
R I C H A R D T. O E H R L E

T E R M - L A B E L E D C A T E G O R I A L T Y P E S Y S T E M S *

1. G E N E R A L I Z E D C O M P O S I T I O N A L I T Y

Through language, we are able to assign symbolic analyses to linguistic
entities - physical objects and events - whose complexity has no intrinsic
upper bound. Such symbolic analyses are abstract, since a single physical
entity can support distinct analyses. Yet we have partial intuitive access
to the properties of these analyses through their projections in different
'dimensions', including the widely recognized and studied dimensions of
phonology, syntax, and semantics/pragmatics. Each of these dimensions
gives rise to a dimension-specific problem of compositionality:

given an analysis of a linguistic entity e, which has, for a specific
dimension d the projection d(e), how do the global properties of
d(e) depend on the correlative properties of the components of
e, together with their mode of composition?

But an additional question - which we call the problem of generalized
compositionality - arises as well:

how does composition in one dimension depend on composition
in other dimensions?

There are many possible answers to this question and existing grammatical
architectures instantiate some of them. The question deserves to be stud-

* Versions of this paper were presented in a number of different contexts, including: the
OTS Categorial Grammar Colloquium, Utrecht, May 1991; University of Arizona Linguistics
Colloquium, September 1991; Institute for Research in Cognitive Science, University of
Pennsylvania, March 1992; CSLI workshop on categorial grammar and quantification, June
1992; MOL3, Austin, November 1992; Cognitive Science Brown Bag Series, University of
Arizona, January 1993; Peripatetic Workshop on HPSG and Categorial Grammar, Col-
umbus, 1993; Symposium on logic- and unification-based grammars, ESSLLI, Lisbon, August
1993. The paper owes a great deal to discussions with the audiences at these presentations,
and to conversations about this material with Tom Cornell, Mark Johnson, Aravind Joshi,
Ed Keenan, Manfred Krifka, Glyn Morrill, Fernando Pereira, Mark Steedman, Susan Steele,
and Frans Zwarts. I am especially grateful to Michael Moortgat for discussion and clar-
ification of the issues this paper addresses. The constructive criticism of two anonymous
referees led to significant improvements. Remaining errors are of course mine. Finally, I
would like to thank Merrill Garrett and Terry Langendoen and the University of Arizona
International Programs Office for material support.

Linguistics and Philosophy 17: 633-678, 1994.
© 1994 Kluwer Academic Publishers. Printed in the Netherlands.

634 RICHARD T. OEHRLE

ied more systematically, however, so that we may gain deeper insight into
the properties of multidimensional grammatical systems.

The family of formal systems known generically as Categorial Grammar
provides a useful framework in which to undertake investigations of this
kind. Categorial grammars easily accommodate composition in multiple
dimensions; moreover, a variety of grammatical architectures compatible
with composition in multiple dimensions can be simulated within the
general categorial framework, making comparison in a common frame-
work a possibility [32, 34, 35]. Finally, the general tenets of the family of
categorial grammars are not rigidly fixed: the general perspective is open
to innovation.

In what follows, we begin with a characterization of the general form
of categorial grammars that accommodates a broad range of grammatical
systems. We then investigate how three of the more prominent grammat-
ical systems in this family accommodate quantifier types and quantifi-
cational scope ambiguities, a problem prominent in the categorial litera-
ture since Ajdukiewicz's work [2]. Analysis of this problem leads to the
study of term-labeled type-deduction. The interest of this study centers
on the division of deductive labor between the types and the terms that
label them: some familiar systems arise as special cases, but new solutions
to the problems of generalized compositionality arise as well.

2. CATEGORIAL GRAMMARS AS DEDUCTIVE SYSTEMS

A categorial grammar is standardly determined by the following infor-
mation:

• a finite set A t (T) o f primitive types
• a finite set f~ of type-forming operators

• a finitely axiomatizable type-calculus C
• a finite vocabulary V
• an initial type-assignment

Together, the primitive types and the type-forming operators determine
a type-language T. The type-calculus characterizes a set of valid type
structures of the form E(tl tk) F- to, (where X(t~, . . . , tk) is a brack-
eted sequence of types, or a concatenation of types, or some other struc-
ture which is definable over both elements of the type-language and ele-
ments of V). The initial type-assignment ~': V ~ P o w (T) associates each
element v E V with a non-empty subset of types in T. When the type
t E ~'(v), we write v F- t.

Now, these assumptions determine a relation between complex struc-

T E R M - L A B E L E D C A T E G O R I A L TYPE SYSTEMS 635

tured expressions and types in a natural way: we extend the initial type-
assignment ¢ to a complex expression X (v l , . . . , vk) formed from the
atomic elements of the vocabulary va , vkby the rule:

X(V~,. . . ,Vk) Fto iff there are types h , . . . , t k with
v~ F ta , vk F & such that X(tl , tk) F to is valid accord-
ing to the type-calculus C.

Categorial systems defined in this fashion can be compared in three
ways, according to

• the deducibility relation between types that they characterize;
• the relation between expressions and types they characterize;
• their Curry-Howard properties: the correspondence they determine

between proofs and A-terms.

The interaction of these properties is instructive. In the sequel, we will
consider three well-known categorial systems: AB, L, and LP. All three
examples have type-systems which are positive logics, with type-construc-
tors corresponding to implication and (in the cases of L and LP) conjunc-
tion. The sequent perspective of Gentzen [13] provides an illuminating
picture of the basic categorial landscape. 1

3. S E Q U E N T C A L C U L I

We take a sequent, here, to consist of a pair (F, B> of structured sets of
types, characteristically written F F B. 2 F is called the antecedent and B
the succedent. The sequents we shall be concerned with require that the
succedent consist of exactly one type, and that the antecedent consist of
a nonempty sequence of types As, • • . , Ak (1 ~< k).

In logical contexts, a sequent F F B counts as true on an appropriate
interpretation v of the types in F and B if, when v makes every type in F
true, it makes B true. In grammatical contexts, we interpret the sequent
F ~- B as meaning that any expression corresponding to the structured set
of types F is assigned the type B. On both interpretations, the identity
axiom A F A and the Cut rule shown below are true under any interpreta-
tion v.

1 For a sketch of this landscape as a whole, and the place in it of the three categorial systems
discussed below, see [29, 30].
2 We use upper-case Greek letters as variables for structured sets of types (possibly empty
unless their being so conflicts with the appropriate definition of sequent) and upper-case
Roman letters for individual types.

636 R I C H A R D T . O E H R L E

F k B A,B, O k C

A,F, O F C

All the systems we shall discuss contain this identity axiom and the Cut
rule. What distinguishes these systems from each other are the other
inference rules they contain, including the logical rules governing the
behavior of type-constructors and structural rules governing the resources
that the sequents themselves are assumed to provide.

4. CURRY--HOWARD MORPHISMS: PROOFS ---> TERMS

For eategorial type-languages containing only implicational and product
type-constructors, a rule which associates each primitive type A of the
categofial type language with a corresponding type typ(A) in a typed h-
calculus induces an association between the full set of categorial types and
h-types:

• associate each implicational type with domain A and codomain B
(such as A---~B, A\B, or B/A) with the A-type typ(A)-+typ(B) -
that is, the type of functions from typ(A) to typ(B);

• and associate the product type with first projection A and second
projection B with the pairing of typ(A) and typ(B).

On the basis of this type-correspondence, it is possible to associate with
each valid sequent a corresponding h-term in a way defined by its proof.
In the pure type-calculus itself, we are not concerned with the interpreta-
tion of any particular lexical element (since in the pure system there are
no lexical assumptions), and in a given proof, we associate each atomic
type A with a variable A-term of the appropriate type. We indicate such
an association by pairing the atomic type in question (for example, A)
and the variable in question (for example u), by writing (A, u).

We may annotate the postulates of a type calculus to indicate how the
h-terms associated with the types of the sequent in the conclusion of each
inference rule depend on the h-terms associated with the types of its
premise-sequent or premise-sequents.

The Curry-Howard isomorphism between natural deduction proofs in
the positive intuitionistic propositional calculus and h-terms [20, 15] re-
veals a deep underlying similarity between two formal systems that were
constructed for different purposes. Adapting the details of the Curry-
Howard isomorphism to the present context does not preserve the iso-
morphism: sequent calculus formulations can associate different proofs
with the same h-term; moreover, implicational logics without contraction

T E R M - L A B E L E D C A T E G O R I A L TYPE SYSTEMS 637

and weakening - such as the ones discussed below - do not provide proofs
for every A-term. These mismatches provide fuel for current research
efforts in a variety of directions: proof systems which combine the elegance
of natural deduction and the clarity of sequent calculus [14, 27, 28, 42, 46];
subsystems of the A-calculus which allow a Curry-Howard morphism to be
defined for particular subsystems of the positive intuitionistic propositional
calculus [6, 8].

The importance here of Curry-Howard morphisms lies in two related
points. First, the fact that Curry-Howard morphisms associate proofs to
terms means that they embody in the most direct way possible the Fregean
principle of compositionality. Second, the Curry-Howard framework pro-
rides a simple account of the sources of ambiguity: one source of ambiguity
involves non-uniqueness of syntactic or semantic lexical type-assignment;
a second source of ambiguity involves multiplicity of proofs. These two
related properties have immediate consequences for the assessment of
systems of grammatical analysis, as we shall see in the examples of categor-
ial systems discussed below.

5 . E X A M P L E S

5.1. AB

The classical type-system AB introduced by Ajdukiewicz [2] and for-
malized by Bar-Hillel [3] corresponds to the implicational logic which
results from splitting the implicational type-constructor ~ into the two
directionally sensitive variants \ and / , and introducing for each variant a
rule of inference governing its behavior in sequent antecedents. This yields
the following set of postulates:

identity A F- A

cut F~-A A,A,A}-B

A, F, A ~-B

L~ F~-A A,B,A~-C

A,B/A,F, AF-C

L\ F~-A A,B, AFC

A,F,A\B,A~-C

If we add A-terms to types in accordance with the Curry-Howard prin-
ciples, the postulates take the following form:

identity (A, u) ~- (14, u)

638

cut

R I C H A R D T . O E H R L E

FF(A,u) A , (A , u) , A F B

A,F, At-B

L~ FF-(A,u) A, (B, t (u)) ,AFC

A, (B/A, t), F, A F- C

L\ FF-(A,u) A, (B, t (u)) ,AFC

A , F , (A \ B , t) , A P C

In the discussion to follow, we sometimes use the pure syntactic system
illustrated first and sometimes use the system that incorporates the Curry-
Howard assignment. As the discussion progresses, the latter will become
increasingly prominent.

A sequent is valid, relative to this type calculus, if it is an axiom instance
or is derivable from valid premises according to one of the inference rules
Cut, L/, or L\ . A proof of the validity of a sequent is easily displayed in
the form of a proof-tree, a tree whose root is labeled with the sequent
proved, whose leaves consist of instances of the identity axiom, and whose
interior nodes consist of conclusions (looking up) or premises (looking
down) of inference rules. Below are proofs of the two syntactic sequents
B/A, A ~- B and A, A \B ~- B, sometimes referred to as forward application
and backward application, respectively.

A F A B F B L/ A F A B P B L \
B/A, A F B A, A \ B b B

The grammatical applications of these rules arise from the fact that we
regard an expression of type B/A (respectively, type A\B) as having the
property that the result of concatenating it with an expression of type A
to its fight (respectively, its left) is an expression of type B. Consequently,
if we adjoin to an AB type calculus whose type language consists of the
primitive types np and s, the simple lexicon {Zim, Yim, caught} and the
lexical type assignment below, we may prove (by the natural extension of
the lexical type assignment function described above in §2) that the string
Zim caught Yim can be assigned the type s. Moreover, if Zirn is assigned
the A-term z, Yim the A-term y, and caught the A-term c, our proof
assigns the type s associated with the string Zim caught Yim to the A-
term (c(y))(z):

T E R M - L A B E L E D C A T E G O R I A L T Y P E S Y S T E M S 639

Zim k (np, z)
Yim k (np, y)

caught k ((npXs)/np, c)

(np, z)k(np, z) (s, (c(y))(z))k(s, (c(y))(z))

(np,y)k(np,y) (np, z) , (np\s ,c(y))k(s , (c(y))(z))
(np, z), ((np\s)/np, c), (np, y) k (s, (c(y))(z))

Zim caught Yim k (s, (c(y))(z))

5.1.1. Remarks

In any Gentzen-style sequent proof, the leaves of the proof tree pair up
types. As with all the proof systems we shall consider here, there are All
sequents which can be proved in more than one way and among whose
proofs we find different leaf-pairings of types. A simple example (due to
van Benthem [5]) is the sequent s/s, s, s\s k s, which can be proved in
two essentially different ways, depending on whether the second term of
the antecedent - the type s - is paired with the right-hand sub-type of the
type s/s on its left or with the left-hand sub-type of the type s\s on its
right. We can indicate these two admissible pairings by attaching common
subscripts to the subformulas which are ultimately paired, as illustrated
below:

SJSz, s2, slkso F So

So[Sz, $2,$2\SI ~ S O

Every valid AB sequent proof induces a pairing in this way of subfor-
mulas. But not every pairing of subformulas corresponds with an AB
proof. For example, the subformulas of the sequents below can be paired
up uniquely in obvious ways:

a/b, b/c k a/c

a/b k (a/c)/(b/c)

a\(b/c) k (a\b)/c

(a\b)/c ka\(b/c)

None of these sequents is valid in AB. Nevertheless, they are all valid in
the type calculus L, which we now turn to.

640 R I C H A R D T . O E H R L E

5.2. L

L is Lambek's associative syntactic calculus [23]. It extends the type lan-
guage of AB by the addition of a product type-constructor '.'; it retains
the AB characterization of sequents and all the AB postulates; the major
innovation is that it extends the set of postulates so that there are inference
rules governing the behavior of each of the type-constructors with respect
to both sequent antecedents and sequent succedents. The type calculus
that results may be formulated as follows:

identity (A, u) F- (.4, u)

cut
F~-(A,u) A , (A ,u)A~-B

A,F, AF-B

L~ FF-(A,u) A,(B,t(u)) ,AF-C r , (A,u)~-(B, t) uq~r R~
A, (B/A, t),F, A ~- C FF- (B/A, Au.t)

L\ FF-(A,u) A,(B, t(u)) ,A~-C (A,u),FF-(B,t) uqiF R\
A, F, (A \B, t), A ~- C F~- (A \B, Au.t)

L. F, (A, 7rL(t)), (B, 7rR(t)), A ~- C r (A, A (B, R.

F , ± t - (A . B,t)

Every valid AB sequent is valid in L, but there are many L-valid sequents
which are not provable in AB. In the following representative list of L-
valid sequents, only the Application rules hold in AB:

Some L-valid sequents
Application

Lifting

Co-division

Contra-division

Swapping

Currying

(_.4, u), (A \B, t) ~- (B, t(u))
(B/A, t), {A, u) t- (B, t(u))
(A, u) ~- ((B/A) \B, Au.t(u))
(A, u) F- (B/(A \B), Au.t(u))
(A/B, t) F- ((A/C)/(B/C), Au.Av.t(u(v)))
(B\A, t) F ((C\B)\(C\A), Au.Av.t(u(v)))
(A/B, u) F ((C/A)\(C/B), At.Av.t(u(v)))
(B\A, u) t- ((B\ C)/(A \C), At.Av.t(u(v)))
((B\A)/C, t) F- (B\(A/C), Au.Av.((t(v))(u)))
(B\(A/C), w) F- ((B\A)/C, Ax.Ay.((w(y))(x)))
(A/(B . C), t) ~- ((A/C)/B, Ax.Ay.t((x, y)))
((A/C)/B, t) t- (d/(B . C), AU.(t(~L(U)))(CrR(U)))
((B . C)\A, t) 1- (C\(B\A), Ax.Ay.t((y, x)))
(C\(B\A), t) ~- ((B . C)\A, AU.t(~R(U), ~L(U)))

T E R M - L A B E L E D C A T E G O R I A L T Y P E S Y S T E M S 641

The richer type-calculus of L has consequences even for the analysis of
simple sentences. For example, relative to the same 3-word lexicon and
type-assignment used in the AB examples above, L provides more than
one proof of the assignment of the string Zim caught Yim to the type s.
The AB-proof exhibited earlier is an L-proof as well, but in addition, we
have the proof (not valid in AB):

np F np s ~- s
np F np rip, np\s b s
np, (np\s)/np, np F s np F np s F s
np, (np\s)/np F s/np np F np s/np, np F s
(np\s)/np F np\(s/np) np, np\(s/np), np F s

np, (np\s)/np, np ~- s

Together with the earlier proof, this proof suggests that L ignores differ-
ences among different binary bracketings of strings. In fact, L also disre-
gards differences between 'functor' (that is, a type of the form A / B or
B \ A) and 'argument' (such as type B in the case of the functor-types
just mentioned), since the rules R/ and R\ countenance the reversal of
functor/argument relations: corresponding to the validity of the appli-
cation sequent B, B \ A F A (where the 'functor' is the second element of
the antecedent) is the validity of the sequent A / (B \ A) , B \ A F-A (where
the first element of the antecedent is the 'functor'). These observations
concerning bracketing and functor/argument structure form the basis of
Buszkowski's notion of the 'functional completeness' of L: see [7, 33]. for
discussion.

The flexibility of L lies in its approach to constituency; all of the postu-
lates of L are order-preserving. The postulates of L also depend on the
adjacency of active types, so no action at a distance is countenanced. As
a consequence, while L counts the Swapping rules a\(b/c) F (a\b)/c and
(a\b)/c) F a\(b/c) as valid, there is no valid rule in L which relates (a/b)/c

, and (a/c)/b). This is reasonable from the point of view of preserving string
order: the two types in question do not have the same properties with
respect to the order of string combination. On the other hand, it is
unreasonable if we wish to regard as equivalent two binary functors which
differ only in the order in which they combine with their arguments. The
contrast between these two cases reveals one of the characteristic proper-
ties of L: it cannot disentangle string conditions and type-structure.

One way to disentangle the two is to disregard string conditions com-
pletely. This is the difference between L and LP.

642 R I C H A R D T . O E H R L E

5.3. LP

The Lambek/van-Benthem calculus LP results from the addition of the
structural rule Permutation to the postulates of L. In this system, the
sequents A/B k B\A and B\A ~-A/B are valid, as the following proofs
illustrate:

A/B, B k A B, B\A k A
Permutation B, A/B k A B\A, B k A Permutation
R\ A/B k B\A B\A b AIB R/

As a result, the types A/B and B\A fall together and it is convenient to
represent them both as B----> A . 3

Similarly, the addition of the structural rule of Permutation makes the
product operator commutative, so that we have A • B---> B • A:

B k B A k A
R. B, A k B . A
Permutation A~ B k B- A
L. A . B k B . A

To distinguish the commutative product in LP from the noncommutative
product in L, we write the commutative product as '®' and the noncom-
mutative product as '.'

One of the consequences of Permutation is that the symmetrical pairs
of valid sequents found in All and L fall together into a single valid LP
sequent, in which 0/',/3 is replaced by o~ --->/3 and/3/a is replaced by a --+/3.
In general, however, systematically undoing the results of such a transfor-
mation shows that such LP sequents represent a wider class of L sequents,
some of which may be L valid and some of which may not be.

For example, consider the LP analogues of Swapping and Lifting. In
L, there are two forms of Swapping:

(B\A)/Ck B\(A/C) and B\(A/C) k (B\A)/C

By replacing both a\/3 and/3/a by a ~ / 3 in these two sequents, we have
the representations:

C--->(B--->A) ~ - B ~ (C ~ A) and B--->(C--,A) ~- C--,(B--->A)

s Technically, this changes the type language by collapsing two type-constructors into one.
This is not important here, but it will be worth remembering later.

T E R M - L A B E L E D C A T E G O R I A L T Y P E S Y S T E M S 643

Unlike the two L-valid instances of Swapping, however, these two se-

quents are alphabetic variants.
But they also represent (by the same transformation) sequents which

are not L-valid. In particular, they represent the fact that the sequent
(A/B)/C F- (A/C)/B (among others) is valid in L + Permutation, but not
valid in L.

Similarly, the LP analogue of Lifting is A F-(A---~B) ~ B. But this
represents not just the two L-valid forms of Lifting A t-(B/A)\B and
A F- B/ (A\B) but also such L-invalid sequents as A F- B/(B/A).

5.4. Remarks

There are many other examples of categorial logics based on products and
implicational operators. For a survey, see [29, 30]. We turn shortly to
the investigation of how these systems accommodate quantification and

quantificational scope ambiguities. As a preliminary to this discussion, it
is helpful to survey some properties of proofs in the three systems under
consideration here.

6. DECIDABILITY OF A B , L, L P

All three of the categorial type-calculi discussed above are decidable, in
the following sense: for each calculus C, there exists an algorithm which
determines, for an arbitrarily chosen C-sequent X, whether or not X is
provable in C. The insight on which these algorithms are based originates
with Gentzen [13]; its connection with categorial grammar is due to Lam-
bek.

Gentzen observed that for certain logical systems, 4 the structural rule

Cut is eliminable, in the sense that any sequent proof of a sequent
involving Cut can be transformed to a Cut-free proof of ~ - that is, a
proof of ~ in which no step involves Cut.

Proofs in the Cut-free versions of AB and L have two interesting proper-
ties. First, they have the subformula property: all the types which occur
in the proof of a sequent X are subformulas of X.5 Second, in the absence
of Cut, the inference rules of AB and L are complexity increasing: in every

4 In particular, the calculi LK and LJ which he introduced and which correspond, respec-
tively, to classical and intuitionistic first-order logic.
5 In the obvious sense of subformula: the only subformula of an atomic type A is A itself;
the subformulas of complex types of the form A/B (respectively, B\A or A • B) consist of
A/B (respectively, B\A or A • B), together with the subformulas of A and the subformulas
of B.

644 R I C H A R D T . O E H R L E

case, the conclusion of an inference rule contains one more occurrence of
a type-forming operator than the premises.

For a type-calculus C to have the subformula property means that the
search space involved in determining whether or not any C-sequent E is
provable in C contains only types constructible from the atomic types
contained in E. The complexity-increasing property of inference rules
means that the search space is bounded and decreases as we move from
conclusions to premises in the search for a valid proof. This situation lays
the basis for a simple inductive argument, whose structure is clarified by
the following two definitions.

The degree of a type is the number of type-forming operators it contains.
For example, primitive types are of degree 0; the degree of types of the
form A/B or B\A or A • B is the sum of three terms: degree(A) + deg-
ree(B) + 1.

The degree of a sequent is the sum of the degrees of the occurrences of
antecedent types and the consequent type. For example, the degree of
the sequent A/B, B k A is the sum of the three terms: degree(A/B) + deg-
ree(B) + degree(A). (If A and B are both atomic types, the degree of this
sequent is obviously 1; otherwise, it is greater.)

It is a simple matter to tell whether or not a sequent is an instance of
the identity axiom or not. Moreover, in the Cut-free variants of AB and
L, all the inference rules are degree-increasing, in the sense that the degree
of the conclusion strictly exceeds the sums of the degrees of the premises.
Thus, the only provable sequents of degree 0 are axiom instances. And,
since we can decide whether a sequent of degree 0 is an axiom-instance,
we thus have a solution to the decidability question for degree-0 sequents.

Now make the inductive assumption that we have a solution to the
decidability question for degree-n sequents. Any degree-n + 1 sequent is
derivable from premises of strictly lesser degree in one of only finitely-
many ways: the final rule of inference must introduce one of the principal
type-forming operators in one of the antecedent-types or in the succedent
type. Since there are only finitely many types in any sequent, there are
only finitely many possible ways in which a given sequent of degree n + 1
can be derived, and each of these possibilities depends on premises of
strictly lesser degree. In each case, then, it is decidable (by the inductive
assumption) whether the premises required are provable. If they are, so
is the sequent in question. On the other hand, if all of the finitely-many
ways of introducing a principal type-forming operator among the elements
of the antecedent or the succedent are considered and in no case is it found
that the required premises are themselves provable, then the sequent in
question has no proof. Thus, the Cut-free variants of AB and L are

T E R M - L A B E L E D C A T E G O R I A L T Y P E S Y S T E M S 645

decidable. And, since every proof in AB or L (respectively) has a Cut-
free variant, it follows that AB and L are decidable as well.

The case of LP is the same, except that at the inductive step, we have
to take into account the possibility that the final step of the proof of
the degree-n + 1 sequent in question may have been the structural rule
Permutation. This introduces no fundamental difference, since there can
be only finitely many permutations to examine (since sequents contain
only finitely many types). Thus, LP is decidable as well.

As an example, consider the following sequents, none of which is an
axiom instance:

Right Application: A/B, B F-A
Left Lifting: B F- (A /B) \A
Backwards Application: B, A / B ~- A
Lowering: (A /B) \A ~- B

The Right Application sequent is not an axiom instance and has only
one occurrence of a principal type-forming operator; this occurrence could
only be introduced by the rule L/, as follows:

B~-B A ~ A

A/B, B ~ A

Since this inference rule appears among the postulates of AB, of L, and
of LP, this sequent is valid in all three systems.

The Left Lifting sequent B ~-(A/B)\A is also not an axiom instance
and contains only one occurrence of a principal type-forming operator,
namely, the principal type-forming operator of the succedent type
(A /B) \A , which has the form fl\a. This type-forming operator could only
have been introduced by the rule R\. This rule is lacking in the calculus
AB, and thus this sequent is not provable in AB. On the other hand, R\
is a postulate of both L and LP. And in these two systems, applying the
inference rule R\ to the premise sequentA/B, B ~-A - which, as we have
just seen, is provable in both L and LP - yields the Left Lifting sequent
as the end-sequent. Thus Left Lifting is provable in L and LP, but not
provable in AB.

The sequent B, A /B F-A is not provable in either AB or L, since the
only possible Cut-free proof would introduce at the final step both the
antecedent type A/B and a further non-empty sequence of antecedent
types to its right, matching F in the left-hand premise of the inference
rule L/. But no such F occurs in the antecedent. Thus, we have exhausted
the search space for a proof in either system without finding one. In LP,

646 RICHARD T. OEHRLE

however, there is another possible last proof-step: Permutation. That is,
the final step can take the form:

A/B , B F- A

B, A / B ~- A

And since the premise A/B , B F- A is provable in LP, so is the conclusion.
Thus, Backwards Application is provable in LP, but neither in AB nor in
L.

Finally, the Lowering sequent (A / B) \ A F- B is provable in none of the
systems examined here. Since both the antecedent and succedent consist
of single types, Permutation has no effect here. Thus, the last step in a
proof of Lowering would have to be L \ , since the only principal type-
forming operator in any sequent type is the occurrence of \ in the antece-
dent type. But this cannot be the last step, since it would have to introduce
additional antecedent types which are not present.

These simple examples show how it is possible to demonstrate that a
given sequent is or is not provable in the systems under examination here.
These proof-theoretic techniques are especially useful in the investigation
of the Curry-Howard properties of these different systems when they
contain types corresponding to generalized quantifiers.

7. P R O O F S T R U C T U R E S AND A - T E R M S

For our purposes later on, there are two relations between proof structures
and A-terms which are important.

First, the Cut Elimination theorem respects the Curry-Howard assign-
ment of A-terms to proofs, in the sense that the transformation from a
proof containing one or more Cut inferences to a Cut-free proof does not
change (up to/3-equivalence) the A-term assigned to the endsequent. We
will not prove this here, but refer the reader to [17, 27]. This result means
that insofar as we are interested in the readings associated with a particular
sequent in a given system, we need only consider the readings associated
with it by Cut-free versions of the system, which in the cases under
consideration here are decidable. Thus, if a sequent is provable in one of
the systems investigated here, the range of readings associated with it is
determinable as well. This fact is reassuring.

Second, in the Cut-free systems, the A-term associated with a valid
endsequent by the Curry-Howard correspondence is determined (up to
alphabetic variance) by two factors:

• the bindings of types at axiom leaves;

T E R M - L A B E L E D C A T E G O R I A L T Y P E S Y S T E M S 647

• the form of the consequent term.

Proof: Note first that this property is trivial for axioms. For the inductive
step, there are two cases to consider. In the inference rules L/, L\,
L. which introduce antecedent connectives, the Curry-Howard term is
inherited directly from one of the premises. Thus, the inductive step in
these cases is immediate. For the fight rules R/, R\, R., we make the
inductive assumption that the claims to be shown hold for the premises
and show that this determines the Curry-Howard term of the conclusion.
For example, if we know the axiom bindings for the two sequents F f- A
and 2~ ~- B, and if these bindings and the form of A and B determine the
association of the A-term u with the first of these and the association of
the A-term v with the second, then these same axiom bindings and the
form of the type A.B determine the association of the A-term (u, v) with
the endsequent F, A ~-A.B derived from these two sequents by the rule
R.. A similar argument provides the inductive step in the case of the rules
R~ and R\.

This result is of interest in a variety of ways. First, the property of
having the same axiom-leaf bindings (up to alphabetic variance) defines
an equivalence relation among proofs. Defining the Curry-Howard map-
ping on the equivalence classes sharpens the correspondence between
proofs and A-terms. Second, the result places an upper bound on the
number of distinct A-terms that can be associated with a given endsequent
by the Curry-Howard mapping. And these possibilities can be easily
enumerated by examining the sub-formulas of the endsequent in question.

It is this last point which is of primary interest here, since it allows us
to characterize the readings assigned to a given endsequent in a given
calculus simply by stating the axiom bindings that it depends on. For
example, van Benthem's example s/s, s, s\s ~-s has two distinct readings
(in any of the systems discussed above):

(s, v(u)) ~ (s, v(u)) (s, t(v(u))) ~ (s, t(v(u)))
(s, u) ~- (s, u) (s]s, t), (s, v(u)) ~- (s, t(v(u)))

(s/s, t), (s, u), (s\s, v) t- (s, t(v(u)))

(s, t(u)) ~- (s, t(u)) (s, v(t(u))) ~- (s, v(t(u)))
(s, u) ~ (s, u) (s, t(u)), (s\s, v) ~ (s, v(t(u)))

(s/s, t),(s, u), (s\s, v) F (s, v(t(u)))

We can characterize these readings more simply by assigning subscripts
to the atomic subformulae and noting which subscripts are bound to one
another at the axiom leaves:

648 RICHARD T. OEHRLE

Sequent Bindings A-term

(sa/sb, t), (so, u), (sa\s,, v) F (sf, term) b = c, a = d, e = f term = v(t (u))
(Sa/Sb, t), (Sc, U), (Sd\S~, V) F (Sf, term) a = f , b = e, c = d term = t (v(u))

While this way of indicating the A-terms that may be associated with a
given endsequent is more succinct than actually exhibiting all the proofs
that lead to these A-terms, one must bear in mind that not all possible
pairings of atomic subformulae correspond to possible proofs (in one
system or another). In the next section, we turn to a detailed discussion
of a class of examples bearing on this issue, namely the number of readings
assignable (in different systems) to simple sentences containing quantifiers.

8. QUANTIFIERS AND QUANTIFICATION

In the extensional fragment of Montague's P T Q [45], quantifiers (and
terms generally) are assigned the syntactic type t/(t/e) and are constrained
to be interpreted as functions of type ((e, t), t). In the three systems under
consideration here, this type assignment has a direct analog: quantifiers
in subject position of declarative English sentences may be assigned the
type s / (np \ s) , together with an interpretation on which quantifiers are
functions from predicates (that is, functions from individuals to truth
values) to truth values, in accordance with Generalized Quantifier Theory.

We may suppose, then, that if the interpretation of the noun detective
is represented by the set D in a model d/t, the expression every detective
is interpreted in ~ by the generalized quantifier VD, which determines a
truth value when combined with a 1-place predicate P, according to the
rule: true iff D C_ P. And we may cast these suppositions in the form of
the following lexical assumptions:

lexical assumptions
every F ((s / (np \ s)) /n , V)
detective I- (n, D)
sneezed F (np\s , Ax.sneezed(x))

And on these assumptions, we have the following proof, valid in AB, in
L, and in LP, that every detective sneezed is assigned type s, with an
acceptable interpretation:

T E R M - L A B E L E D C A T E G O R I A L T Y P E S Y S T E M S 649

(np, x) F (np, x) (s, sneezed(x)) ~ (s, sneezed(x))
(np, x), (np\s, hx.sneezed(x)) F (s, sneezed(x))

(np\s, hx.sneezed(x)) F (np\s, Ax.sneezed(x)) (s, VDhx.sneezed(x)) F {s, VDAx.sneezed(x))

every detect ive sneezed I- (s, VDAx.sneezed(x))

Given that this proof exists, the information that it contains concerning
axiom bindings can be displayed:

((sa/(npb\sc))/n d, V), (n e, D), (npf\s g, Ax.sneezed(x)) ~ {s h, VDhx.sneezed(x))
every detective snoozed F (s, VDhx.sneezed(x))

a=h, b= f , c=g, d=e

The bindings on the last line indicate the axiom pairings produced by the
proof above.

This account of quantification is satisfactory for the monadic case in
which a quantifier always bears the same syntactic position relative to its
argument - satisfactory in the sense that it provides a type for quantifiers
consistent with the principles of the Curry-Howard interpretation. But it
does not extend easily to more complex cases, either in the extensional
fragment of PTQ or in any of the three frameworks examined here.

8.1. Quantification and 2-Place Predicates

The interaction of quantifiers with 2-place predicates raises two basic
questions. First, what types are to be assigned to the quantifiers and
to the 2-place predicate, in such a way that syntactic composition is a
consequence of general syntactic principles? Second, how are quantifi-
cational scope ambiguities to be accounted for?

The extensional fragment of Montague's P TQ contains a solution to
both of these problems. He assigned transitive verbs a type - (t/e)/(t/(tle)),
in his syntactic type system - according to which transitive verbs are
functions from (monadic) quantifiers to 1-place predicates. The corre-
sponding type for English transitive verbs in the systems discussed here is

(np\s)/(s/(np\s)).

It is completely straightforward to see that the sequent

(np \s) / (s / (np \s)) , s / (np\s) F np\s

is valid, since this sequent has the form A/B , B F A.
But what about interpretation? A simple transitive sentence such as

every detective caught s o m e thief has two interpretations, which we
shall represent as a quantificational scope ambiguity:

650 R I C H A R D T . O E F I R L E

VDAd3 TAt. (d caught t)
3TAtVDAd.(d caught t)

Neither of these interpretations is assigned to the proof of the sequent
corresponding to Montague's type assignment for every detective caught
some thief. Instead, we have the interpretation

VDAd.(d caught (3T))

This representation is not necessarily incorrect. Montague imposes the
requirement that the interpretation of caught (and, mutatis mutandis, of
every other extensional transitive verb) be equivalent, for some corre-
sponding 2-place predicate caught, of type (e, (e, t)), to

A~.Ad.~At.(d caught, t)

This function, when applied to 3 T reduces to

Ad. 3 TAt. (d caught, t),

which is the more standard representation exhibited earlier.
Quantifier scope ambiguities arise in Montague's system in an entirely

different way, through the rule of Quantifying In, which involves combin-
ing a term-taking expression with a variable and then binding the variable
later in the derivation.

Montague's account of quantification has a number of interesting, even
admirable, properties:

• it is based on a single type for quantifiers;
• the syntax is driven by type-theoretic considerations;
• there is a principled relation between syntactic type and semantic

interpretation.

But these properties impose a cost: in order to characterize quantifi-
cational interpretations, external mechanisms - meaning postulates and
quantifying-in rules - are introduced ad hoc. Are these costs inevitable
consequences in any system with a single type for quantifiers, a type-driven
syntax, and a principled relation between syntactic types and semantic
interpretation? To explore this question, we shall look first at the treat-
ment of quantification afforded by the type-calculi AB, L, and LP.

8.2. AB with Quantifiers

In adding quantifiers to AB, one finds that every fact about quantification
must be treated as sui generis. To see why, consider the types that are

T E R M - L A B E L E D C A T E G O R I A L T Y P E S Y S T E M S 651

necessary to allow a generic quantifier (which we would like to type simply
as (Q, ~)) to occur in various syntactic positions under different scopings.

Context Syntactic type A-term

Subject, wide scope sl(np\s)
Object of a 2-place predicate ((np\s)/np)\(np\s) AP.~c.22Ay.P(y)(x)

narrow scope
Subject of a 2-place predicate (s/np)/((np\s)/np) AP.Ay.~Ax.P(y)(x)

narrow scope
Object of a 2-place predicate (s/np)\s

wide scope

With each new argument position, new types are necessary. This hardly
accords with the fact that natural language quantificational terms do not
standardly vary both according to their position and according to their
scope.

8.3. L with Quantifiers

The situation in L is slightly better. If we associate a quantifier with two
types, one for subject position, and one for object position, the ambiguity
of scope for simple English transitive sentences falls out:

Context Syntactic type A-term

Subject sl(np\s)
Object (slnp)\s)

Here are the final steps of two distinct proofs of the sequent correspond-
ing to every detective caught some thief, proofs assigning interpreta-
tions with different quantifier scopes to the consequent of the endsequent:

s/np)
s/(np\s), (np\s)/np F \ANDAd(d caught t)

(s >)
s F 3 TAtVDAd(d caught t

s/(np \s), (np \s)/np, (s/np) \s P s

(np\s)/np, (slnp)\s F
\Ad3TAt(d caught t)) s F (VDAd3TAt(d caught

np \s

s/(np\s), (np\s)/np, (s/np)\s Fs

We can represent these two proofs in our notation of indexed atomic
types as follows:

652 R I C H A R D T. O E H R L E

every detective caught some th ief t- (s, 3ThtVDhd(d caught t))
sa/(tlpb\sc), (npa\se)np f, (s g / n p h) \ s i ~- S i

a =g ; b = d; c = e ; f = h;i = j

every detective caught some thief F- (s, VDhd3Tht(d caught t))
sa/(npb\sC), (npakse)/np f, (sg/nph)\siF S /

a =j; b = d; c = i; e = g; f = h

What is intriguing about these alternative proofs is the fact that the quanti-
ficational scope ambiguities are consequences of the combinatorial proper-
ties of the type calculus L. Thus, unlike All, it is not necessary to code each
scope possibility with a separate, ad hoc type assignment. The difference
between L and All lies in two related properties. First, in L, a transitive
verb (in English) may combine with its arguments in either order, because
of the validity of the Swapping rules:

(np\s)/np F np\(s/np); np\(s/np) ~- (np\s)/np

Second, and equally important, is the fact that L enjoys the Division rule,
whose importance for quantifier types may be illustrated by the sequent:

s/(np\s) t- (s/np)/((np\s)/np)

Thus a monadic subject quantifier of type s/(np\s), which combines with
a verb phrase of type np\s to form a sentence of type s, automatically
combines as well, in virtue of the principles of L, with a transitive verb
of type (np\s)/np to form a 1-place predicate of type s/np. Neither of
these rules is valid in AB. Their applicability here suggests the possibility
of finding a type calculus in which quantifiers can be assigned a single
type and in which scope ambiguities are consequences of basic and simple
syntactic principles, rather than being the consequence of specially-de-
signed rules introduced expressly for the purpose of dealing with scope.

The calculus L, however, does not match these specifications. First,
even in simple transitive sentences, two basic types for quantifiers, rather
than a single type, are necessary. Moreover, the useful properties of the
Swapping rule are available only when a binary predicate is flanked on
either side by its arguments: in soy or vos orders, there is no correspond-
ing rule, since the combinatory rules of L respect the principle of adjacency
and there is no possibility of combining subject and transitive verb across
an intervening object in either the soy or the v o s c a s e . 6

6 An interesting attempt to overcome this difficulty can be found in Keenan's 'Semantic
Case Theory' [22], although this approach is not based on a general syntactic type calculus.

T E R M - L A B E L E D C A T E G O R I A L TYPE SYSTEMS 653

8.4. LP with Quant i f i ers

In LP, quantifiers can be assigned a single type:

(np ~ s) --+ s

On the basis of this type, quantifier scope ambiguities fall out naturally
as a consequence of the properties of the LP type calculus. What makes
this possible is the fact that in LP, the Division rule is still valid and the
Swapping rule is generalized to the following form:

A ----> (B ---> C) F B --~ (A ---> C)

As a consequence of Division, a quantifier can combine with a predicate
of any arity greater than or equal to 1. This solves the type-assignment
problem. As a consequence of Swapping, quantifiers can combine with a
predicate in any order. This solves the scope-ambiguity problem.

This pleasing picture is marred only by the fact that in LP, word order
is irrelevant and the distinct sentences every detective called some
schurk, some schurk called every detective, some detective called
every schurk, and every schurk called some detective are assigned the
same range of interpretations. Some - but not all! - of these possibilities
are indicated below, where the axiom-leaf bindings of atomic types are
indicated with superscripts:

every detective called some schurk I- (s, ~ a A d ~ c A c (d cal led c))

(np] - s b) ---~ s c, np obj ____~ (i n p s u b j j -'--~ sa) , (npi--'-~ sa) -'~ sb) ~ s c

every detective called some schurk ~- (s, ~ d A c ~ c A d (d cal led c))

(nP j - s b) -+ s c, npio.j ~ (np ~ubj ""~ sa) , (rip j ---~ s a) -+ S b) I- s c

every detective called some schurk I- (s, ~ c A c ~ a A d (d cal led c))

(n g - s a) - - , s b, np'obj + (n p ~ubj ~ s°), (n p i ~ s ~) ~ s c) ~ s ~

every detective called some scburk F (s, E ~ A d ~ a A c (d cal led c))
(np i - s ") ~ s b, i n p o~j ~ (np~ub~ ~ s ") , (n p + ~ s b) ~ s c) ~- s c

8.5. Con t ro l Proper t i e s

The inadequacies of these accounts derive from inadequate con tro l of
properties across dimensions. The common difficulty in each case involves
an overly rigid correspondence between properties in the string dimension
and properties in the interpretive dimension.

In LP, flexibility of quantifier scope is tied to flexibility of string order.

654 R I C H A R D T . O E H R L E

This system provides the key ingredients to a solution of quantifier-typing
and quantifier scope, but it overshoots the mark: along with the desired
ambiguities, it yields unwanted readings as well.

In L, flexibility of quantifier scope is tied to string positions flanking
predicates. This is insufficiently general, since the solution to quantifier-
scope ambiguities is only available in special cases.

In AB, there is no inherent quantifier scope flexibility at all, just as
there is no inherent combinatorial flexibility syntactically.

One possible solution to the problem of cross-dimensional control is to
continue to tie syntactic combination and string properties tightly together
in a system (like either AB or L) based on concatenation, but to introduce
at the same time independent rules in the semantic dimension which do
not depend on the same principles of adjacency. A fundamental step
forward in this direction can be found in the work of Hendriks [16],
who proposed a calculus of semantic types to generate scope ambiguities
involving quantifiers and Boolean operators. The proposed calculus oper-
ates in a type-driven way on semantic representations generated by a
GPSG-style phrase-structure grammar.

Moortgat [25, 26] shows that the semantic type-shifting principles pro-
posed to generate the full range of interpretations have basic affinities
with type-shifting principles found in L and LP. Moortgat proposes to
treat quantificational scope ambiguities by the addition of a new type-
constructor whose associated inference rules incorporate the effects of the
LP structural rule Permutation in the semantic dimension, leaving the
string dimension invariant. The resulting system is an elegant one, with
many attractive properties [10].

Nevertheless, on both Hendriks's account and Moortgat's, scope ambi-
guities and the other forms of discontinuous dependency treated with
them are still regarded as special cases whose accommodation calls for
special means. But with the aid of these achievements, it is possible to
find a type-theoretical framework in which quantificational scope ambiguit-
ies and related forms of discontinuous dependency are an emergent pro-
perry, in the sense that a single theoretical framework which can be
justified on the basis of simple phenomena where the property is not
observable accounts automatically for the emergence of the property in
question under more complex conditions.

There is in fact an attractive formal setting (whose instances will be
referred to here as term-labeled categorial type systems) which is consistent
with the approach of categorial grammar to the problem of generalized
compositionality and in special cases of which quantificational scope ambi-
guities are an emergent property. Certain aspects of the resource-sensitiv-

T E R M - L A B E L E D C A T E G O R I A L TYPE SYSTEMS 655

ity of term-labeled type systems are expressed by the terms of a system
of string-term labels and the role of term operations in term-labeled deduc-
tion. This leads to different possibilities for the the division of grammatical
labor. And while it is possible to construct term-labeled categorial type
systems of the kind defined below which are equivalent to standard cate-
gorial systems, it is of linguistic interest to note that the system which
exhibits freedom of quantifier scope is simpler than many of the more
restrictive systems.

9. TYPES AND TERMS

We wish to label syntactic types with pairs of terms representing interpretive
and phonological (here: orthographical) properties. The interpretive terms
will be drawn from the extensional fragment of Montague's IL, augmented
by pairing and projection operations and additional constants as needed.
We call the phonological terms ~terms and the interpretive terms IL-
terms. Like the/L-terms, the go-terms will be terms of a system of typed
A-terms. Labeling of syntactic types with terms is regulated by compati-
bility of the syntactic type to be labeled and the types of the labeling
terms, as described below.

Syntactic types. Let A t be a set of atomic types (including s, np, n). The
set 2~ of syntactic types is the smallest set containing At and closed under
the binary operations ® (product) and --0 (residual). We drop parentheses
of nested residual types according to the convention of right-associativity,
so that a --0 b ~ c represents (a ~ (b ~ c)).

go-types. There is a single atomic ~type: the type s (for 'string'). If A
and B are go-types, so are A ---, B and (A, B).

go-terms. Let V be a set of string atoms. For each go-type a, we adjoin
denumerably many variable terms x~ (We typically use x, y, z as
variables of type s and P, Q, R as variables of type s ~ s , suppressing
subscripts and superscripts.) The point of the definition below is to charac-
terize a set of linear higher-order terms over a simple algebraic structure,
where linear means that any variable occurs in a term at most once and
vacuous abstraction is forbidden. Accordingly, the set of go-terms is the
least set satisfying the conditions below, which also define for each go-term
t, the multiset FA(t) of free atoms of t and the multiset FV(t) of free
variables of t, which will be useful later:

1. Each element v of V is a go-term of type s; FA(v) = v, FV(v) = 0;
2. Each variable x ~ is a 0-term of type a; FA(x) = x = FV(x);
3. If A and B are two &terms of type s with F V (A) ~ FV(B)=

656 R I C H A R D T . O E H R L E

0, then A . B is a c-term of type s; F A (A . B) = FA(A) U FA(B),
F V (A . B) = FV(A) U FV(B);

4. For all C-terms A, B, C of type s, (A • B) . C = A . (B. C) whenever
either side (hence, both sides) is defined;

5. There is a designated c-term constant 1 of type s, with 1 • A = A =
A . 1 for all c-terms A of type s; FA(1) = FV(1) = 0;

6. If A is a c-term of type a --->/3 and B is a c-term of type o4 and
FV(A) Fq FV(B) = 0, then (AB) is a c-term of type/3; FA((AB)) =
FA(A) U FA(B); FV((AB)) = FV(A) U FV(B);

7. If x is a variable c-term of type ot and A is a c-term of type/3 with
x E FV(A), then (Lr.A) is a c-term of type a ~ / 3 ; FA(Ax.A)=
FA(A)\{x}, FV(Lr.A) = FV(A)\{x};

8. If A and B are two c-terms of types a and /3, respectively, with
FV(A) [-] FV(B) = 0, then (.4, B> is a c-term of type <or,/3>;
FA((A, B>) = FA(A) U FA(B); FV((A, B>) = FV(A) U FV(B);

9. If A = (B, C> is a c-term of type <a,/3), then 7rlA = B and 7rzA =
C are c-terms of types a and t , respectively; FA(TriA) = FA(B),

FA(~r2A) = FA(C), FV(qrlA) = FV(B) , FV(rczA) = FV(C).

Remarks. The set of c-terms just defined contains the free monoid
<V*,., 1> generated by V. Because the underlying algebra of c-terms is a
monoid, we call the resulting system mon:LP. On the other hand, if V is
empty, the above definitions extend the usual definition of a term algebra
[21] to a certain set of higher-order terms - namely, those terms which
contain at most one occurrence of any free variable and which disallow
vacuous abstraction. Thus, if a term of the form L,c.A is a c-term, then
A contains exactly one occurrence of the variable x.

For all the terms employed, substitution and t-conversion are defined
in the standard way [19]. We write a D a ' when a ' is the result of
removing one or more/3-redexes from a by/3-conversion, or by replacing
an occurrence in oz of the form 7ri<u, v> (respectively, 7r2(u, v>) by u
(respectively, v).

Labeled types. A labeled type is an element of Typ associated with a
c-term and an /L- te rm. This association is regulated by type-compatibility
functions ~',~: Typ ~ c-types and ~'ZL: Typ ---~IL-types. For each atom
A E Typ, we have r+(A) = s; and we assume that ~IL(A) is defined. In
particular, we shall assume that ~'ZL makes the assignments:

s ~--~ t,
np ~--~ e,
n~--~ (e---~ t).

T E R M - L A B E L E D C A T E G O R I A L T Y P E S Y S T E M S 657

These assumptions are obviously too extensional, but the simplifications
involved do not affect the properties of interest here. Inductively, we have
the clauses:

r , (A --> B) = T,(A) --> r,(B)
rzL(A --+ B) = rzL(A) -* ,,L(B)
re~(A " B) = (r+(A), rc~(B))
rm(A " B) = <'rIL(A), "OL(B))

We display labeled types, in the notation of Pereira [40], in the form
t: T~ , t ' , with T E Typ, t a &term of type re (T) and t' a n / L - t e r m of
type rIL(T).

9.1. Labeled Deduction

We give below a sequent presentation of a system of labeled deduction
for the labeled types just defined. A sequent F ~-t: A ,,,o, t' is a pair
(F, t: A ~. t'), whose antecedent F is a nonempty multiset of labeled types
with no flee variables in common, and whose succedent t: A ,~-t' is a
single labeled type whose terms are in A-normal form - that is, they
contain no/3-redexes and no terms of the form ~-l(t, t') o r 7r2(t , t'). Identi-
fying individual labeled types with the corrseponding singleton multiset,
we display antecedent multisets as lists of multisets. For a labeled type
t: A ~- t, we write FA(A) for FA(t) II FA(t); similarly for FV(A). If F =
t l :Al~ , '~h , . . . , t k :Ak , ,~ , tk is a sequent antecedent, then F A (F) =
FA(AI) 11 . . . U FA(Ak); FV(F) is defined similarly. For a sequent of the
form F h t: A ~,~ t, we indicate that FA(F) = X by writing F hxt: A ,,~ t.
To denote the multiset union of two disjoint multisets X and Y, we write
x r.
X U Y. In the presentation below, postulates appear on the left and
accompanying term conditions appear on the right.

ident i ty axiom:

L---~

R - +

L ®

R N

t: A ,c~ t' h u: A ,,,,* u'

F Fx u: A , '~ u ' (tu) : B .,'* (t 'u ') , A FytS~a(A) V: C " ~ v '

F,t: A --+ B ,.~ t ' , A hxt5 v v : C,~- v '

F, x: A . . ' ~ x ' h x ~ x CJx, t: B ' ~ " t '

F h x hX. t: A -+ B , ~ ax ' . t '

7rl(t): A ~ 7rl(t ') , ~'2(t): B ' ~ ~r2(t'), F h v: C , .~ v'

t: A ® B , c * t ' , F h v: C , ~ v'

F h x u : A , ~ u ' A ~ - y v : B , ~ - v '

F, A h x c v { U , v) : A ® B , ~ (u ' , v ')

A ~ A t , t D u, t' > t'

658 R I C H A R D T . O E H R L E

cut: FF u : A ~ u ' v : A , , ~ v ' , h F t : C , ~ t ' v E > u , v ' E > v '

F, AF t : C,¢*t '

Remark 1: normalization. We have required that the terms of succedent
types be in h-normal form. For typed A-terms, such normal forms always
exist and are unique. The requirement that the terms of the antecedent
type in axiom instances convert by t-reduction to the corresponding suc-
cedent terms arises in connection with the rule L -% as may be observed
in the proof below:

j: np ,,,*] F j: np ,,-,j (A u. u walks)j : s ,,,* (Au .walk ' (u)) j F j walks: s ~ walk ' (])

j: np ,,~], ~ u. u walks: np ~ s ,,,-, Xu .walk ' (u) F j walks: s ,¢* walk ' (])

In general, we must allow the qS-term of the residual type in the conclusion
of the rule to be an abstraction, since abstractions play an essential role
in introducing the directionality of combination of phonological structure.
But then we need a step of normalization to convert redexes to A-normal
form. In the formulation above, this step is enforced at the level of axiom-
leaves. Alternatively, normalization could be enforced in the premises of
the rules L ~ and L @ . 7

Normalization also plays a role in the term conditions on Cut.
Remark 2: parameters. In the proof step which introduces the principal

type- and term-constructors in succedents of the form h x . t : A ~
B ~ hx'.t', it is required that the term variables x and x' not occur in the
antecedent. This is the analogue in the present context of the eigenvariable
condition on the rule RV, in the following sense: if the variables x and x'
are of types a and a ' , respectively, then the intuitive interpretation of
the ¢- and/L-terms h x.t and hx'.t' is as functions defined for all entities
of types a and a '. Thus, we countenance the deduction of a sequent of
the form

F F- Lr. ~b: A ---> B ~- ~x'. ¢'

from a premise sequent of the form

7 In an earlier version of this paper, I a t tempted to compile normalization into the s ta tement
of the L ~ rule, by stating it along the following lines, in a way connected to the practice
in Prolog programming called 'pseudoabstract ion ' by Pereira [39, 40]:

F b- u : A ,~ u [u/x]t: B "* [u/x]t' , A F v: C ~ v'

hx.t: A - ~ B , c ' , A x . t ' , F, A Fv: C ' ~ , v '

As Pereira stresses, and as a referee for this paper pointed out, this is in general not
adequate, as may be seen when the the terms u or u in the above formulation s tand
themselves for higher order terms: in this case, substitution eliminates a fl-redex at the top
level, but can lead to new /3-redexes internal to [u/x]t, as for example in
[AP.P(a)/ .~](~ (Ay.y)).

T E R M - L A B E L E D C A T E G O R I A L T Y P E S Y S T E M S 659

F, x: A ~', x' F 4~: B ,~ 4)'

because the term variables represent arbitrary objects of the appropriate
type. We call x and x' parameters or parametric terms: they are always
single variables - that is, terms with no internal structure - and each one
occurs only once among the variables of any sequent antecedent. (For
discussion, see [24] and [40].)

Remark 3: free atoms. The following theorem is the analog here of a
result first observed by van Benthem [5].

DEFINITION. A sequent F F t: A ,~ t for which FA(F) = FA(A) is said
to be term-linear.

THEOREM. I f a sequent E is valid in mon:LP, then E is term-linear.
Proof. Induction. If t E> u, then FA(t) = FA(u). So the claim holds of

axiom instances. Checking the inference rules is straightforward: the term
conditions on inference rules are specifically designed so that this theorem
will hold. []

9.1.1. Cut Elimination

Gentzen's Cut elimination proof can be adapted to show that any theorem
of the above sequent system can be proved without using the Cut inference
rule. The proof can be carried out in a way that closely follows Lambek's
adaptation of Gentzen's idea to the associative syntactic calculus L. The
only difference is that we need to ensure that the term conditions are
respected. We omit the proofs here.

9.1.2. Decidability

In the calculus LP which forms the basis of the type system for the term-
labeled types used here, the proof of Cut Elimination opens the way to a
straightforward demonstration that the calculus is decidable: there is an
effective method for determining whether a sequent is deducible from the
postulates of LP or not. Does the proof carry over directly to the system
of labeled deduction considered here? There is one sticking point: the
label of the left-hand premise of the rule L ~ is not determined by the
sub-terms of its conclusion. Nevertheless, decidability follows from the
proof of a slightly stronger result.

THEOREM. Given an antecedent multiset F of term-labeled types and a

660 R I C H A R D T . O E H R L E

succedent type A, it is possible to determine the set of pairs (Term, Term)
for which the sequent F k Term: A ~-~ Term is provable.

Proof. The proof is by induction on sequent-degree. In the base case
of the induction, we take the sequent-degree to be 0. A sequent of degree
zero contains only atomic types and the only provable sequents of degree
0 constitute axiom instances of the form:

u:A~,-,u k Term: A,,,-, Term

Since it is decidable whether or not we have u D Term and u D Term,
it is decidable whether sequents of degree 0 are provable. In the inductive
step, we assume that the Theorem holds for sequents of degree k and
examine sequents of degree k + 1. In the absence of Cut, any provable
sequent of degree k + 1 must be derived by an application of one of the
inference rules R -% L ---~, R •, L Q in a way that introduces the principal
type-constructor of an antecedent labeled type or the succedent labeled
type. This can be done in only finitely many ways. For each possibility,
the inductive hypothesis ensures that it is possible to determine both the
provability and term-labeling of candidate premises; and when a candidate
set of premises is provable, the conclusion is provable as well, with labeling
determined by the labeling of the premises. []

9.2. Grammatical Applications

In grammatical applications, we are interested in proofs from lexical as-
sumptions. The &terms of lexical assumptions have a special character:
if functional lexical &terms are applied to arguments of the required
type, they should in fact determine (by normalization) elements of the
underlying algebra V +. The following examples illustrate lexical and non-
lexical &terms of various simple types, with the non-lexical terms prefixed

by a t:

Type Term

S -'--~ S

(S ---> S) "---> S

((S -- , S) S) -- , S

Ax.x • c, Ax.c • x, Xx.c • x • d
?~_,c.x
AP.P(c), AP.e. P(1), AP.(P(1)) .c
?AP.P(1)

As in these examples, we require that the &term associated with a lexical
assumption must:

• contain a subterm drawn from V+;

T E R M - L A B E L E D C A T E G O R I A L T Y P E SYSTEMS 661

• contain no free variables;

We list below some lexical assumptions which satisfy these requirements:

A x.A y. (y. questioned • x: np ---> (np ---> s) ~ ,

Ax A y .ques t ion ' (x) (y)

smith: np ~ , s

jones: np ,"-,'j
,~ x. A O. (Q (every x)): n ~ ((np ~ s) ~ s) ~ aP ,~QV(P) (Q)

A x. A Q. (Q (a x)): n --> ((np -->s) ---> n) ~ , A P A Q 3 (P) (O)

dean: n ~ dean'

student: n -->student'

9.2.1. Grammat ica l Composi t ion in mon:LP

Grammatical composition in mon:LP depends both on the underlying type
system - identical with the system of LP - and on the properties of the
labeling algebras and the method of linking between terms and types.
With regard to the &terms, four properties stand out.

First, since the underlying phonological algebra is a free monoid, the
algebraic product of any two distinct normal &terms of type s distinct
from 1 is never idempotent and never commutative. That is, the following
inequalities hold:

s ~ . s z 4 : s 2 . s ~ ; s . s - - / : s

Second, because a A-operator need not bind only string-peripheral vari-
ables, phonological composition is not restricted to concatenation, but is
generalized to substitution. This means that phonologically discontinuous
constituents are possible, as illustrated by the perfectly well-formed la-
beled type A x. take x to task: np--~ vp ~ , Ax.(take(to task)) (x) .

Third, although the underlying algebraic structure on which &terms are
constructed and the underlying algebraic structure on which/L-terms are
constructed are distinct, the two systems of terms share common proper-
ties of pairing, projection, abstraction, and application. It is through this
common system that terms are linked to types, in a way that systematically
enforces corresponding links between subtypes and subterms.

Fourth, since phonological order is expressed in the structure of the &
terms, there is no need to impose linear order on the structure of term-
labeled types. It is this division of labor which makes it possible to assume
that sequent antecedents are formed by multisets of labeled types, rather
than sequences of labeled types.

To illustrate these properties, we present a proof below of the analog

662 R I C H A R D T. O E H R L E

in mon:LP of the LP-valid Permutation rule A --9 B --~ C F B ~ A --+ C,
which illustrates this rule's independence of the details of basic word order.
Let Term range over linear monoidal products of two string variables x
and y and a string constant c. Thus, Term ranges over the string c • x • y
and its permutations. Think of c as representing the phonological structure
of a transitive verb and any value of Term as representing one possible
convention governing the phonological properties of the mode of combi-
nation of the transitive verb c and its np arguments x and y. Consider
now the following proof, where npsubj stands for the type of a subject np,

and npobj stand for the type of an object np. We give the proof sche-
matically, with each type labeled by a single schematic term (appearing
directly below it), which exhibits all the relevant information governing
the relation between types and labels. Thus, the schematic term labeling
a type does not present the internal structure of either C-term label or
the/L-term label, but only the structure of application, abstraction, pair-
ing, and projection which connects deduction in the type system with the
corresponding term operations. Thus internal structure of the th-term is
consistent with any of the basic words orders soy, svo, ovs, osv, vso,
VOS.

npobj F npobj S F S

y y ((hx. hy.T)x)y T

npsubj F /'/Psubj npobj ~ S nP°bJ F S

x x (hx. hy.T)x ' y T

npsubj ~ npobj ~ S npobj npsubj k s

hx. hy.T y x T

npsubj '-+ npobj ~ S npobj k npsubj ~ S

hx. hy.T y h x . T

n p s u b j -'--9' n p o b j ---~ S ~- n p o b j --~ npsub j ""9" S

hx. hy.T by. hx. T

9.2.2. Applications to Quantification

Quantifiers in mon:LP can be associated with a single type, as illustrated
below,

t hP.P(every doctor): (np --~ s) --~ s hP.V(doc to r) (P)
hP.P(a problem)(np ~ s) ~ s ,,~ hP .3 / (prob lem ') (P)

T E R M - L A B E L E D C A T E G O R I A L T Y P E S Y S T E M S 663

Because of the proof-induced polymorphism of mon:LP, a labeled type
with this structure can combine not only with a 1-place predicate of type
np ~ s , but with any k-place predicate whose k arguments include an
argument of type np. One way to see why this is possible is to recall that
mon:LP allows both Permutation (so the k-place predicate may be as-
signed a type of the f o r m . . . ~ np ~ s, with the np argument of interest
represented as the last argument that the predicate combines with) and
Division (so the quantifier type (n p - - - , s) ~ s is shiftable to type
(. . . np --+ s) ~ (. . . -+ s)).

If a k-place predicate (k t> 2) takes two or more np-arguments, then it
can combine with two or more quantifiers. Fixing the argument position
associated with each quantifier, there are as many orders of combination
as there are ways of assigning a linear order to the set of quantifiers.
Different orders of combination give rise intrinsically to different scopes.
As a result, the system contains no special rule for introducing quantifier
scope ambiguities: rather, such ambiguities arise in mon:LP as a form of
p r o o f inde terminacy - the inability of the proof system to fix a particular
order of combination.

To illustrate these ideas concretely, we examine the set of /L- terms
assignable to the succedent term-labeled type e v e w detective caught
some thief: s ~ , Term on the basis of the lexical assumptions below:

A P. P(every detective): (np ~ s) ~ s ~ , AP .V(de tec t i ve ') (P)

A P.P(some thief): (np ~ s) --+s , ~ A P 3 (t h i e f ') (P)

A x. A y.(y caught x): n ~ np ~ s ,~ , A x . A y . c a u g h t ' (x) (y)

In mon:LP, there are two essentially-different cut-free proofs of this kind.
One of them is equivalent (in the sense of having the same axiom-leaf
bindings) to the schematic proof below:

np F_n p s F_ s

r r (TV(P))(r) E

np ~_np np---~ s np F_ s

p p TV(p) ' r E

np --+ np ---~ s np np ~_ s

TV r p E

np ---~ np ---~ s np np ---~ s t-
TV r Ap .E

s

p. E)
s F-
D

664 R I C H A R D T . O E H R L E

n p ~ n p ~ s (n p ~ s) - - , s np k s

TV B r D

np- - - - ,np~s (n p ~ s) ~ s n p ~ s s s
, I- t-

TV B h r . D A (h r . D) C

(n p ~ s) - - , s n p - - , , n p ~ s (n p ~ s) ~ s s
, , [-

A TV B C

The schematic terms in this proof have the values displayed below:

A := k P. P(every detective), hP.V(detective')(P)
TV.= h x.k y.y caught x, Ax.hy.caught'(x)(y)
B := A. P. P(some thief), , tP.3(thief ')(P)
C := every detective caught some thief,

V(detective') (Ar.3(thief')(hp.caught'(p)(r)))
D := r caught some thief, 3(thief ')(hp.caught'(p)(r))
E := r caught p, caught'(p)(r)

The reader may check that all the required normalizations of terms, such
as that represented schematically as A(h r. D) L> C, in fact hold.

There is a second proof whose endsequent differs from that of the proof
above only in the IL-term assigned to the succedent type. We present the
last two lines of a schematic proof below.

(n p ~ s) ~ s n p ~ n p ~ s l _ n p ~ s s ~ s

A TV hu.G B(Au.G) F

(np ~ s) ~ s np ~ n p ~ s (rip ~ s) ~ s ~_ s

A ' T V ' B F

The schematic terms A, TV, and B have the same values here as in the
previous proof; the newly introduced schematic terms F and G have
values:

F :-- every detective caught some thief,
3(thief ') (hu.V(detective') (Av.caught'(u)(v)))

G := every detective caught u,
V(detective') (Xv.caught'(u)(v))

The two proofs above illustrate precisely the two/L-terms that can be
paired with the &term every detective caught some thief relative to
the assumed lexical assumptions. In particular, in contrast with LP, the
succedent types below cannot be proved from these lexical assumptions:

T E R M - L A B E L E D C A T E G O R I A L T Y P E S Y S T E M S 665

every doctor caught some thief: s , ~ V (d e t e c t i v e ')

(hp.3(thief')(hr.caught' (p)(r))
every doctor caught some thief: s ~ . 3 (t h i e f ')

(hv.V(detective')(Au.caught'(u)(v))

And the reason for this is a simple one: there is an implicit regulation
of variables between ~terms and/L-terms.

9.3. Explicit Cross-Dimensional Control

In the presentation above of mon:LP, there is a correspondence across
dimensions that is governed by the design properties of the type language.
For example, we can represent any type in these systems by a schema of
the form (for k/> 0):

~ t X k . . . /~ x 1 . T : ' t k ----). • " " T 1 ---~ 7 " O ' V * /}tX k . . . AxlT

In this schema, the type ri and the variables x,:, and xi (1 ~<i ~< k) are
implicitly linked, and in proofs this triple corresponds to one of the atomic
labeled types of an axiom leaf. Note that there is no intrinsic property of
type or label which connects the corresponding elements of different
dimensions: rather, in the schema above, it is the common sequential
ordering of types, on the one hand, and the interpretive and phonological
abstraction operators, on the other. In general, it is possible to permute
the elements of these sequences as long as the correspondence across them
is maintained. This suggests that the sequences are merely a particular way
of keeping track of the correspondence. In fact, the common sequencing
of the elements represented in the schema above merely means that
these elements are indexed by a single linearly-ordered set. Although the
assumption that this set is linearly-ordered has some advantages - in
particular, the advantage that the correspondence can be expressed im-
plicitly by the design features of the type language -, it has some disadvan-
tages as well. To gain some insight into these properties, we shall describe
two families of systems in which the correspondence of elements across
dimensions is expressed explicitly.

9.3.1. Decomposition of Signed Types to Signed Atomic Types

A fundamental idea in the sequent systems is that axioms take the form
A ~-A, with the turnstile flanked by two occurrences of a single type.
Axioms thus encode a kind of matching of occurrences of types, a match-
ing of an antecedent occurrence and a succedent occurrence. It is useful

666 RICHARD T. OEHRLE

[43, 46] to indicate this matching in another way by assigning a polarity
to each type. If we assign a succedent type A the polarity 0 and an
antecedent type A the polarity 1, then we can replace the identity sequent
A F- A with the multiset of signed types [(A, 1), (A, 0)]. If we inspect the
standard rules for products and residuals, we might hope that signed
products and residuals obey the following rules:

[F, (.4 ---> B, 0)] ::} [F, (.4, 1), (B, 0)]
[F, (A ~ B, 1)] ::), [F, (A, 0), (B, 1)]
[F, (14 ® B, 0)1 ::), [F, (A, 0), (B, 0)]
[F, (A ~ B, 1)] ~ [F, (A, 1), (B, 1)]

If we decompose complex types in the conclusion of the inference rules
for products and residuals according to these rules, we observe that the
polarity of a type is a global proof invariant. This is shown for the rules
below, where sequent antecedents are multisets of types and sequent
succedents constitute a single type.

Inference figure Polar types Decomposed polar types

R ----> O, A F- B [O', (.4, 1), (B, 0)]
O F-A --)B [O', (A ---* B, 0)]

FF-A A,B~-C [F',(A,O)] [A',(B, 1),(C,O)]
L--->

F,A,A---->BF-C [F',(A--,B, 1),A',(C,O)]

L® F,A, BF-C [F',(A, 1),(B, 1),(C,O)]
F,A ® B~ C [F', (A ® B,1), (C, O)]
r f - A AI-B [F',(A,0)] [A,(B,0)]

R®
F, AFA®B [F', A'(A ® B, 0)1

On this basis, then, we may translate

[o', <A, 1), <B, 0>]
[O', <A, 1), <B, O>
[F', (A, 0)] [A', (B, 1), (C, 0)]
[r', <A, 0>, <B, 1>, A', <C, 0>l

[r', <A, 1>, <B, D, <C, 0>]
[F', (.4, 1), (B, 1), (C, 0)]
[r', (A, 0)1. [~, (B, 0)]

[r', a'(A, 0), (B, 0)]

any sequent A1 , Ak F- B
into a multiset of polar types [(, A, 1) , . . . , (Ak, 1), (B, 0)], and then by
performing the unfolding transformations on any complex types, convert
this multiset of polar types into a multiset of atomic, polar types. If the
original sequent is valid, the axiom leaves of the proof tree correspond
precisely to pairs of atomic types of opposite polarity. This is a proof
invariant similar to van Benthem's notion x-count [5, 6] or Roorda's notion
balance [42].

Although such a pairing exists for every valid sequent, such pairings
can exist as well for sequents which are invalid in all of the systems
discussed here, such as the Lowering sequent (see §6) (B --->A) --->A F- B,
whose atomic polar normal form is {(B, 1), (A, 0), (A, 1), (B, 0)}. In con-
verting a sequent to its atomic polar normal form, a critical property of
proof structures is lost: namely, information concerning the scope of each

T E R M - L A B E L E D C A T E G O R I A L T Y P E S Y S T E M S 667

type-constructor. The two-premise rules L --~ and R ® not only introduce
a new occurrence of ~ or ®, they also merge the endsequents of their
two premises into a single sequent. In trying to construct a proof bottom-
up from such an endsequent, one must take apart the antecedent occur-
rence of --* or the succedent occurrence of ® and in addition, decide how
to split the sequent context of the complex type into two independent
contexts for the two components of the complex type. It is this aspect of
proof structure which is ignored in the transition from a sequent to its
atomic polar normal form. One way of building in information about the
scope of a connective is to refer to the corresponding properties of the
associated A-term. Roorda [41, 42] uses this method to extend to L and
LP the proof-nets - les substantifiques moelles - of Girard [14, 15]. Moort-
gat [27, 28] uses string-term conditions for the same purposes. Here we
discuss the extension of these methods involving term-relations to mon:LP.

If we take an atomic labeled type in mon:LP, such as jones: np ~ , j ,

we can assign it an atomic polar normal form by simply adding a polarity,
0 or 1. To extend the assignment to complex types, it is necessary to add
conditions on the terms involved. In certain cases, it is necessary to
introduce flesh variables or parameters, adding appropriate information
concerning their interpretation. We write x r--Term to mean that x
FA (Term) .

Complex polar type Decomposed polar form

Term: A @ B ° ~ . Term

Term: A @ B ~ ~'* Term

Term: A --~ B ° ,,~ Term

Term: A --> B 1 ~ Term

[Term ~ (~'1 Term, ~r2Term,)
Term ~ (~ Term, ¢;2 Term,) ,

~r~Term: A ° ~* zrl Term, ~r2Term: B ° ,,~ Ir2Term]

[Term ~ <lhTerm, ~r2Term,}
Term ~ <~h Term, Ir2Term,),

~r,Term: A ~ ~'* zr, Term, ~-2Term: B ~ , ~ ~r2Term]

[x, x fresh, Term = h x.Term', x U_ Term',
Term = a x. Term' , x I- Term' ,

x: A ~ ,~ x,Term: B °~., Term]

[x, x fresh,Term = a x.Term', x r-Term',
Term = a x . T e r m ' , x r-- Term' ,

x: A ~ ~ . x , Term': B ° A,-, Term']

Iteration leads to atomic polar normal forms, in which every type-forming
operator is replaced by its polar decomposition.

Applying these methods to some of the lexical assumptions introduced
earlier, we have:

668 R I C H A R D T . O E H R L E

), x. hy. y caught x: np ~ np ~ s t ,,~. Ax .hy .caught ' (x) (y)

[x: np°N'*x, y: np°,,~,y, y caught x: s~,~ .caught ' (x) (y)]

A P. P[every student): (np---~s)--~s ~,-, AP.V(s tudent ') (P)

[P: np --, s o ,~, P, P(every student): s 1 ~-* V(student ') (P)]

::),[x,Q,x, Q fresh, P = h x . Q , x r - Q , P = hx .Q , x r - Q,

x: np 1 ~,~, x, Q: s °~- Q, P(every student): s a ~ V(student ') (P)]

A P. P(some thief)) (np ~ s) ~ s ~,,~, A P .3 (th i e f ') (P)

~ [z , N , z , N fresh, M = A z . N , z l - - N , M = A z . N . , z E N ,

Z: np 1 A,~ Z, N: s°,x~ N , M(some thief): s ~ ,~. 3 (t h i e f ') (M)]

Consider now the following examples of the decomposition of sequents:

Example 1.

sequent:a,/3, y ~- jay chased kay: s,,,'* chased ' (k) (j)

a = jay: np ~ . j

/3 = hx. by . y chased x: np ~ n p ~ s , ~ ,

hx.A y.chased' (x) (y)

y = kay: np ,.'* k

atomic polar decomposition

[jay: np 1 ,,~.],

x: np° ,,", x,

y: np°,,,~, y,
y chased x: s 1 ~* chased ' (x) (y)

kay: np 1 ~ k
jay chased kay: s o ~ chased'(k)O')]

O:
x ~ kay. x ~-> k.
y ~-> jay .y ~ j

jay: npl ,,~*j~-> y: np° ,~ , y

kay: np l ,,,'* k~-> x: np° ~'-~ x
y chased x: s 1 ,,.-. chased ' (x) (y) ~ jay chased kay:

s o ~ chased ' (k) (j)

In this example, 0 is a function which anchors term-variables to terms;/z
is function from labeled polar types with polarity 1 to labeled polar types
with polarity 0 which satisfies the requirements that if /z:t:
Tl,,~.t~--> u: U°,,~,u, then T = U, 0(t)= 0(u), and 0(t)= O(u). These re-
quirements are related to sequent-style proofs in the following way: atomic

T E R M - L A B E L E D C A T E G O R I A L T Y P E S Y S T E M S 669

types of opposite polarity paired by /z correspond to axiom leaves of a
sequent proof; the term conditions imposed on axiom bindings are speci-
fied by 0; the scope of each connective in the endsequent is expressed by
the type- and term-conditions of its decomposition, and the inclusion
relations on terms.

A simple example involving multiple quantification is exhibited below:

Example 2.

sequent: a,/3, 3't- every detective caught some thief:
s ~ , V (de t ec t i ve ') (hw .3 (th i e f ') (h z . caugh t ' (z) (w)))

a = A P. P(every detective): (np ~ s) --> s ~', hP.V(detec t ive ') (P)

/3 = h x. h y. y caught x: np ---> np -->s ~'* hx .hy .caugh t ' (x) (y)

3, = h R. R(some thief); (rip--+s) ~ s ~ * h R . 3 (t h i e f ') (R)

atomic polar decomposition:

P: np ~ s° ~ , P ~ h w . Q: np --+ s °~¢~. h w . Q , w r--Q, w F-Q,
R: np --> s°,,~ R ~-> h z. N: np ---~ s ° ~ . h z .N , z [Z N, z F-N,
w: np 1 ~ w,

Q: s° ~..* Q,
(h w.Q)(every detective): s l y , V(detect ive ') (hw. Q)
X: r i p 0 ~ X,

y: np° ~ , y,

Y caught x: sl,.., caught' (x) (y)
z: np 1 ,,~ z,

N: s°"~" N ,

(h z. N)(some thief): s 1 ~'~ 3 (t h i e f ') (h z . N)

every detective caught some thief: s ° ~ . V(detective')

(A w . 3 (thief ') (hz.caught ' (z) (w)))

For this set of atomic polar types, where the global interpretation is fixed,
there is just one solution that satisfies the inclusions relating terms:

O:

y ~-~ w , y ~--> w

X ~--> Z, X ~--> Z

N ~ w c a u g h t z, N~--> caught ' (z) (w) ,

Q ~ w caught some thief, Q ~-> 3 (t h i e f ') (h z . N)

670 R I C H A R D T . O E H R L E

/z:

w: np 1,,,'* w ~--> y: np ° ,~, y

Z: np I "~ Z ~ X: np° ~'* x

y caught x: s 1 , , ~ c a u g h t ' (x) (y) ~ N: s ° ~ . . N

(h z.N)(some thief): s 1 ~ 3 (t h i e f ') (h z . N) ~ Q: s o ~ Q
(A w.Q)(every detective): s ~,~. V(de tec t ive ') (,Xw.Q)

every detective caught some thief: s o ~,, V(detec t ive ')

(hw.El(thief')(hz.caught'(z)(w)))

If we change the scope of quantifiers in the interpretation of the endse-
quent, the atomic polar decomposition differs only in that respect as well,
but we have a different, but still unique, solution set O' and/x':

E x a m p l e 3.

sequent: a,/3, y F every detective caught some thief:
s ~ 3 (t h i e f ') (h z . V (d e t e c t i v e ') (h w . c a u g h t ' (z) (w)))

a = h P. P(every detective): (np ~ s) ~ s ~ , hP .V (de t ec t i v e ') (P)

/3 = Ax. by . y caught x: np --~np - ->s~ ,~ ,hx .hy .caugh t ' (x) (y)

y = h R. R(some thief: (np --~,s) --~s ~ . h R . 3 (t h i e f ') (R)

atomic polar decomposition:

P: np ---~ s°~- , P~--~ A w . Q: np -+ s°,~-~ h w . Q ,

w I - Q , w r - Q ,

R: np ---~ s ° , ,~ R ~---~)t z. N: np ---~ s° ,,,-~ h z . N ,

z E N , z E N ,
W: n p 1 ~ W,

Q: s ° ~ Q,

(h w.Q)(every detective): s 1 ,~, V (d e t e c t i v e ') (h w . Q)

x: n p ° , , ~ x ,

y: np° ~* y ,

y caught x: s 1,,~ c a u g h t ' (x) (y)

z: n p l ,,~* z ,

N: s° ,,'~ N ,

(A z.N)(some thief): s t ~ a (t h i e f ') (h z . N)

every detective caught some thief:
s o ~ 3 (t h i e f ') (h z . V (d e t e c t i v e ') (h w . c a u g h t ' (z) (w)))]

T E R M - L A B E L E D C A T E G O R I A L T Y P E S Y S T E M S 671

In this case, we have the solution:

0:

y ~-~ w, y ~-~ w

X ~--> Z, X~--> z

Q ~ w caught z, Q ~ caught'(w)(z)
N ~ every detective caught z, N ~ V(detective')(hw.Q)

I-6:

w: np1,~, w~--~ y: np°,,", y
z: npl~' , z~--~ x: np° ~o,x
y caught x: s I ~ , caught'(x)(y) ~ Q: s ° ,~ Q
(h z.N)(some thief): s ~ ~ , 3(thief ') (hz .N)

every detective caught some thief:

s °~,* 3(thief')(hz.V(detective')(hw.caught'(z)(w)))
(A w.O)(every detective): s ~ ~ V(detective')(hw. Q)

N :s°:N

Call a multiset of atomic polar types (and an associated set of inclusions
relating the terms of the those types) paired and anchored if there is a
matching substitution 0 of term variables associated with types of polarity
0 with ground terms or parameters which is consistent with term inclusion
relations and/3-conversion (and is extended to a map from terms to terms
in the usual way), and a bijection /.~ from labeled types of polarity 1 to
polarity 0 which satisfies the condition: if/z: Term: A 1~,. Term = Term':
B °~-, Term', then A = B and 0(Term) E> 0(Term') and O(Term) D
O(Term').

THEOREM. I f a sequent E is provable in mon:LP, then the atomic polar
decomposition of I£ is paired and anchored.

Proof. If a sequent is provable, then the set of axiom-leaf bindings
provide/z; if the decomposition procedure introduces a new term variables
v at any point that is distinct from the associated term u of type corre-
sponding to the type labeled by v, impose the requirement O(v) = u. Since
introduced variables are always fresh, this can be done in a globally
consistent way. This yields the required substitution O. []

We know already that any valid sequent in mon:LP is term-linear. We
can use term-linearity to attain a result that goes in the other direction.

THEOREM. I f the atomic polar decomposition o f a term-linear sequent

672 R I C H A R D T . O E H R L E

is paired and anchored relative to 0 and t~, then O('Z) is provable in
mon:LP.

Proof. By induction on the degree of the sequent]£. If the degree of
is 0, then every labeled type in the sequent is atomic. Moreover, there

is only one succedent type t': T' ~-~ t', by the definition of sequent, and
there can be only a single labeled antecedent type, t: T~.~t, since /.~
is a bijection. Thus, we have i ~ (t : T l ~ . t) = t ' : T ' ° ~ . ~ t ' with T =
T ' , O(t) D~ O(t'). Therefore, 0(X) has the form 0(t): T ~ , O(t) I- 0(t'):
T~-~ O(t'). Thus, 0(~) is an instance of the identity axiom.

Now suppose that the theorem holds for sequents of degree k and
consider a sequent ~ of degree k + 1 whose atomic decomposition is
paired and anchored. If ~ has the form F f-t: A ~ B,,~ t, then we may
choose terms x, r and x, r according to the decomposition of X so that we
have a sequent ~' = F, x: A ~ * x t- r: B~- ,r . But the decompositions of
and/U can be carried out so that they are identical; thus, the decomposi-
tion of X' is paired and anchored; by the inductive hypothesis, 0(~') is
provable in mon:LP. But since 0(~) is derivable from 0(~') in mon:LP by
an application of R ~ , 0(~) is derivable in mon:LP. A similar argument
holds for sequents derivable by the other 1-premise rule L ®: namely, if

is of the form A , t : A Q B , ~ , t ~ - u : C,,~,u, then 0(~) is derivable in
mon:LP. Thus, we may assume that the succedent type of ~ is either an
atomic type or a product, and that no antecedent type of ~ is a product.

Suppose, then, that the succedent type is an atom of form u: C ,~ u;
then /x pairs this atom with an atom of the form u': C ~ , u ' derived by
decomposition from the final type of a type of the form
term: Dk --+" • " DI ~ C ~ . term (k >! O, with the understanding that if k =
0, then Dk ~ ' . " ~ DI ~ C = C). (Note that u: C,,-~ u cannot be paired
with any non-leading type C' of an implicational type C' ~ E, since the
&term of C' is properly included in the ~b-term of E (by the decomposition
procedure) and the 4~-term of E is included in FA(u) (by term-linearity),
so the &term of C' would have to be properly included in the ~b-term of
the atomic type it is paired with. Impossible!) If k = 0, we're done: the
qS-term of the atomic type corresponding to the antecedent type C coin-
cides under 0 with 0(u) and is disjoint from the &term associated with
any other antecdent type; but this is impossible if there is any other
antecedent type, since (by term-linearity) its free atoms must be contained
in FA(u); hence, if k = 0, the sequent is an axiom instance, and we're
done. If k i> 1, let D* be the multiset union of the atomic polar types
derived from Dk and their pairs under/x; none of these atomic polar types
is paired with any atomic polar type derived from the decomposition of
Dk-~--~" • • --~ C, since this is prevented by the term conditions of the

T E R M - L A B E L E D C A T E G O R I A L T Y P E S Y S T E M S 673

decomposition. Now note that the final type B of any implicational antece-
dent type with form Ak---~''' ~AI--~B (k>~O) belongs to D* if and
only if all the atomic types derived from Ai (0 ~< i ~< k) belong to Dk. This
partitions the multiset of antecedent types into two disjoint multisets of
types: a multiset A, whose atoms belong to D* and a multiset @, whose
atoms do not. The atoms of the latter class must be paired with the atoms
derivable from D~_ 11_1.. .D*. Thus, we have the following situation
(with term-labels suppressed):

A~-Dk ®,Dk-1-->" " - - > D I - + C F C
®, A, Dk --~ Dk-1 --~" " • ---> D1 ---> CI- C

The endsequent, which is identical to 2, is derivable from the premises if
they are provable. Since each of the premises inherits an atomic decompo-
sition from the conclusion relative to which it is paired and anchored, the
induction hypotheses assures us that they are derivable. Thus, so is the
conclusion 2.

A similar argument - using the linearity of terms and sequents to
partition 2 into two smaller sets of paired and anchored terms correspond-
ing to appropriate premises for the rule R ® - applies in the case that the
succedent type is a product.

This concludes the proof. []

Atomic polar decompositions, then, provide an alternative presentation
of mon:LP. What is attractive about this presentation is the fact that
proofs no longer display excessive and redundant bookkeeping: passive
assumptions need not be carried along with each inference step; different
orders of inference steps need not be addressed. These issues are compiled
inside the unification algorithm.

9.3.2. Indexed Terms

There is another way to explicitly manage proof resources which is related
to the atomic polar normal forms, but which is technically more com-
plicated. Instead of decomposing types into atomic polar types, one associ-
ates each occurrence of an atomic type with an index and assigns the
same index to the associated component of each dimension. Earlier, we
translated the lexical type declaration for caught as:

kx. Ay. y caught x: np ----~np --~s~,Ax.Ay.caught'(x)(y)

674 R I C H A R D T . O E H R L E

This determines a multiset of atomic polar types which are linked by term
inclusions:

[x: np° ~,~, x, y: np° ~-y, y caught x: s 1 ~ hx. ,~y.caught '(x)(y)]

In the indexed format, this declaration takes the form below, with the
links explicitly represented by a common set of indices:

[u i, vq. u i caught vJ: [np i, np j] ~ sk,, ,o. [xJ, S] .caught ' (xJ) (y i)

A system along these lines is midway between the system of implicit
control found in type languages that rely on A-terms and sequentially-
residuated types for cross-dimensional control and the atomic polar normal
forms just examined. It is like the implicit, sequential control systems in
that residuated types and terms display a collection of argument types or
argument variables initially. It is distinct from the sequentially-organized
systems in that it is not required that the arguments be linearly ordered.
Instead, like the atomic polar normal forms, there is a registration - here,
using a common index set - of corresponding arguments in different
dimensions, correlating exactly those components in a complex type which
belong to individual atomic polar types in the atomic polar normal form.
Moreover, within this framework, the rules for the type-constructors cor-
responding to products and residuals can be constructed in a non-determi-
nistic way that combines (partial) application with composition in the way
schematically indicated by the inference figure below (corresponding to
the standard rule L ---~):

x
F F { Z U n p a} { V U Z } ~ A U A F B

X,~s,a=b
F U { V U n p b } ~ A , A I- B

In this rule, the index a is bound to b (as indicated in the unification
bindings of indices above the turnstile), one of the arguments - np b -
disappears in the transition from the conclusion to the right-hand premise,
but other possible arguments - indicated by V are carried along, and the
arguments represented by Z appear in both premises. An elaboration of
this schema allows a functional type to combine simultaneously with a
number of arguments. Like the proof net systems discussed above, type
systems constructed along these lines allow simpler proofs than the sequen-
tial systems. But their construction involves technical complexities which
go beyond the bounds of the present paper .8

8 After this paper was written, it came to my attention that there may be interesting
connections between the system of indexed terms just sketched and the systems of application

T E R M - L A B E L E D C A T E G O R I A L TYPE SYSTEMS 675

1 0 . V A R I A N T SYSTEMS

The system of labeled deduction mon:LP depends on taking the types of
LP and labeling them with terms from a higher-order term algebra based
on a free monoid. The resulting system allows relations to be defined
between ~terms and/L-terms that are not definable in a natural way in
the substructural systems AB, L, or LP. A natural question to ask is what
other systems arise as variants of this form of labeled deduction. We
mention two possible modes of variation here, deferring discussion to
another occasion.

The first possibility is to consider other algebraic possibilities as the
basis on which higher-order ~terms are constructed. For example, if we
replace the free monoid V* by the free commutative monoid comV*, we
have a system common:LP in which the C-terms of atomic type are simply
multisets of elements of V. This system is the analog within the landscape
of C-term labeled deduction of LP.

A second possibility is to consider variations on the set of admissible
terms. One limitation already observed is to the set of linear A-terms:
terms in which each abstraction operator A~c in a term of the form Lr.¢
binds exactly one free occurrence of the variable x. But other forms of
limitation are possible. For example, we may require that in A~c.¢, either
¢ = (xt) or ¢ = (tx), limiting the depth of the free occurrence. The inter-
esting consequences of this restriction - it disallows Division and the
general form of Permutation, for example - and the question of how the
standard categorial type systems can be modeled within the landscape of
term-labeled deduction are discussed in more detail in [38].

11. SUMMARY

The term-labeled categorial type systems studied in this paper are a form
of labeled deduction [12]. It is not surprising that there are forms of labeled
deduction corresponding to known cases of unlabeled deductive systems.
Yet it is interesting to observe that the addition of &term labeling intro-
duces new possibilities for the division of linguistic labor. 9 And among
these new possibilities, we encounter not only familiar systems in a new

and abstraction developed in detail by Aczel ancl Lunnon in the context of Situation Theory
[1], These connections might be worth exploring.
9 For other investigations of ~terrn labeling in categorial grammar, see Moortgat [27, 28],
Morrill [31], Hepple [18], and Calcagno [9]. The treatments in these papers start with the
directional type-constructors of L, rather than the non-directional LP system adopted in
mon:LP.

676 RICHARD T. OEHRLE

guise, but also unfamiliar systems with attractive propert ies . Wha t I have

tried to emphasize here is the interact ion be tween term-labeled type infer-

ence and the behavior of quantifiers. This at least allows us to compare

formally the behavior of the systems examined in this paper no t only with

regard to the relat ion they define be tween & t e r m s and types, but with

regard to the more informative relat ion among ~b-terms, types, and 1L-

terms.
The examples examined above have been e lementary ones. It will be

useful to see whether such systems as m o n : L P can be extended to more

complex cases involving quantification and binding, 1° or the integrat ion

of prosodic propert ies of strings into proof-s t ructures [44, 25, 36]. Re-

search in these areas, which involve complex interactions a m o n g the pro-

perties of different linguistic dimensions, demonst ra tes the need for a

deeper abstract unders tanding of the p rob lem of general ized composi-
tionality, n

REFERENCES

1. P. Aczel: 1994, Generalised Set Theory and the Modeling of Parametric Objects and
Abstraction - a Preliminary Note, Paper presented at the Conference on Information-
Oriented Approaches to Language, Logic, and Computation. Saint Mary's College of
California, June 13-15, 1994.

2. K. Ajdukiewicz: 1935, 'Die Syntaktische Konuexitat', Studia Philosophica 1, 1-27.
(English translation in Storrs McCall (ed.), Polish Logic, Oxford University Press, 1967.)

3. Y. Bar-Hillel: 1953, 'A Quasi-Arithmetical Notation for Syntactic Description', Lan-
guage 29, 47-58; reprinted in Bar-Hillel (1964), pp. 61-74.

4. Y. Bar-Hillel: 1964, Language and Information, Addison-Wesley, Reading, MA.
5. J. van Benthem: 1986, Essays in Logical Semantics, D. Reidel, Dordrecht.
6. J. van Benthem: 1991, Language in Action, North-Holland, Amsterdam.
7. W. Buszkowski: 1988, 'Generative Power of Categorial Grammars', in R. T. Oehrle,

E. Bach, and D. Wheeler (eds.), Categorial Grammars and Natural Language Structures,
D. Reidel, Dordrecht, pp. 69-94.

8. W. Buszkowski: 1987, 'The Logic of Types', in J. Szrednicki (ed.), Initiatives in Logic,
M. Nijhoff, Dordrecht.

9. M. Caleagno: 1994, A Sign-Based Extension to the Larnbek Calculus for Discontinuous
Constituency, ms., Dept. of Linguistics, Ohio State University.

10. B. Carpenter: 1994, Quantification: a Deductive Account, ms., CMU.
11. M. Dalrymple, J. Lamping, F. C. N. Pereira, and V. Saraswat: 1994, 'A Deductive

m See [37] for one approach to this problem.
n While this paper was under review, I received a copy of a paper by Dalrymple, Lamping,
Pereira, and Saraswat [11] which contains an account of quantificational scope ambiguities
with many attractive features. There are affinities between the system they propose and the
system presented in this paper, including linear use of resources and a method of control
relating semantic expressions to another dimension. Deeper understanding of the similarities
and differences of these two approches would be interesting and useful.

T E R M - L A B E L E D C A T E G O R I A L TYPE SYSTEMS 677

Account of Quantification in LFG', in M. Kanazawa et al. (eds.), Quantifiers, Deduction,
and Context, CSLI, Stanford, California.

12. D. Gabbay: 1991, Labeled Deductive Systems, ms., Imperial College, London.
13. G. Gentzen: 1934-5, 'Untersuchungen fiber das Logische Schliessen', Mathematische

Zeitschrift 39, 176-210, 405-431. (English translation in M. E. Szabo (ed.), The Collected
Papers of Gerhard Gentzen, North-Holland, Amsterdam).

14. J.-Y. Girard: 1987, 'Linear Logic', Theoretical Computer Science 50, 1-102.
15. J.-Y. Girard, Y. Lafont, and P. Taylor: 1989, Proofs and Types, Cambridge Tracts in

Theoretical Computer Science 7. Cambridge University Press, Cambridge.
16. H. Hendriks: 1987, 'Type Change in Semantics: the Scope of Quantification and Coordi-

nation', in E. Klein and J. van Benthem (eds.), Categories, Polmorphism and Unification,
University of Edinburgh: Centre for Cognitive Science, and Amsterdam: Institute for
Language, Logic, and Information.

17. H. Hendriks: 1989, Cut Elimination and Semantics in Lambek Calculus, ms., ITLI,
Department of Philosophy, University of Amsterdam.

18. M. Hepple: 1994, Discontinuity and the Lambek Calculus, ms., Department of Computer
Science, University of Sheffield.

19. J. R. Hindley and J. P. Seldin: 1986, Introduction to Combinators and)t-Calculus,
London Mathematical Society Student Texts 1. Cambridge University Press, Cambridge.

20. W. A. Howard: 1980, 'The Formulae-as-Types Notion of Construction', in J. R. Hindley
and J. P. Seldin (eds.), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus,
and Formalism, Academic Press.

21. P. T. Johnstone: 1987, Notes on Logic and Set Theory, Cambridge University Press,
Cambridge.

22. E. L. Keenan: 1987, 'Semantic Case Theory, in J. Groenendijk, M. Stokhof, and F.
Veltman (eds.), Proceedings of the Sixth Amsterdam Colloquium, ITLI, University of
Amsterdam.

23. J. Lambek: 1958, 'The Mathematics of Sentence Structure', American Mathematical
Monthly 65, 154-170.

24. D. Miller: 1991, 'A Logic Programming Language with Lambda-Abstraction, Function
Variables, and Simple Unification', Journal of Logic and Computation 1(4), 497-536.

25. M. Moortgat: 1988, Categorial Investigations: Logical and Linguistic Aspects of the
Lambek Calculus. Foris, Dordrecht.

26. M. Moortgat: 1992, 'The Logic of Discontinuous Type Constructors', in W. Sijtsma and
A. van Horck (eds.), Discontinuous Constituency, Mouton de Gruyer, Berlin.

27. M. Moortgat: 1990, 'Unambiguous Proof Representations for the Lambek Calculus', in
Proceedings of the 7th Amsterdam Colloquium, ITLI, University of Amsterdam.

28. M. Moortgat: 1991, 'Labeled Deductive Systems for Categorial Theorem Proving',
Proceedings of the 8th Amsterdam Colloquium, Universiteit van Amsterdam.

29. M. Moortgat and R. T. Oehrle: 1993, Categorial Grammar: Logical Parameters and
Linguistic Variation, Lecture notes, European Summer School in Logic, Language, and
Information. Faculdade de Letras, Universidade de Lisboa, Portugal.

30. M. Moortgat and R. T. Oehrle: Elements of Categorial Grammar, in preparation.
31. G. Morrill: 1994, Clausal Proof Nets and Discontinuity, Paper presented at the London

Workshop on Proof Theory and Linguistic Analysis.
32. R. T. Oehrle: 1981, 'Lexical Justification', in M. Moortgat, H. v.d. Hulst, and T.

Hoekstra (eds.), The Scope of Lexical Rules, Foris, Dordrecht, pp. 201-228.
33. R. T. Oehrle: 1992, 'Dynamic Categorial Grammars, in R. Levine (ed.), Formal Gram-

mar: Theory and Implementation, Vancouver Studies in Cognitive Science, Vol. 2,
Oxford University Press, Oxford, pp. 79-128.

34. R. T. Oehrle: 1988, 'Multi-Dimensional Compositional Functions as a Basis for Gram-
matical Analysis', in R. T. Oehrle, E. Bach, and D. Wheeler (eds.), Categorial Gram-
mars and Natural Language Structures, D. Reidel, Dordrecht, pp. 349-389.

678 R I C H A R D T. O E H R L E

35. R. T. Oehrle: 1990, 'Categorial Frameworks, Coordination, and Extraction', in A.
Halpern (ed.), Proceedings of the Ninth West Coast Conference on Formal Linguistics,
CSLI, Stanford, pp. 411-425.

36. R. T. Oehrle: 1991, Grammatical Structural and Intonational Phrasing: a Logical Perspec-
tive, Working papers of the AAAI Fall Symposium on Discourse Structure in Natural
Language Understanding and Generation, Asilomar.

37. R. T. Oehrle: 1992, Referential Types, Dynamic Context, and Referential Relations, ms.,
University of Arizona, Tucson.

38. R. T. Oehrle: 1994, 'Some 3-Dimensional Systems of Labeled Deduction', Proceedings
of the London Workshop on Proof Theory and Linguistic Analysis, In preparation.

39. F. C. N. Pereira: 1990, 'Prolog and Natural-Language Analysis: into the Third Decade',
in S. Debray and M. Hermenegildo (eds.), Logic Programming: Proceedings of the 1990
North American Conference, MIT Press, Cambridge, MA.

40. F. C. N. Pereira: 1991, 'Semantic Interpretation as Higher-Order Deduction', in J. van
Eijck (ed.), Logics in AI, Springer, Berlin, pp. 78-96.

41. D. Roorda: 1990, Proof Nets for Lambek Calculus, ms. ITLI, University of Amsterdam.
42. D. Roorda: 1991, Resource Logics: Proof-Theoretical Investigations, Ph.D. thesis, Facul-

teit van Wiskunde en Informatica, Universiteit van Amsterdam.
43. R. Smullyan: 1968, First-Order Logic, Springer, Berlin.
44. M. Steedman: 1991, 'Structure and Intonation', Language 67, 260-296.
45. R. Thomason: 1974, Formal Philosophy: Selected Papers of Richard Montague, Yale

University Press, New Haven.
46. L. A. Wallen: 1990, Automated Proof Search in Non-Classical Logics: Efficient Matrix

Methods for Modal and Intuitionistic Logics, MIT Press, Cambridge, MA.

