
Res Lang Comput (2007) 5:267–285
DOI 10.1007/s11168-007-9035-1

Separating Syntax and Combinatorics in Categorial
Grammar

Reinhard Muskens

Received: 2 July 2007 / Accepted: 2 July 2007 / Published online: 3 October 2007
© Springer Science+Business Media B.V. 2007

Abstract This paper argues that modern versions of categorial grammar and in
particular multimodal categorial grammar can profit considerably from reintroducing
Haskell Curry’s old distinction between what he called phenogrammatics and tecto-
grammatics. Tectogrammatics is the abstract way in which linguistic signs are built
up, while phenogrammatics deals with concrete processes of string formation and the
way in which the sign ultimately manifests itself. The distinction will be modeled in
a theory called Lambda Grammars in which tectogrammatics is formalized by taking
linear lambda terms over a given lexicon. Phenogrammatics can then be formalized
with the help of a set of modal operators. The procedure is illustrated by means of
an analysis of some aspects of Dutch word order that is based on earlier multimodal
work of Oehrle and Moortgat on Dutch.

Keywords Categorial grammar · Lambda grammar

1 Introduction

The ‘syntax’ and ‘combinatorics’ of my title are what Curry (1961) referred to as phen-
ogrammatics and tectogrammatics respectively. Tectogrammatics is concerned with
the abstract combinatorial structure of the grammar and directly informs semantics,
while phenogrammatics deals with concrete operations on syntactic data structures1

1 Curry thought of tectogrammatics in terms of operations on structures, but since his writing another
perspective has gained popularity. This is the descriptions approach to grammatical representation (pio-
neered in Kaplan and Bresnan 1982 and Marcus et al. 1983). In this paper we will take the descriptions
perspective, but will consider descriptions of trees, strings, and the like as belonging to the phenogram-
mar.

R. Muskens (B)
Department of Philosophy, Tilburg University, Tilburg, The Netherlands
e-mail: r.a.muskens@uvt.nl

123

268 R. Muskens

such as trees or strings.2 In a series of previous papers (Muskens 2001a,b, 2003)
I have argued for an architecture of the grammar in which finite sequences of lambda
terms are the basic data structures, pairs of terms 〈syntax, semantics〉 for example.
These sequences then combine with the help of simple generalizations of the usual
abstraction and application operations. This theory, which I call Lambda Grammars
and which is closely related to the independently formulated theory of Abstract Cat-
egorial Grammars (de Groote 2001, 2002), in fact is an implementation of Curry’s
ideas: the level of tectogrammar is encoded by the sequences of lambda-terms and
their ways of combination, while the syntactic terms in those sequences constitute the
phenogrammatical level. In de Groote’s formulation of the theory, tectogrammar is
the level of abstract terms, while phenogrammar is the level of object terms.

While my previous papers on the subject mainly concentrated on the tectogrammat-
ical level of the theory and the theory’s overall architecture3 (as is perhaps a natural
start), I now want to focus on phenogrammar in some more detail. Many ways in
which this dimension of the grammar could be modeled are consistent with the overall
theory, but I will opt here for a multimodal approach that directly derives from exist-
ing work in categorial grammar (see e.g. Morrill 1994; Moortgat 1997). Syntax and
combinatorics are interleaved in existing work on multimodal categorial grammar and
are dealt with within a single generalization of the Lambek Calculus (Lambek 1958;
Moortgat 1997), but on the present account the two will be separated. Each will get
its own calculus. In the case of tectogrammar this will be the −◦ fragment of linear
logic, or, equivalently, the set of linear lambda terms; for phenogrammatics we will
have a pure multimodal logic.4 The result is a much-needed simplification: splitting
multimodal categorial grammar into a multimodal and a categorial part makes work-
ing with each of these parts humanly feasible. The categorial part will be extremely
simple, and inferences in the multimodal calculus will in fact resemble derivations in
generative syntax to some extent. The resemblance can be made closer or less close,
depending on which phenogrammar postulates are adopted.

The approach will be illustrated with the help of a treatment of some aspects of
Dutch word order. Within multimodal categorial grammar very interesting accounts
of Dutch verb clustering and verb second have been worked out in Oehrle (1998) and
Moortgat (1999)5 and we will consider in some detail how a similar analysis can be

2 Curry’s distinction had almost been forgotten when attention to it was drawn in Dowty (1982). See also
the highly interesting Dowty (1995), which was presented at the 1989 Tilburg conference on discontinuous
constituency.
3 Muskens (2001a) additionally focuses on the relation between Lambda Grammars and Lexical-
Functional Grammar (Kaplan and Bresnan 1982) and argues that the resemblance is close, especially if the
theory is set up three-dimensionally, with sequences of λ-terms 〈C, F, S〉 in which C describes c-structure,
F f-structure, and S is the semantics. Muskens (2003) works out an implementation of phenogrammar as
a multimodal logic, as is done here, but in considerably less detail.
4 ‘Pure’ in the sense that the logic will be a straightforward generalization of the usual modal logics, not
only model-theoretically, but also proof-theoretically (i.e. there will be no resource-sensitivity). Modal
logics will be introduced as fragments of classical logic, i.e. by transcribing their Kripke-semantics.
5 The work of Oehrle and Moortgat cited here goes back to Moortgat and Oehrle (1993) and joint presen-
tations in a number of other venues (particularly, ESSLLI courses in Barcelona (1995), Aix-en-Provence
(1997), and Utrecht (1999), were numerous fragments were discussed and implemented in Richard Moot’s
grail theorem prover, www.labri.fr/perso/moot/grail.html).

123

www.labri.fr/perso/moot/grail.html

Separating Syntax and Combinatorics 269

carried out within the present setting. Descriptive originality will not be our aim, as
the point we want to make is purely architectural.6 The objectives here are to recast
Oehrle’s and Moortgat’s work in a Lambda Grammars setting, to identify the technical
changes to this work that are needed in order to do this and get the logical machinery
going, and, hopefully, to convince the reader that conceptual simplifications are to
be gained in this direction. These conceptual simplifications will also to some extent
clarify the relation between multimodal categorial grammar and other approaches that
are less logically oriented.

The rest of the paper will be organized as follows. The next section will introduce
the overall theory. In Sect. 3 it is explained how Lambda Grammars can be provided
with a multimodal component in the syntactic dimension and how such a multimodal
component can be used to obtain a treatment of some aspects of Dutch word order. A
conclusion ends the paper.

2 Lambda Grammars

Lambda Grammars are a variant of Categorial Grammar (CG) that differs from exist-
ing accounts of CG in that it treats syntactic and semantic information as completely
on a par in the sense that there is no asymmetric dependency of semantics upon syn-
tax as there is in most theories of grammar. The theory also differs from standard
forms of CG in that its core combinatorial engine is essentially undirected. No dis-
tinction is made between categories that seek material on their right and those that
seek it on their left, as far as the core logical engine is concerned. It is only in one of
the specialised dimensions of the grammar that word order (and dominance) can be
brought into the picture. There are several advantages to this. One linguistic advan-
tage is that extraction from medial positions becomes possible without any further
addition to the theory. It is well known that directed systems such as the Lambek
Calculus (Lambek 1958; Moortgat 1997) can handle expressions that in a transfor-
mational account would involve movement, such as the philosopher who Plato wrote
about. This is an important advantage of the Lambek Calculus over the basic AB
system (Bar-Hillel 1953), which does not allow for the hypothetical reasoning needed
here. But unfortunately, the directed character of the calculus precludes a straight-
forward analysis of movement from medial positions, such as in the philosopher
who Plato wrote about in the Timaeus (see Moortgat (1997) for further discussion
of the problem). There are extensions of the basic Lambek system (Morrill 1994;
Moortgat 1997) that can deal with medial extraction, but at the price of complica-
tion and not as straightforwardly as peripheral extraction is dealt with in the original
calculus. I interpret this as a sign that directionality should not be part of the basic
calculus.

Modern versions of the Lambek Calculus, such as those discussed in Morrill (1994)
and Moortgat (1997), are almost always multidimensional (Oehrle 1988). The basic

6 Although I do claim that Lambda Grammars have an empirical edge over directed forms of categorial
grammar (extraction from medial positions is treated without any difficulty, see Muskens (2003) and below),
I do not believe that the perspective has any conclusive empirical advantages in the domain of description
(Dutch word order) that was chosen for illustration here. Things do seem to become much simpler though.

123

270 R. Muskens

data structures of these grammars, called signs, are n-tuples, where n is the (fixed)
dimensionality of the grammar and each element of an n-tuple corresponds to a compo-
nent of the grammar, e.g. 〈syntax, semantics, features〉. Such signs are then combined
using the calculus. It can be argued almost a priori that, since signs in fact always have
a syntactic (or prosodic) component, this is the place where word order information
preferably should be represented. Representing directionality in the core calculus by
means of the usual slashes (\ and /) is therefore unnecessary (see also the comments
on the Lambek calculus in Curry 1961).

Moving to an undirected calculus allows us to restrict ourselves to the −◦ fragment
of linear logic (= the calculus L*P of (van Benthem 1986)), or, what boils down to
the same thing, the linear (pure) λ-terms, which is a pleasantly simple system.

Before moving to our main topic, a multimodal treatment of the syntax, or phe-
nogrammar, dimension of Lambda Gammars, we give a short introduction to the
overall theory. For a fuller exposition the reader is referred to (Muskens 2003) and to
(Muskens 2001a), which also explores the connection to Lexical-Functional Gram-
mar (LFG, Kaplan and Bresnan 1982). The system builds upon earlier work in CG,
especially Curry (1961), Oehrle (1994) and Oehrle (1995). For more on the relation
to this earlier work, again see Muskens (2003).

2.1 The Formal Details

The basic data structures of Lambda Grammars are n-tuples of typed λ-terms and the
grammar’s core logical machinery is obtained by generalizing operations on typed
λ-terms in an obvious way. It will be expedient to have two kinds of types: concrete
types for typing λ-terms and abstract types to type n-tuples of these. Both kinds of
types are obtained by starting from a pre-given set of basic types and using the rule
that (AB) is a concrete (abstract) type if A and B are concrete (abstract) types. In the
examples below, signs will be pairs of λ-terms, basic concrete types will be ν (node or
resource), e (entity), t (truth value), and s (world), and basic abstract types will be s ,
np and n. For each dimension d (with 1 ≤ d ≤ n), a concretization operator cd sends
abstract types to concrete types. The values of the cd for basic abstract types can be
chosen freely and in this section will be as in Table 1; for complex types AB we let
cd(AB) = cd(A)cd(B), i.e. the cd are type homomorphisms. A tuple 〈M1, . . . , Mn〉
is said to have abstract type A if each Mi is of concrete type ci (A). Signs are n-tuples
typed in this way.

Table 1 Concretizations of
abstract types used in this
section

Abstract type Syntax (d = 1) Semantics (d = 2)

s νt st
np νt e
n νt e(st)

123

Separating Syntax and Combinatorics 271

Suppose M = 〈M1, . . . , Mn〉 has type AB and N = 〈N1, . . . , Nn〉 is of type
A. Then the pointwise application of M to N is defined as7

(M N) = 〈(M1 N1), . . . , (Mn Nn)〉.

It is also possible to define pointwise abstraction. Call X = 〈X1, . . . , Xn〉 the m-th
multi-dimensional variable of type A if each of the Xi is the m-th variable of type
ci (A) (in some given ordering). Let X = 〈X1, . . . , Xn〉 be such a variable of type A
and let M = 〈M1, . . . , Mn〉 be a sign of type B. Then

λX.M = 〈λX1.M1, . . . , λXn .Mn〉,

is of type AB.
We can use these pointwise application and abstraction operators to combine ele-

ments from a lexicon of signs. For example, supposing that the signs in (1) are in our
lexicon,8 we can, using (pointwise) application obtain the signs in (2), i.e. (2a) is (1c)
applied to (1a) and (2b) = ((1d)(1b)).

(1) a. 〈boy, boy〉 : n
b. 〈girl, girl〉 : n
c. 〈λtλT .T (every • t), λP ′ Pλi∀x[P ′xi → Pxi]〉 : n((np s)s)
d. 〈λtλT .T (a • t), λP ′ Pλi∃x[P ′xi ∧ Pxi]〉 : n((np s)s)
e. 〈λt1λt2.(t2 • (kisses • t1)), λxλy.kiss yx〉 : np(np s)

(2) a. 〈λT .T (every • boy), λPλi∀x[boy xi → Pxi]〉 : (np s)s
b. 〈λT .T (a • girl), λPλi∃x[girl xi ∧ Pxi]〉 : (np s)s

This can be carried further and, now using pointwise abstraction as well as applica-
tion, the signs in (3) are formed (here the ζ are variables of type np). These can then
be shown to be equivalent to the signs in (4), which say that the syntax of a certain
complex expression is to be associated with a certain semantics. In the example two
semantic forms associate with one and the same syntactic form because the latter is
ambiguous.

(3) a. (2b)λζ.[(2a)((1e)ζ)] : s
b. (2a)λζ ′.[(2b)λζ.[(1e)ζ ζ ′]] : s

(4) a. 〈((every • boy) • (kisses • (a • girl))),
λi∃y[girl yi ∧ ∀x[boy xi → kiss xyi]]〉 : s

b. 〈((every • boy) • (kisses • (a • girl))),
λi∀x[boy xi → ∃y[girl yi ∧ kiss xyi]]〉 : s

7 We write (AB) for the result of applying A to B and follow the usual notational conventions with respect
to this notation, i.e. parentheses may be omitted when no ambiguity results and association is to the left, so
that ABC is (AB)C .
8 Some typing conventions used here can be found in Table 2. Note that, although • is of type (νt)((νt)(νt))
and should therefore combine with two arguments of type νt to its right, we employ infix notation and write
A • B instead of • AB. A similar convention will hold for other operators of this type.

123

272 R. Muskens

The signs in (3) were obtained from those in (1) and (2) (and ultimately from those in
(1) alone) by forming linear λ-terms over them: each abstractor λX (with X multidi-
mensional) must bind exactly one X .9 This is our general rule for generating signs, by
considering linear combinations over a given lexicon.10 Signs obtained by such linear
combination will be called generated signs.

2.2 Permutation and Medial Extraction

In contrast to most modern versions of categorial grammar (but in line with
Ajdukiewicz, 1935) all types in Lambda Grammars are undirected: the application
and abstraction rules make no mention of relative order of the premises. This might,
at first blush, create a worry that the formalism overgenerates and does not distinguish
between syntactic forms and their permutations. But such worries are unfounded. Con-
sider the linear λ-terms over (2a), (2b) and (1e) in which each of these signs occurs
exactly once. (3) gives two examples and (5) gives two more:

(5) a. (2a)λζ.[(2b)((1e)ζ)] : s
b. (2b)λζ ′.[(2a)λζ.[(1e)ζ ζ ′]] : s

If the signs in (5) are worked out one gets syntax–semantics pairs for the sentence
a girl kisses every boy, entirely as expected. But will the system overgenerate and
associate (say) the syntax of every boy kisses a girl with the semantics of a girl kisses
every boy or vice versa? In order to see that it does not, let us recall the well-known fact
(discussed e.g. in van Benthem, 1991, pp. 117–119) that, up to βη-equivalence, there
are exactly four linear combinations of two quantifiers with one binary relation such
that the two quantifiers and the relation each occur exactly once in the combination.
In other words, (3) and (5) together exhaust the combinatorial possibilities and no
unwanted syntax–semantics pairs are generated here. Although types are undirected
and arguments may be permuted freely on the level of signs, such permutations always
involve both the syntactic and the semantic dimension. Since syntax and semantics
permute, but permute in tandem, no undesired combinations arise.

This shows that the tight coupling of syntax and semantics in Lambda Grammars
manages to rein in the effects of permutation and to ensure that we do not make the
bad prediction that undirected categorial grammars usually make: any permutation of
a well-formed string is well-formed. Do we also get predictions that improve upon
directed systems? For these we turn to extractions from medial positions. For the pre-
dictions of the standard Lambek Calculus with respect to these see Moortgat (1997),

9 The linearity constraint captures the resource-sensitivity of language. Prohibiting multiple binding of
variables will prevent arbitrary duplication of linguistic material and disallowing vacuous binding prevents
material to disappear altogether. This approach to resource-sensitivity is inherited from Lambek Categorial
Grammar and is akin to the approach to semantic interpretation in LFG (Dalrymple et al. 1993) that uses
linear logic as a ‘glue’ logic.
10 In fact the signs generated in this way may form a superset of the signs we actually want. E.g. if we
let a third grammatical component consist of λ-terms over some feature logic, as was done in (Muskens
2001a, 2003), we may restrict interest to those generated signs whose feature component is consistent with
an axiomatisation of features such as the one in (Johnson 1991). In the next section we will restrict our
interest to signs whose syntactic dimension can be shown to consist of a property of strings.

123

Separating Syntax and Combinatorics 273

where it is shown that extra work is needed to get these right. On the other hand, medial
extraction is no problem in Lambda Grammars, as the next example shows. Add the
signs in (6) to the previous lexicon11 and consider the linear combination in (7a). This
reduces to (7b) and we have ‘extracted’ from the position directly after shows.

(6) a. 〈album, album〉 : n
b. 〈Aad, a〉 : np
c. 〈Marie, m〉 : np
d. 〈λt1λt2λt3.(t3 • ((shows • t1) • (to • t2))),

λxλyλzλi.show zxyi〉 : np(np(np s))
e. 〈λT λt.(t • (which • (T e))), λPλP ′λxλi.[P ′xi ∧ Pxi]〉 : (np s)(n n)

(7) a. (6e)(λζ.(6d)ζ (6b)(6c))(6a) : n
b. 〈(album • (which • (Marie • ((shows • e) • (to • Aad))))),

λxλi.[album xi ∧ show mxai]〉 : n

What these data and analyses seem to suggest is that the move of placing word order
information in a separate syntactic dimension and freeing the type system from its
usual directedness (a move already present in Oehrle 1994, 1995) gives a better fit
with the data. There is enough flexibility to allow extraction from medial as well as
from peripheral positions,12 but arbitrary permutation is avoided.

3 Multimodality

An n-dimensional Lambda Grammar combines n + 1 logics in a completely modular
way. There is one core logic of combination, ‘taking linear lambda terms over the lexi-
con’, which essentially corresponds to the −◦ fragment of intuitionistic linear logic, or
the logic of the combinators B, C and I. Moreover, each of the n dimensions consists
of (closed) λ-terms over some logic. I make it a strategy to use classical type theory
in each dimension and to impose any needed structure with the help of axioms. For
example, in Muskens (2001a) and Muskens (2003) a feature dimension was obtained
by taking λ-terms over the first-order feature logic of Johnson (1991), who axioma-
tizes features using a simple set of axioms. For the semantic component we can take
translations as in (Muskens 1995) (without necessarily partializing the logic as is done
there), allowing any axioms that might be needed.

The syntactic component deserves some special attention. Since phrase structure is
no longer dealt with on the combinatorial, tectogrammatical, level of the grammar we
must deal with it separately. But the multimodal analyses of movement and general
restructuring that we find in modern versions of CG are still available if we decide
that the concretizations of types such as s , np and n should not simply denote nodes
(or resources), but sets of these, as in Table 2. Binary operators such as • then essen-
tially get the type of binary modalities over the ν domain: (νt)((νt)(νt)). We can

11 For the definition of the empty word e, see 3.1 below.
12 There are clearly many positions from which extraction is impossible and this needs to be accounted
for, in directed as well as in undirected systems. What I claim here is that the medial/peripheral distinction
that directed systems make is not the right generalization on which such an account should be built.

123

274 R. Muskens

Table 2 Some variables and constants and their types

Syntax Semantics

Variables: k : ν x, y, z : e
t : νt i, j : s
T : (νt)(νt) p : st

P : e(st)
Constants: •: (νt)((νt)(νt)) boy, girl, album, student, teacher, sleep : e(st)

every : νt , kisses : νt , … kiss : e(e(st))
show : e(e(e(st)))
help : (e(st))(e(e(st)))

flesh this out by considering ν(ν(νt)) relations Rm for modes m and letting •m be an
abbreviation of

λt1t2λk.∃k1k2[Rmkk1k2 ∧ t1k1 ∧ t2k2].

This is a straightforward transcription of the usual clause for a binary possibility oper-
ator in a Kripke style truth definition (see Kurtonina (1995) for the treatment of • as
a binary modality). It is also easy to obtain unary modalities ♦m by transcribing the
clauses for unary possibility operators, using an accessibility relation of type ν(νt)
this time. If Rm is such a binary relation, write ♦m for

λtλk.∃k1[Rmkk1 ∧ tk1].

We may also write �m for13

λtλk.∀k1[Rmk1k → tk1].

The move to let categories such as s , np and n (and perhaps all phrasal projec-
tions) denote sets of resources also immediately provides us with a Boolean structure
and what is in effect a notion of consequence in the syntactic domain. Here are two
abbreviations that will come in handy.

(8) a. A
 B abbreviates λk.Ak ∧ Bk
b. A � B abbreviates ∀k[Ak → Bk]

An immediate result of the previous definitions is the validity of (9).

(9) ♦m�m A � A

As is usual in modal logic, constraints on accessibility relations may be stip-
ulated to hold in order to get an interesting consequence relation. For example,
interaction between various modalities may come from interaction postulates as in

13 Note that this definition of �m is not literally a transcription of the usual Kripke semantics but is what

we would get if the converse of Rm were our accessibility relation. Such modalities are often denoted �↓
m ,

but we will drop the superscript.

123

Separating Syntax and Combinatorics 275

(Moortgat 1997). Suppose that •, our default phrasal composition, is considered to
be short for •c and comes from an underlying Rc, while another ternary relation R0

underlies an operator •0, which will stand for the ‘head composition’ of Moortgat and
Oehrle (1993) and Oehrle (1998). Suppose, moreover, that the interaction postulate
(10a) is adopted. Then (10b) will be an immediate consequence.

(10) a. ∀k1k2k3k4[∃k[Rck1kk2 ∧ R0kk3k4] → ∃k[Rck1k3k ∧ R0kk4k2]]
b. (A • B) •0 C � A • (B •0 C)

When reasoning with such statements certain monotonicity properties are all-
important. It is easy to verify that the following hold.

(11) A � A′ entails ♦m A � ♦m A′
A � A′ entails �m A � �m A′
A � A′ entails A •m B � A′ •m B
B � B ′ entails A •m B � A •m B ′
A � A′ entails A
 B � A′
 B
B � B ′ entails A
 B � A
 B ′

We now have a νt domain with Boolean and modal operators, a notion of conse-
quence (inclusion), the means to restrict the class of models with the help of postulates,
and certain monotonicity properties. Enough to get some work done; let the multimodal
game begin.

3.1 Trees and Strings

It is the business of a grammar to connect strings with their meanings and we shall have
an operator ◦ that is directly defined in terms of strings. Its underlying accessibility
relation R◦ can be viewed as a partial concatenation operation on the ν domain. If
R◦kk1k2 is read as ‘k is the result of concatenating k1 and k2’, the following axioms
(in which 1 is a type ν constant) are natural.

(12) a. ∀kk′k1k2[[R◦kk1k2 ∧ R◦k′k1k2] → k = k′]
b. ∀kk1k2k3[∃k′[R◦kk′k3 ∧ R◦k′k1k2] ↔ [∃k′[R◦kk1k′ ∧ R◦k′k2k3]]
c. ∀kk′[R◦kk′1 → k = k′]
d. ∀kk′[R◦k1k′ → k = k′]

The first of these is a functionality requirement; the second expresses associativity
of concatenation; and the last two say that 1 is a unity element, so that the operation
becomes a monoid on the subset of the ν domain for which it is defined.

Note that it need not be the case that all objects in the type ν domain can be concat-
enated. Some objects may be tree nodes or other ‘resources’ for which concatenation
is unnatural. Define e to be λk.k = 1. Then the following are direct consequences of
(12).

(13) a. (A ◦ B) ◦ C = A ◦ (B ◦ C)

b. A ◦ e � A
c. e ◦ A � A

123

276 R. Muskens

Note that a νt term such as Aad ◦ kust ◦ Marie can be predicated of a string k if and
only if k is the concatenation of three substrings k1, k2 and k3 such that Aad(k1) (i.e.
k1 is a token of the string type Aad), kust(k2), and Marie(k3).

A natural relation connecting trees and strings is that of yield: string k1 is the yield
of tree k2 if k1 may be read off from the leaves of k2 in the usual way. We will take it that
Ry represents a slight generalization of this relation, with Ryk1k2 standing for ‘string
k1 is the yield of tree k2 or k1 and k2 are both strings and k1 = k2’. The following
postulates are acceptable.14

(14) ♦y(A • B) � ♦y A ◦ ♦y B TS1
♦y A � A, if A ∈ Lex or A = e TS2
♦y♦y A � ♦y A TS3

The first of these, TS1 (TS stands for ‘Tree-String’), says that the yield of A • B is the
yield of A concatenated with that of B. TS2 says that the yield of a lexical expression,
or the expression e, is just that expression itself15 and TS3, the usual 4 axiom for ♦y ,
states that the yield of the yield of a tree or string is just its yield.

Now consider the term in (15).

(15) ♦y(Aad • (denkt • ♦y(dat • (Marie • slaapt))))

The following derivation, which uses the monotonicity properties cited in (11) several
times, shows that (15) � (17).

(16) ♦y(Aad • (denkt • ♦y(dat • (Marie • slaapt))))
♦yAad ◦ ♦y(denkt • ♦y(dat • (Marie • slaapt))) TS1
Aad ◦ ♦y(denkt • ♦y(dat • (Marie • slaapt))) TS2
Aad ◦ ♦ydenkt ◦ ♦y♦y(dat • (Marie • slaapt)) TS1
Aad ◦ denkt ◦ ♦y♦y(dat • (Marie • slaapt)) TS2
Aad ◦ denkt ◦ ♦y(dat • (Marie • slaapt)) TS3
Aad ◦ denkt ◦ dat ◦ Marie ◦ slaapt etc.

(17) Aad ◦ denkt ◦ dat ◦ Marie ◦ slaapt

The type νt term in (17) is built from elements of Lex with the help of ◦ alone. Let
us call such terms ◦-terms. Suppose that, given some two-dimensional lexicon with
a syntactic component in the first dimension and semantics in the second, 〈S1, S2〉
is a generated sign and that, given a fixed set of postulates, S1 � S′

1 is valid. Then
〈S′

1, S2〉 is called a derivable sign. A sign 〈S1, S2〉 such that S1 is a ◦-term will be called
a string-meaning sign. We are especially interested in the derivable string-meaning
signs. A string-meaning sign hypothesizes a direct relation between a certain string
and one of its possible semantic readings and the set of derivable string-meaning signs
that is obtained from any given lexicon constitutes a theory of the string-meaning
relation found in language.

14 From here on we leave it to the reader to formulate underlying postulates in terms of accessibility
relations.
15 Here the set Lex is defined as consisting of all those νt terms that appear as sans serif constants in our
lexicon in Table 4 below, minus vc and fin, which stand for features.

123

Separating Syntax and Combinatorics 277

Table 4 The Lexicon

Abbr. Abstract type 〈syntax, semantics〉
aad np 〈Aad, a〉
ben np 〈Ben, b〉
marie np 〈Marie, m〉
student n 〈student, student〉
docent n 〈docent, teacher〉
elke n((np ip)ip) 〈λtλT .♦sc(T �sc(elke • t)), λP ′ Pλi∀x[P ′xi → Pxi]〉
een n((np ip)ip) 〈λtλT .T (een • t), λP ′ Pλi∃x[P ′xi ∧ Pxi]〉
slaapt np ip 〈λt.(t • slaaptvc,fin), sleep〉
slapen inf 〈slapenvc, sleep〉
kust np(np ip) 〈λtλt ′.(t ′ • (t • kustvc,fin)), λxy.kiss yx〉
kussen np inf 〈λt.(t • kussenvc), λxy.kiss yx〉
helpt inf(np(np ip)) 〈λt t ′t ′′.(t ′′ • (t ′ • (t •0 helptvc,fin))), help〉
helpen inf(np inf) 〈λt t ′.(t ′ • (t •0 helpenvc)), help〉
mag inf(np ip) 〈λt t ′.(t ′ • (t •0 magvc,fin)), λPλxλi.∃ j[M ji ∧ Px j]〉
mogen inf inf 〈λt.(t •0 mogenvc), λPλxλi.∃ j[M ji ∧ Px j]〉
moet inf(np ip) 〈λt t ′.(t ′ • (t •0 moetvc,fin)), λPλxλi.∀ j[M ji → Px j]〉
moeten inf inf 〈λt.(t •0 moetenvc), λPλxλi.∀ j[M ji → Px j]〉
kan inf(np ip) 〈λt t ′.(t ′ • (t •0 kanvc,fin)), λPλxλi.∃ j[C ji ∧ Px j]〉
kunnen inf inf 〈λt.(t •0 kunnenvc), λPλxλi.∃ j[C ji ∧ Px j]〉
wil inf(np ip) 〈λt t ′.(t ′ • (t •0 wilvc,fin)), λPλxλi.∀ j[W x ji → Px j]〉
willen inf inf 〈λt.(t •0 willenvc), λPλxλi.∀ j[W x ji → Px j]〉
denkt cp(np ip) 〈λt t ′.(t ′ • (denktvc,fin • ♦y t)), λpλxλi.∀ j[Bx ji → pj]〉
denken cp inf 〈λt.(denkenvc • ♦y t), λpλxλi.∀ j[Bx ji → pj]〉
dat ip cp 〈λt.(dat • t), λp.p〉
assert ip s 〈λt.♦y♦2t, λp.pw0〉
? ip qp 〈λt.♦y♦1t, λpλi.pi ↔ pw0〉

Let us give an example. Suppose that a lexicon is given which makes (18) a gener-
ated sign16 and also suppose that the postulates in (14) are in force.

(18) 〈♦y(Aad • (denkt • ♦y(dat • (Marie • slaapt)))),∀ j[Bajw0 → sleep mj]〉
(19) 〈Aad ◦ denkt ◦ dat ◦ Marie ◦ slaapt,∀ j[Bajw0 → sleep mj]〉

Then the derivation in (16) shows that (19) is a derivable string-meaning sign. It
establishes a connection between the Dutch sentence Aad denkt dat Marie slaapt
(‘Aad thinks that Marie is asleep’) and the semantic term ∀ j[Bajw0 → sleep mj],
which states that Marie is asleep in all worlds j that are belief options (B) for Aad (a)
in the actual world (w0).

Our focus on derivable string-meaning signs brings with it a special interest in der-
ivations such as the one in (16) in which the last line is a ◦-term. In such derivations
it is our task to get rid of all modal operators except ◦. With only the TS postulates
of (14) in force this task is trivial, but more modal operators and more interaction
postulates may bring more life into the game, as we shall see below.

16 This is not the case for our lexicon in Table 4, which turns (18) into a derivable sign, not a generated
sign.

123

278 R. Muskens

Table 3 Concretizations of abstract types

Abstract type Syntax Semantics Abstract type Syntax Semantics

s νt t inf νt e(st)
qp νt st np νt e
cp νt st n νt e(st)
ip νt st

3.2 Going Dutch

In Table 4 a lexicon for a fragment of Dutch is given that will be explained in the
present section. We will also give interaction postulates for some of the modalities
found in this lexicon. As the reader will already have noticed, a repository of basic
abstract types slightly larger than the one present in Table 1 is in use now. The names
of these abstract types are self-explanatory, except perhaps qp, which is the category
of questions (here: yes/no questions). Table 3 gives concretizations of these types in
the syntactic and semantic dimensions.17

The third column in Table 4 gives 〈syntax, semantics〉 pairs, as before. For conve-
nience we abbreviate these with a mnemonic name in the first column, so e.g. aad is
short for 〈Aad, a〉. This in turn enables us to write derived signs such as (20) that can
then be worked out in each dimension. For example, (20) turns out to be identical to
the pair 〈(21a), (21b)〉.

(20) ?((eendocent)λζ.(eenstudent)(mag(kussen ζ)))

(21) a. ♦y♦1((een • student) • (((een • docent) • kussenvc) •0 magvc,fin))

b. λi.[∃y[teacher yi ∧ ∃z[student zi ∧ ∃ j[M ji ∧ kiss zy j]]] ↔
∃y[teacher yw0 ∧ ∃z[student zw0 ∧ ∃ j[M jw0 ∧ kiss zy j]]]]

How (21a) connects to the Dutch question Mag een student een docent kussen? (‘May
a student kiss a teacher?’) and why (21b) is the Groenendijk-Stokhof semantics for
that question (Groenendijk and Stokhof 1984) will be seen shortly. For the moment
let us just mention some of the modal operators and conventions used in (21a) and in
the rest of the lexicon. The operators •, ♦y and •0 (Oehrle’s ‘head adjunction’) we
have met before. In (21a) ♦1 is new and is used to enforce placement of the finite verb
in verb initial position, while vc and fin are terms of type νt that will act as features.
We write AB1,...,Bn for A
 B1
 . . .
 Bn if B1, . . . , Bn are such features, so that
magvc,fin is short for mag
 vc
 fin. Other modal operators that can be found in the
syntactic dimension of the lexicon are ♦2, which is related to placement of the verb
in second position, and the set �sc and ♦sc, used for checking scope boundaries, as
will be explained in 3.2.4 below.

17 As a minor point, note that type s now goes to t in the semantic dimension, not to st as in the previous
set-up. See the discussion of the assert sign below.

123

Separating Syntax and Combinatorics 279

3.2.1 The Semantic Dimension

Semantics is not the primary focus of this paper, but we have endeavored to provide
the signs generated by our lexicon with a reasonable second dimension. The set-up
largely follows that of Muskens (1995). In Table 4 predicates such as student (of type
e(st)) and kiss (of type e(e(st))) have an argument place of type s in addition to the
usual type e argument places they need. A term such as student m therefore is of type
st and intuitively denotes a set of possible worlds, the set of worlds in which Marie
is a student. It is only when this term is applied to a term of type s, e.g. the constant
w0, which stands for the actual world, that we get a term of type t ; student mw0
intuitively meaning that Marie is a student (in the actual world). Quantifiers also take
the extra argument place into account. The modal verbs in Table 4 get a semantics that
can be read as a transcription of Kripke style modalities, much in the way in which
syntactic operators •m and ♦m were defined using transcription of Kripke modalities.
For example, the semantics of mag, λPλxλi.∃ j[M ji ∧ Px j], leads to a translation of
Aad mag slapen (‘Aad may sleep’) of the form ∃ j[M jw0 ∧ sleep aj], which expresses
that in some world j , M-accessible from the actual world w0, Aad is sleeping. Other
modal verbs are provided with a similar semantics.18 The attitude verb denken (‘think’)
gets a classical Hintikka-like analysis that was already encountered in (18) and (19);
the analysis of willen (‘want’) is comparable, with a buletic accessibility relation W
instead of the doxastic B.19

Note that in our lexicon the actual world w0 only comes into play in the semantics
of the special operators assert and ?. The first of these turns an ip into a declar-
ative sentence, the second turns an ip into a (yes/no) question. While the semantics
of assert just applies the semantics of its argument to w0, ? is more interesting
and embodies (the simplest part of) the theory of questions developed in Groenendijk
and Stokhof (1984). In short, this theory holds that the extension of a yes/no question
such as Is Marie asleep? is the set of worlds in which Marie is asleep if she is indeed
asleep and the complement of this set otherwise. Similarly, if w0 is such that some
student may kiss some teacher, then (21b) will denote the set of worlds in which that
is also the case, otherwise it will denote the complement of this set. In both cases the
denotation is the intension of the correct (and complete) answer.20

18 In the present limited set-up we have ignored the context-dependency of modals such as mag, moet and
kan. See Kratzer (1977) for an argument why such context-dependency is important and how it can be taken
into account.
19 This is a very rough approximation of the semantics of willen. For reasons why it is less than adequate,
see Heim (1992). Heim gives a nice account of buletic modalities in terms of conditionals, basing herself
upon insights in Stalnaker (1984). Incorporating such an account here would take us too far afield, however.
20 One place in the lexicon were we have resorted to an obvious stop-gap is in the semantics of helpen
in Table 4. The meaning of this verb is just given as a constant of the right type, (e(st))(e(e(st))), and no
attempt at a more fine-grained account of its lexical semantics has been made. This is because a reasonable
account would certainly involve the introduction of eventualities, which is no doubt feasible but would
complicate the theory in a way that is not compatible with its illustrative purpose.

123

280 R. Muskens

3.2.2 Verb Clusters

Let us move to the syntactic, phenogrammatical, component and give an account of
verb clustering in Dutch that is very much inspired by Oehrle (1998) and Moortgat
(1999). A verb cluster ‘package’ of inclusion postulates as in (22) is adopted.

(22) (A • B) •0 C � A • (B •0 C) VC1
(A • B) •0 C � (A •0 C) • B VC2
Avc •0 Bvc � (B • A)vc VC3

The idea here is that a node marked vc always dominates a phrasal tree with only verbs
at its leaves and that the only way to get rid of •0 involves clustering verbs with the
help of VC3. Postulates VC1 and VC2 can be used to rearrange the bracketing so that
VC3 may apply. As an example, consider the ip (23a), whose syntactic dimension is
given in (23b).

(23) a. ((wil((helpen(kussen marie))ben))aad)
b. (Aad • ((Ben • ((Marie • kussenvc) •0 helpenvc)) •0 wilvc,fin))

The only way to get rid of the two occurrences of •0 in (23b) is to rearrange brackets
so that the three verbs form a subtree and then to percolate vc using VC3. This is
carried out in (24). (In the last line of (24) the feature vc gets dropped by the Boolean
property A
 B � A.21)

(24) (Aad • ((Ben • ((Marie • kussenvc) •0 helpenvc)) •0 wilvc,fin))

(Aad • ((Ben • (Marie • (kussenvc •0 helpenvc))) •0 wilvc,fin)) VC1
(Aad • (Ben • ((Marie • (kussenvc •0 helpenvc)) •0 wilvc,fin))) VC1
(Aad • (Ben • (Marie • ((kussenvc •0 helpenvc) •0 wilvc,fin)))) VC1
(Aad • (Ben • (Marie • ((helpen • kussen)vc •0 wilvc,fin)))) VC3
(Aad • (Ben • (Marie • (wilfin • (helpen • kussen))vc))) VC3
(Aad • (Ben • (Marie • (wilfin • (helpen • kussen))))) Boole

Since VC3 also reorders verbs, the typical cross-serial dependency pattern of verbal
complexes in Dutch subordinate clauses results (compare (23a) with the last line of
(24)). For an example of the use of VC2, in which complements are ‘extraposed’ to
the right, consider (25a) and its syntactic dimension (25b). The short derivation (26)
extraposes the sentential complement of denken and the subordinate clause Aad mag
denken dat Ben slaapt (‘Aad may think that Ben is sleeping’) appears.

(25) a. ((mag(denken(dat(slaapt ben))))aad)
b. (Aad • ((denkenvc • ♦y(dat • (Ben • slaaptvc,fin))) •0 magvc,fin))

(26) (Aad • ((denkenvc • ♦y(dat • (Ben • slaaptvc,fin))) •0 magvc,fin))

(Aad • ((denkenvc •0 magvc,fin) • ♦y(dat • (Ben • slaaptvc,fin)))) VC2

21 Note that the Boolean property allows us to get rid of the features vc and fin, but that using a similar
property to discard elements of Lex in general will not lead to rewriting to a ◦-term. Remember that the
latter were defined as those terms that could be obtained from terms in Lex with the help of ◦ only and that
vc and fin (and other feature terms in a suitable extension of the fragment) are not in Lex.

123

Separating Syntax and Combinatorics 281

(Aad • ((magfin • denken)vc • ♦y(dat • (Ben • slaaptvc,fin)))) VC3
(Aad • ((magfin • denken) •♦y(dat • (Ben • slaapt)))) Boole

The last lines in (24) and (26) are not in the required ◦-term form yet, but it will
be possible to obtain such forms if these structures are embedded into questions or
declarative sentences. Let us move to a treatment of the latter.

3.2.3 Verb Initial, Verb Second

It is well-known that Dutch places the finite verb in second position in declarative sen-
tences while it places it in initial position in questions. This can be modeled if finite
verbs are allowed to leave their place and raise, as in the following ‘raise’ package.

(27) Afin � e •↑ Afin ↑ 1
A • (B •↑ C) � (A • B) •↑ C ↑ 2
(A •↑ B) • C � (A • C) •↑ B ↑ 3

Postulate ↑ 1 allows a finite verb to go into a ‘raise mode’ •↑, leaving an empty element
behind, while the postulates ↑ 2 and ↑ 3 implement the idea of raising. Clearly, the
raising must also be brought to a halt again, for which the following postulates can be
used. V1 realizes the verb initial position, V2 verb second.

(28) ♦1(A •↑ Bfin) � B • A V1
♦2((A • B) •↑ Cfin) � A • (C • B) V2

Let us see how this works. In (30) the syntactic dimension (29b) of (29a) is taken and
a term with the finite verb in second position is derived from it.

(29) a. (assert((wil((helpen(kussen marie))ben))aad))
b. ♦y♦2(Aad • ((Ben • ((Marie • kussenvc) •0 helpenvc)) •0 wilvc,fin))

(30) ♦y♦2(Aad • ((Ben • ((Marie • kussenvc) •0 helpenvc)) •0 wilvc,fin))

♦y♦2(Aad • (Ben • (Marie • (wilfin • (helpen • kussen))))) (24)
♦y♦2(Aad • (Ben • (Marie • ((e •↑ wilfin) • (helpen • kussen))))) ↑ 1
♦y♦2(Aad • (Ben • (Marie • ((e • (helpen • kussen)) •↑ wilfin)))) ↑ 3
♦y♦2(Aad • (Ben • ((Marie • (e • (helpen • kussen))) •↑ wilfin))) ↑ 2
♦y♦2(Aad • ((Ben • (Marie • (e • (helpen • kussen)))) •↑ wilfin)) ↑ 2
♦y♦2((Aad • (Ben • (Marie • (e • (helpen • kussen))))) •↑ wilfin) ↑ 2
♦y(Aad • (wil • (Ben • (Marie • (e • (helpen • kussen)))))) V2

In the example a ♦2 operator was placed by the assert operator. Since this oper-
ator must be gotten rid of and since the only way in which we can get rid of it is by the
use of V2, the finite verb wil must enter ‘raising mode’. This is done by the application
of ↑ 1. A series of applications of ↑ 2 and ↑ 3 then percolates the verb upwards until
the structural conditions for application of V2 are met. After application of V2 the
resulting term can easily be brought into ◦-term form using the TS package. In (31)
we also use the fact that e is a unit for ◦ in order to remove this element.

(31) ♦y(Aad • (wil • (Ben • (Marie • (e • (helpen • kussen))))))

123

282 R. Muskens

Aad ◦ wil ◦ Ben ◦ Marie ◦ e ◦ helpen ◦ kussen TS
Aad ◦ wil ◦ Ben ◦ Marie ◦ helpen ◦ kussen (13)

For an illustration of the V1 rule, a ◦-term could be derived from (21a), a task we leave
to the reader.

3.2.4 Reining in Quantifier Scope

The tectogrammatical part of Lambda Grammars is extremely flexible and initially
allows, for example, quantification into arbitrary contexts. One way of reining this in
might be to put extra requirements on tectogrammatic combination, to recognize that
signs can be classified according to their syntactic and semantic properties and to use
such classifications to constrain pointwise application and abstraction. We shall not
follow this path here but wish to point out that for blocking certain scopings there
are also possibilities in the syntactic dimension. This is illustrated in the lexical entry
for elke (‘each’), which comes with a combination of a diamond ♦sc and a box �sc

that will act as a ‘lock and key’ pair, much as in other forms of type logical grammar
(Moortgat 1997). In the syntactic term the box will be placed immediately before
the noun phrase, while the position of the diamond corresponds to the place where
‘quantifying-in’ has taken place.

(32) a. assert((elkestudent)λζ.((eendocent)(kust ζ)))

b. ♦y♦2♦sc((een • docent) • (�sc(elke • student) • kustvc,fin))

c. ∀x[student xw0 → ∃y[teacher yw0 ∧ kiss yxw0]]
We see this illustrated in (32), where (32b) and (32c) are the syntactic and the semantic
dimensions of (32a) respectively. The ♦sc diamond in (32b) indicates the scope of the
noun phrase (elke • student), which is marked with a corresponding �sc. As things
stand, (32b) is not reducible to a ◦-term, but this will change as soon as the �sc box
is allowed to travel upward. The following scope package makes such upward travel
possible.

(33) �sc A • B � �sc(A • B) SC1
A • �sc B � �sc(A • B) SC2

In (34) it is shown how two applications of SC bring the �sc box adjacent to its cor-
responding diamond, after which the general ♦m�m A � A rule may apply and both
box and diamond can be gotten rid of. The rest of the derivation can proceed in a way
now familiar.

(34) ♦y♦2♦sc((een • docent) • (�sc(elke • student) • kustvc,fin))

♦y♦2♦sc((een • docent) • �sc((elke • student) • kustvc,fin)) SC1
♦y♦2♦sc�sc((een • docent) • ((elke • student) • kustvc,fin)) SC2
♦y♦2((een • docent) • ((elke • student) • kustvc,fin)) (9)

...

een ◦ docent ◦ kust ◦ elke ◦ student

123

Separating Syntax and Combinatorics 283

Note that the package in (33) only permits a �sc box to percolate upwards through
an uninterrupted sequence of •s. This means that for a �sc to reach a ♦sc there must
be an uninterrupted path of conventional phrasal combinations between them and the
mechanism in fact functions as a check as to whether such a path exists.

Such paths are not always in existence. In fact, we have used the ♦y operator to
obstruct communication across clause boundaries. In (35a) an attempt is made to uni-
versally quantify into a subordinate clause. (35a) has a perfectly acceptable semantic
dimension, but in phenogrammar any attempt at deriving a ◦-term must fail. The ♦y

that was put on the subordinate clause by the verb denkt intervenes between �sc and
♦sc and neither can be dropped from the derivation. The treatment is reminiscent of
the blocking procedure in Morrill (1994).

(35) a. assert((elkedocent)λζ.(eenstudent)(denkt(dat(kust
marie ζ))))

b. ♦y♦2♦sc((een • student) •
(denktvc,fin • ♦y(dat • (�sc(elke • docent) • (Marie • kustvc,fin)))))

4 Conclusion

In this paper we have argued that a separation between combinatorics and syntax, or,
in Curry’s words, tectogrammar and phenogrammar, can considerably simplify the
architecture of modern categorial grammar, and in particular its multimodal variant.
Multimodal categorial grammar can be split into a categorial part, whose logic we have
assumed to be the logic of the linear combinators here, and a multimodal part, whose
logic depends on the properties that are stipulated to hold for a collection of under-
lying accessibility relations. An important difference between the two levels is that
semantics is dependent upon tectogrammar and not upon the phenogrammatic level.
All re-ordering and re-grouping of syntactic material can take place in the dimen-
sion of phenogrammar and will be independent from what happens in the semantic
dimension.

How should the division of labour between the two levels be organized? A reason-
able rule of thumb seems to be that, since the abstract level is what form and meaning
have in common, in order to obtain greatest modularity it should only contain that
which is common to form and meaning. This rules out the option of dealing with word
order at the tectolevel, for example, and in general this modularity assumption will
drive us towards a rather abstract, universal, and minimalistic conception of this level.
But some meaningful questions about what should go where remain. For example,
while we have assumed here that the resource sensitivity of language is common to
form and meaning and therefore tecto (modeled with the help of a linearity constraint
on lambda terms), there is some room to doubt whether this is correct. Conceivably
resource sensitivity should go the same way as word order and be modeled in the
pheno dimension. Sharing of variables is very common in semantics, after all. Other
considerations may go in the other direction and may enrich the tectolevel somewhat.
Ultimately the deciding factor is empirical, of course, and hinges on the question what
will give the simplest theory of the form-meaning relation in language.

123

284 R. Muskens

Acknowledgements I would like to thank the two anonymous referees for providing me with sets of
careful and detailed comments. Glyn Morrill also sent me some highly useful remarks.

References

Ajdukiewicz, K. (1935). Die syntaktische Konnexität. Studia Philosophica, 1, 1–27. English translation in
S. McCall (ed.), Polish logic, 1920–1939, Oxford, 1967, 207–231.

Bar-Hillel, Y. (1953). A Quasi-arithmetical Notation for Syntactic Description. Language, 29, 47–58.
van Benthem, J. (1986). Essays in logical semantics. Dordrecht: Reidel.
van Benthem, J. (1991). Language in action. Amsterdam: North-Holland.
Curry, H. (1961). Some logical aspects of grammatical structure. In R. O. Jakobson (Ed.), Structure of

language and its mathematical aspects, Vol. 12 of Symposia on applied mathematics (pp. 56–68). Prov-
idence: American Mathematical Society.

Dalrymple, M., J. Lamping, & V. Saraswat (1993). LFG Semantics via Constraints. In Proceedings of the
Sixth Meeting of the European ACL. European Chapter of the Association for Computational Linguistics.

de Groote, P. (2001). Towards abstract categorial grammars. In Association for Computational Linguistics,
39th Annual Meeting and 10th Conference of the European Chapter, Proceedings of the Conference
(pp. 148–155). Toulouse, France, ACL.

de Groote, P. (2002). Tree-adjoining grammars as abstract categorial grammars. In TAG+6, Proceedings of
the Sixth International Workshop on Tree Adjoining Grammars and Related Frameworks (pp. 145–150).

Dowty, D. (1982). Grammatical relations and montague grammar. In P. Jacobson & G. Pullum (Eds.), The
nature of syntactic representation (pp. 79–130). Dordrecht: Reidel.

Dowty, D. (1995). Toward a minimalist theory of syntactic structure. In H. Bunt & A. van Horck (Eds.),
Syntactic discontinuity (pp. 11–62). The Hague: Mouton. (Paper originally presented at a 1989 confer-
ence).

Groenendijk, J., & M. Stokhof (1984). Studies on the semantics of questions and the pragmatics of answers.
Ph.D. thesis, University of Amsterdam.

Heim, I. (1992). Presupposition projection and the semantics of attitude verbs. Journal of Semantics,
9, 183–221.

Johnson, M. (1991). Logic and feature structures. In Proceedings of the Twelfth International Joint Con-
ference on Artificial Intelligence. Sydney, Australia.

Kaplan, R., & J. Bresnan (1982). Lexical-functional grammar: A formal system for grammatical representa-
tion. In J. Bresnan (Ed.), The mental representation of grammatical relations (pp. 173–281). Cambridge,
MA: The MIT Press.

Kratzer, A. (1977). What “must” and “can” must and can mean. Linguistics and Philosophy, 1, 337–355.
Kurtonina, N. (1995). Frames and labels: A modal analysis of categorial inference. Ph.D. thesis, Institute

for Logic, Language and Computation, Amsterdam.
Lambek, J. (1958). The mathematics of sentence structure. American Mathematical Monthly, 65, 154–170.
Marcus, M., D. Hindle, & M. Fleck. (1983). D-theory: talking about talking about trees. In Proceedings of

the 21st ACL (pp. 129–136).
Moortgat, M. (1997). Categorial type logics. In J. v. Benthem & A. t. Meulen (Eds.), Handbook of Logic

and Language (pp. 93–177). Elsevier.
Moortgat, M. (1999). Meaningful patterns. In JFAK, essays dedicated to Johan van Benthem on the occasion

of his 50th birthday. Vossiuspers/Amsterdam University Press. CD-Rom.
Moortgat, M., & R. Oehrle (1993). Adjacency, dependency and order. In P. Dekker & M. Stokhof (Eds.),

Proceedings of the 9th Amsterdam Colloquium (pp. 447–466). Amsterdam: ILLC/Department of Phi-
losophy, University of Amsterdam.

Morrill, G. (1994). Type logical grammar: Categorial logic of signs. Dordrecht: Kluwer.
Muskens, R. (1995). Meaning and partiality. Stanford: CSLI.
Muskens, R. (2001a). Categorial grammar and lexical-functional grammar. In M. Butt & T. H. King (Eds.),

Proceedings of the LFG01 Conference, University of Hong Kong (pp. 259–279). Stanford CA. CSLI
Publications. http://cslipublications.stanford.edu/LFG/6/lfg01.html.

Muskens, R. (2001b). Lambda grammars and the syntax-semantics interface. In R. van Rooy & M. Stokhof
(Eds.), Proceedings of the Thirteenth Amsterdam Colloquium (pp. 150–155). Amsterdam.

Muskens, R. (2003). Language, lambdas, and logic. In G.-J. Kruijff & R. Oehrle (Eds.), Resource sensitivity
in binding and anaphora, Studies in linguistics and philosophy (pp. 23–54). Kluwer.

123

http://cslipublications.stanford.edu/LFG/6/lfg01.html

Separating Syntax and Combinatorics 285

Oehrle, R. (1988). Multi-dimensional compositional functions as a basis for grammatical analysis. In
R. Oehrle, E. Bach, & D. Wheeler (Eds.), Categorial grammars and natural language structures
(pp. 349–389). Dordrecht: Reidel.

Oehrle, R. (1994). Term-labeled categorial type systems. Linguistics and Philosophy, 17, 633–678.
Oehrle, R. (1995). Some 3-dimensional systems of labelled deduction. Bulletin of the IGPL, 3, 429–448.
Oehrle, R. (1998). Multi-modal type-logical grammar. In R. Borsley & K. Borjars (Eds.), Non-transforma-

tional Syntax. Blackwell. to appear.
Stalnaker, R. (1984). Inquiry. Cambridge, MA: MIT Press.

123

	Separating Syntax and Combinatorics in Categorial Grammar
	Abstract
	Introduction
	Lambda Grammars
	The Formal Details
	Permutation and Medial Extraction
	Multimodality
	Trees and Strings
	Going Dutch
	The Semantic Dimension
	Verb Clusters
	Verb Initial, Verb Second
	Reining in Quantifier Scope
	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

