively, as follows:

+ =def λcs .cns c#(fst s) (rst s)
+ =def λcs .snc (lst s)#c (tsr s)

Carl Pollard Pheno Technology


