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Review: Types of (Static) Hyperintensional Semantics

Basic types from the logic:
t (truth values)
n (natural numbers)

Basic static semantic types:
e (entities)
p (propositions)

some nonbasic static semantic types:
p1 =def e→ p (unary static properties)
pn+1 =def e→ pn (n-ary static properties, n > 1)
p1 → p (static generalized quantifiers)
p1 → p1 → p (static determiners)
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Review: Static Propositional Connectives and
Quantifiers

a. ` truth : p

b. ` falsity : p

c. ` not : p→ p (translates it is not the case that)

d. ` and : p→ p→ p (translates and)

e. ` or : p→ p→ p (translates or)

f. ` implies : p→ p→ p (translates episodic if . . . then)

g. ` existsA : (A→ p)→ p

h. ` forallA : (A→ p)→ p

i. ` entails : p→ p→ t

j. ` ≡ : p→ p→ t (mutual entailment)
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Axioms for Static Propositional Connectives

These axioms say that the type p is interpreted as a preboolean
algebra relative to the entailment preorder. A is a type
metavariable; p, q, and r variables of type p, x is of type A, and
P of type A→ p.

a. ` ∀p .p entails truth
b. ` ∀p .falsity entails p
c. ` ∀p,q .(p and q) entails p
d. ` ∀p,q .(p and q) entails q
e. ` ∀p,q,r .((p entails q) ∧ (p entails r))→ (p entails (q and r))
f. ` ∀p,q .p entails (p or q)
g. ` ∀p,q .q entails (p or q)
h. ` ∀p,q,r .((p entails r) ∧ (q entails r))→ ((p or q) entails r)
i. ` ∀p,q .(p implies q) and p) entails q
j. ` ∀p,q,r .((r and p) entails q)→ (r entails (p implies q))
k. ` ∀p .(not p) ≡ (p implies falsity)
l. ` ∀p .(not (not p)) entails p
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Axioms for Static Propositional Quantifiers

m. ` ∀xP .(P x) entails (exists P )

n. ` ∀pP .(∀x .(P x) entails p)→ ((exists P ) entails p)

o. ` ∀xP .(forall P ) entails (P x)

p. ` ∀pP .(∀x .p entails (P x))→ (p entails (forall P ))

Scott Martin and Carl Pollard Introduction to Hyperintensional Dynamic Semantics



Review: Tonicity (1/2)

Recall that if 〈S,v〉 and 〈P,≤〉 are two preordered sets,
then f : S → P is called monotonic (resp. antitonic) iff
for all s, s′ ∈ S, if s v s′ then f(s) ≤ f(s′)
(resp. f(s′) ≤ f(s)).

f is called tonic if it is either monotonic or antitonic, and
atonic otherwise.

Linguists often say ‘upward monotonic’ for monotonic, and
‘downward monotonic’ for antitonic.
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Review: Tonicity (2/2)

If f : S → S → P is a (curried) function, it is called
monotonic (resp. antitonic) in its first (resp. second)
argument iff, for each r ∈ S, the function λs .f(s)(r)
(resp. λs .f(r)(s)) is monotonic (resp. antitonic).

The case we’re interested in is where P is the set of (static)
propositions (type p), ≤ is entailment, S is the set of
(static) properties (type e→ p), and v is defined by

P v Q =def ∀x .(P x) entails (Q x)

So the functions we are concerned with have type

(e→ p)→ (e→ p)→ p

namely, the type of (static) determiners.
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Static Property Conjunction

that =def λPQx .(P x) and (Q x) : (e→ p)→ (e→ p)→
(e→ p)

Like propositional conjunction, static property conjunction
is associative, commutative, and idempotent up to
equivalence, i.e. for any three static properties P,Q,R:

(P that Q) that R ≡ P that (Q that R)

(P that Q) ≡ Q that P

(P that P ) ≡ P
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Static Conservativity

A static determiner d is called (statically) conservative
iff, for all P , Q,

(d P Q) ≡ (d P (P that Q))

Natural language static determiners are conservative, e.g.

A donkey brays iff a donkey is a donkey that brays.

Every donkey brays iff every donkey is a donkey that brays.

No donkey brays iff no donkey is a donkey that brays, etc.
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Tonicity of Static Determiners

A static determiner is called:

↑ ↑ iff it is monotonic in both arguments

↑ ↓ iff it is monotonic in the first argument and antitonic in
the second

↓ ↑ iff it is antitonic in the first argument and monotonic in
the second

↓ ↓ iff it is antitonic in both arguments

6↑6↓ ↑ iff it is atonic in the first argument and monotonic in
the second.
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Examples

↑ ↑ determiners: a, some, several, many, at least n

↑ ↓ determiners: not every, not all

↓ ↑ determiners: every, all

↓ ↓ determiners: no, few, at most n

6↑6↓ ↑ determiner: most
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Testing Tonicity of Determiners

The following (dis-)entailments are characteristic of a 6↑6↓ ↑
determiner:

Most donkeys bray and snort entails Most donkeys bray.

Most donkeys bray does not entail Most brown donkeys bray.

Most brown donkeys bray does not entail Most donkeys bray.
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Readings of d farmer that owns a donkey beats it

Weak: d farmer that owns a donkey owns a donkey and
beats it or
d farmer that owns a donkey beats a donkey that he owns

Strong: d farmer that owns a donkey beats every donkey
that he owns

E-type: d farmer that owns a donkey beats the donkey
that he owns

Pair-quantification: For d pairs 〈x, y〉 where x is a farmer,
y is a donkey, and x owns y, x beats y

Note: as we’ll see, for some determiners, two or more of these
readings might have identical truth conditions.

Which determiners allow which readings?

Why?
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Conservativization

We define

conserv : ((e→ p)→ (e→ p)→ p)→
(e→ p)→ (e→ p)→ p

as follows:

conserv =def λdPQ .d P (P that Q)

Observations:

For all d, conserv d is conservative.
If d is conservative, then conserv d ≡ d
conserv is idempotent u.t.e..
The notion of conservativity does not carry over
straightforwardly to the dynamic setting.
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The Uniqueness Condition

The uniqueness condition is that no farmer own more
than one donkey.

If the uniqueness condition is satisfied, then the e-type
reading gives the right truth conditions.

But it’s not clear what to say about the e-type reading
when the uniqueness condition is not satisfied.

Also, usually there is not much reason to think the
uniquess condition is satisfied.
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The Consistency Condition

The consistency condition is that every donkey-owning
farmer treats all his donkeys the same way.

Obviously the uniqueness condition is a special case of the
consistency condition.

When the consistency condition is satisfied, the weak and
strong reading coincide and give the intuitively correct
truth conditions.

In the special case of uniqueness, the e-type reading
coincides with these also.
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The Pair-Quantification Reading

This is the reading predicted by classical DRT/FCS.

It coincides with the strong reading for d = every.

It coincides with the weak reading when d = no, some, or a.

It doesn’t work at all for d = most.

Also, it doesn’t work at all for d = at least two, so the
failure of the pair-quantification reading is not merely an
issue of ‘proportion’.

In fact, the pair-quantification reading fails for nearly all
determiners.

Based on these considerations and the ones above about
the e-type reading, Kanazawa suggests abandoning both
the pair-quantification reading and the e-type reading as
playing any role in the interpretation of donkey sentences.
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Summary of Kanazawa’s Empirical Claims (1/2)

The interpretation of a donkey sentence is given by either
the weak or the strong reading.

The choice of determiner is the main factor that affects
which readings are possible.

More specifically, the key factor is the tonicity of the
determiner.
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Summary of Kanazawa’s Empirical Claims (2/2)

↑ ↑ determiners (a, some, several, many, at least n): weak
reading only.

↓ ↓ determiners (no, few, at most n): weak reading only.

↓ ↑ determiners (every, all): strong reading preferred.

↑ ↓ determiners (not every, not all): strong reading
preferred?

6↑6↓ ↑ determiner (most): both readings possible:

Most people that owned a slave also owned his offspring.
(strong reading preferred)

Most men that have a quarter put it in the parking meter.
(weak reading preferred).
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Where we are Going with This

We accept Kanazawa’s arguments for ignoring the e-type
and pair-quantification readings.

We agree with Kanazawa that for most, both weak and
strong readings are available.

But we reject his claim that the strong reading is
‘preferred’ for every.

It seems that the strong reading for every and most is
favored in cases where there is good reason to assume the
consistency condition is satisfied.

And so, we conclude that the only reading generated by
the grammar should be the weak reading.

Apparent strong ‘readings’ arise via pragmatic inference
(e.g. based on consistency assumptions.

We’ll implement a weak-reading-only analysis of donkey
sentences within hyperintensional dynamic semantics
(HDS).
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Types for Contexts in HDS

c0 =def p (nullary contexts)

cn =def en → p (n-ary contexts, n > 0
Example: the output context from an utterance in the
(unrealistic!) null input context truth of a farmer beats a
donkey is the binary context

λx ,y .(farmer x) and (donkey y) and (beat x y)

c =def
∐

n∈n.cn (contexts)

For c ∈ cn , |c| =def n is the number of active discourse
referents (DRs) in c.
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About HDS Contexts

Our contexts correspond roughly to Lewis/Stalnaker/Heim
common grounds (CGs).

The abstraction represents indeterminacy about the
identity of the entities that the CG is about.

Using abstraction rather than existential quantification
obviates the need for scope extension or continuations to
render DRs accessible for subsequent anaphora.

It is also in the spirit of DRT and FCS that indefinites are
fundamentally nonquantificational—a property shared with
definites—though they have the same type as
quantificational NPs.
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Proffered Contents and Context Changes

The type for proffered contents of decarative sentences and
their associated context changes is:
k =def c ⇀ c

For each proffered content k ∈ k, there is a natural number
|k| such that for every c in the domain of k,

|k c| = |c|+ |k|

Intuitively, |k| is the number of discourse referents (DRs)
that k introduces.
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Dynamic Conjunction of Proffered Contents

and : k→ k→ k is defined as follows:

k and h =def

λc|(k ↓ c)∧(h ↓(cc k c)).λx|c|,y|k|,z|h| .(k c x,y) and (h (cc k c) x,y, z)

the function cc : k→ k mapping proffered contents to their
associated context changes is defined as follows:

cc k =def

λc|k ↓ c .λx|c|,y|k| .(c x) and (k c x,y)
The first conjunct is the carryover from the input context,

and the second is the contribution from the proffered
content itself.

We can use cc to relate dynamic conjunction of proffered
contents to composition of context changes:

o ` ∀kh .cc (k and h) = (cc k); (cc h)
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Other Dynamic Semantic Types

unary dynamic properties: d1 =def n→ k

n-ary dynamic properties (n > 1) dn+1 =def n→ dn

dynamic generalized quantifiers: d1 → k

dynamic determiners: d1 → d1 → k
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Dynamicization of Properties (1/2)

Dynamic properties can be defined by applying a
dynamicization function dynn : pn → dn to the static
counterpart. For n < 3 these are:

dyn0 p =def λcλx|c| .p

dyn1 P =def λm .λc||c|>m .λx|c| .P xm

dyn2 R =def λmn .λc||c|>m,n .λx|c| .R xm xn
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Dynamicization of Properties (2/2)

Examples:

cold =def dyn0 cold = λc .λx|c| .cold

donkey =def dyn1 donkey = λm .λc||c|>m .λx|c| .donkey xm

beat =def dyn2 beat = λmn .λc||c|>m,n .λx|c| .beat xm xn
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Dynamic Conjunction of Dynamic Properties

that : d1 → d1 → d1 is defined as follows:

D that E =def λn .(D n) and (E n)

Unlike their static counterparts, dynamic conjunction (of both
proffered contents and dynamic properties) are not commutative
or idempotent u.t.e. (though they are associative u.t.e.).

That’s because the two conjuncts are evaluated in different
contexts.

As a consequence, the notion of conservativity does not transfer
straigh tforwardly to the dynamic setting.

But maybe we won’t need it?
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Review of Dynamic Negation

Dynamic negation of proffered contents not : k→ k is defined
by not k =def :

λc|k ↓ c .λx|c| .not (k c x) (for |k| = 0)

λc|k ↓ c .λx|c| .not (existsy|k| .(k c x,y) (for |k| > 0)

And dynamic negation of dynamic properties non : d1 → d1 is
defined as follows:

non D =def λn .not (D n)
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Dynamic Double Negation

Dynamically negated proffered contents do not introduce
any DRs:

` ∀k . |not k| = 0

If |k| = 0, then

` not (not k) ≡ k

If |k| = m > 0, then

` not (not k) 6≡ k

More specifically:

` not (not k) ≡ λc|k ↓ c .λx|c| .existsym .k c x,y

That is, dynamic double negation of a proffered content
has the effect of (statically) existentially binding all the
DRs that it introduces.
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And another Thing . . .

We define a function + : c→ c that adds a new DR to an
arbitrary context:

c+ =def λx|c|,y .c x
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The Dynamic ‘Existential’ Quantifier

The dynamic generalized quantifier exists is defined as
follows:

exists D =def λc|(D |c|) ↓ c+ .D |c| c+

Crucially, the new DR |c| depends on c, which is λ-bound
but not existentially bound, just as in DRT and FCS.

So there is no need for any kind of scope extension
mechanism, or for continuations.

Example:

exists donkey = λc .λx|c|,y .donkey y
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Two Dynamic Determiners

the dynamic indefinite determiner:

a D E =def exists (D that E)

the dynamic negative determiner:

no D E =def not (a D E)

Examples:

A donkey brays  
a donkey bray = λc .λx|c|,y .(donkey y) and (bray y)

No donkey brays  
no donkey bray =

λc .λx|c| .not(existsy .(donkey y) and (bray y))
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The Definite Pronoun It, Intuitively

Here’s the intuition:

a. The definite pronoun it ‘picks up’ a DR, the ‘antecedent’,
already in the input context.

b. The antecedent is practically entailed by the context to
satisfy the ‘descriptive content’ of the pronoun (in this case,
roughly speaking, being nonhuman).

c. In using the pronoun, the speaker publicly certifies that the
context provides sufficient information for the addressee to
resolve which DR is the antecedent.

We handle (a) and (b) in the semantics of the pronoun.

We dodge the pragmatic issues posed by (c) (the
anaphoricity, or retrievability, or contextual felicity) by
treating the pronoun as ambiguous with respect to which
DR is its antecedent.
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The Definite Pronoun It, Formally

For each i, it  

λD .λc|(|c|>i)∧(c pentails λ
x|c| .nonhuman x i ).D i c

These meanings are dynamic generalized quantifiers.

Thus pronouns (like other definite NPs, and like indefinite
NPs), have the same semantic type as quanticational NPs,
even though there is nothing quantificational about them.

Example: It brays  iti bray =

λc|(|c|>i)∧(c pentails λ
x|c| .nonhuman x i ).λx|c| .bray xi
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Two Unambiguous Donkey Sentences

A farmer that owns a donkey beats it  
a (farmer that(λm .a donkey (ownm)))(λm .iti (beatm)) =

λc .λx|c|,y,z .(farmer y) and (donkey z) and (own y z) and (beat y w)))

where w is the i-th component of the tuple x, y, z. When
i = |c|+ 1, then w = z and we get:

λc .λx|c|,y,z .(farmer y) and (donkey z) and (own y z) and (beat y z)))

No farmer that owns a donkey beats it  

λc .λx|c| .not(existsy,z .(farmer y) and (donkey z) and (own y z) and (beat y z))

These are the desired readings.

Scott Martin and Carl Pollard Introduction to Hyperintensional Dynamic Semantics



Two Donkey Sentences with Weak and Strong Readings

a. Every farmer that owns a donkey beats it.

b. Most farmers that own a donkey beat it.

How should we analyze these?
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A First Attempt (1/2)

An obvious analysis of every is to use a traditional
semantics of which yields the strong reading:

everys =def λDE .not (a D (non E)) =

and then apply (the dynamic counterpart of) the
conservativization operator to it to get another semantics
for every that yields the weak reading:

everyw =def λDE .not (a D (non (D that E))) =

λDE .not (exists (D that (non (D that E)))

But this strategy doesn’t generalize to the case of most.
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A First Attempt (2/2)

Additionally, there’s a technical problem (pointed out by
Chierchia) of ‘donkey doubling’ arising from the fact that
the weak reading of (a) is essentially analyzed as every
farmer that owns a donkey is a farmer that owns a donkey
and beats it : we end up with two different donkey DRs,
and the pronoun can resolve to either one of them!

Instead, we posit meanings for every and most that yield
weak readings, and assume that the strong readings arise
via pragmatic inference in the presence of background
assumptions of consistency.
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Weak Every

we start with the previous definition of weak every and
eliminate the ‘donkey doubling’ problem by doubly
negating the restriction to prevent any DRs introduced in
the relative clause from getting passed into the scope:

everyw =def

λDE .not (a (non (non D)) (non (D that E))) =

λDE .not (exists ((non (nonD)) that(non (D that E)))

This yields the right reading and solves the donkey
doubling problem, but it has a kind of hokey, arbitrary
look to it.

How can we justify this theoretically?
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Justifying Weak Every (1/2)

We use as our model the natural hyperintensional
generalization of Montague’s definition for static every :

every =def λPQ .forallx .((P x) implies (Q x))

Thus, we define:

every =def λDE .foralln .((D n) implies (E n))

Here the dynamic universal quantifier is defined as
expected:

forall =def λD .not (exists (non D))

And dynamic implication, also as expected, is defined so
that presuppositions of the consequent can be satisfied
from the antecedent:

implies =def λkh .(not k) or (k and h)

Here dynamic disjunction is defined as in DMG:

or =def λkh .not ((not k) and (not h))
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Justifying Weak Every (2/2)

From these definitions, we establish:

every =def λDE .not
(existsn(not (not((not (not (D n)))and(not ((D n)and(E n)))))))

But because the outer double negation is eliminable
(why?), this is equivalent to

λDE .not (existsn .((not (not (D n)))and(not ((D n)and(E n))))) =

λDE .not (exists ((non (nonD)) that(non (D that E)))

which coincides with the amended semantics of weak every.
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