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Abstract

Standard possible worlds semantics has been known from the start
to have a problem with granularity: for a wide range of entailment
patterns, not enough meaning distinctions are available to make pre-
dictions consistent with robust intuitions. Though numerous solutions
have been proposed, often of great ingenuity and technical sophisti-
cation, none of these has gained widespread acceptance. As a result,
most semanticists have made a practical decision to work in a frame-
work known to have dubious foundations and leave the foundational
problems to mathematical logicians. Here a new approach is proposed
which may be simple enough and conservative enough to be practical
for working empirical and computational semanticists. More specifi-
cally, I show how the use of a higher-order logic with definable sub-
stypes leads to a novel and surprisingly straightforward solution of the
notorious granularity problem about natural-language (NL) meanings.
I also call attention to a hitherto unnoticed problem in standard ap-
proaches to NL semantics having to do with nonprincipal ultrafilters

and show why it does not arise under my proposal. The two main
technical innovations that make the proposal work are (1) axiomatiza-
tion of NL entailment as a preorder (as opposed to an order) on the
set of (primitive) propositions, and (2) definition of the set of worlds
as a certain subset of the powerset of the set of propositions. These in-
novations provide just the tools we need to develop a formally explicit
theory of hyperintensions2, mathematical models of Fregean senses
of a finer granularity than the familiar intensions (functions to exten-
sions from worlds, where the worlds in turn are theoretical primitives)
of mainstream Carnap/Montague-inspired NL semantics.

0. Introduction

Standard possible worlds semantics has been known from the start to have
a problem with granularity: for a wide range of entailment patterns, not
enough meaning distinctions are available to make predictions consistent
with robust intuitions. Though a great many solutions have been proposed,

1For advice and clarifying discussion, I am grateful to David Dowty, Chris Fox, Nissim
Francez, Paul Gilmore, Howard Gregory, Jim Lambek, Shalom Lappin, Drew Moshier,
Reinhard Muskens, Phil Scott, and Rich Thomason. Alas, it cannot be assumed that any
of these people accept my conclusions.

2The proposal repairs defects in an earlier effort to formulate a simply-typed hyperin-
tensional semantic theory (Fox et al. 2002).
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often of great ingenuity and technical sophistication, none of these has gained
widespread acceptance. As a result, most semanticists have made a practi-
cal decision to work in a framework known to have dubious foundations and
leave the foundational problems to mathematical logicians. In this paper,
a new approach is proposed which, I believe, is simple enough and con-
servative enough to be practical for working empirical and computational
semanticists. More specifically, I show how the use of a higher-order logic
with definable substypes leads to a novel and surprisingly straightforward
solution of the notorious granularity problem about natural-language (NL)
meanings. I also call attention to a hitherto unnoticed problem in standard
approaches to NL semantics having to do with nonprincipal ultrafilters and
show why it does not arise under my proposal. The two main technical
innovations that make the proposal work are (1) axiomatization of NL en-
tailment as a preorder (as opposed to an order) on the set of (primitive)
propositions, and (2) definition of the set of worlds as a certain subset of
the powerset of the set of propositions.

To formalize my semantic theory, I work within a version of higher-
order logic similar in its essentials (though not in the details of its presen-
tation) to the boolean version of Lambek and Scott’s (1986) higher-order
categorical logic. This logic differs from the more higher-order logics
in the Church-Henkin-Montague tradition familiar to linguists in providing
for lambda-definable subtyping, which plays a central role in my pro-
posal. Set-theoretic models of theories in this kind of logic are very much
like the familiar Henkin-style models, but augmented with cartesian prod-
ucts and lambda-definable subsets. The simplicity and familiarity of such
models makes this kind of logic accessible and practical for working linguis-
tic semanticists. However, there are more general categorical models (local
boolean toposes), which make allowance for the possibility of uninhabited
types (i.e. types other than the empty (counit) type for which there are
no closed terms) should the need arise; and the boolean condition is eas-
ily dropped should one wish to experiment with intuitionistic theories of
linguistic meaning.3

The paper is organized as follows. In section 1, I briefly review the main
features of standard possible-worlds-based NL semantic theory, distinguish-
ing those which I wish to retain to those that I will target for elimination.
Section 2 reviews the well-known granularity problem, with special attention
to its two most notorious subproblems, Frege’s Hesperus-Phosphorus puzzle
and the antisymmetry of entailment. Section 3 is an introduction to the

3Hereafter, occasional categorical considerations will mostly be relegated to footnotes.
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general philosophical approach underlying my technical proposal, viz. that
propositions are primitives and worlds constructed from them, not the other
way around as is usually assumed. Section 4 introduces the second, and
heretofore evidently unrecognized, problem of nonprincipal ultrafilters. In
section 5, working in the metalanguage, I provide an algebraic theory of
propositions that solves both the granularity problem and the nonprincipal
ultrafilters problem. The remaining sections develop the logic within which
I will formalize my theory, lay out the theory itself, and show by examples
how it connects with—and serves as an adequate replacement for—standard
posible-worlds semantics. Section 6 is an overview of the typed lambda cal-
culus underlying the logic. Section 7 extends the typed lambda calculus to
a higher-order logic. Section 8 develops the semantic theory and illustrates
its application. And section 9 summarizes the main features of my proposal.

1 Trouble in Paradise

In NL semantics, at least in its static (as opposed to dynamic) aspects,
there is a widely accepted, generally Fregean, story about the basics. It
runs something like this:

(1) The Peaceable Kingdom of NL Semantics

a. Meaning is a function from NL expressions4 to things called senses.

b. Declarative sentence meanings are called propositions.

c. Meanings of names are called (after Carnap) individual concepts.

d. A sense has an extension, and what that extension is in general
depends on contingent facts (how things are).

e. The extension of an expression’s meaning is called its reference.

f. The things that can be the extension of a proposition (and therefore,
the reference of a declarative sentence) are called truth values; and
there are exactly two of them, called true and false.

g. One proposition is said to entail another just in case, no matter
how things are, if its extension is true, then so is the extension of
the other.

4Here, as throughout, I write ‘expression’ as a shorthand for ‘contextualized utterance
of an expression’, and likewise, mutatis mutandis, for ‘declarative sentence’, ‘name’, and
other terms referring to categories of linguistic expressions.
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h. It follows from the preceding that entailment is a preorder (reflexive
transitive relation) on propositions, and so mutual entailment is an
equivalence relation.

i. One declarative sentence is said to follow from another iff the
proposition it expresses is entailed by the proposition expressed by
the other.

j. The things that can be extensions of individual concepts (and there-
fore, the references of names) are called entities.

k. The individual concepts typically expressed by names are rigid, in
the sense that their extensions are independent of how things are.

Now the mainstream training in NL semantics includes an indoctrination
into a certain classical higher-order formalization of this story, one which
was mostly synthesized by Montague in the late 1960’s out of ideas drawn
from Carnap, Kripke, Church, and Henkin, and subsequently streamlined
by Bennett, Gallin, Dowty and others in the 1970’s and early 1980’s. For
expository purposes, I will present what I take to be the main components
of this formalization in two groups: those which I do not wish to take issue
with (at least not here), and those which I analyze as the source of the
problems. First, those aspects of the Standard Formalization that will be
preserved in my proposal:

(2) The Standard Formalization: Aspects Worth Keeping

One theorizes about senses and their extensions in a higher-order logic
similar to Henkin’s (1950) formulation of Church’s (1940) simple theory
of types:

a. A typed (βη-)lambda calculus with a type Bool for formulas and a
basic type Ent for entities;

b. equality constants =A at all types;

c. the lambda-calculus term equivalences (conversion) are reinterpreted
as object-language axioms about the =A;

d. the usual logical constants are definable à la Tarski/Quine in terms
of the =A and λ.

e. Following Henkin (1950), one adopts the axiom (explicitly rejected
by Church) of Boolean Extensionality:

∀x∈Bool∀y∈Bool[(x ↔ y) → (x = y)]
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f. The resulting logic is (a) two-valued; and (b) sound and complete
with respect to (unrestricted5) Henkin models.

g. As Gallin (1975), there is a type World (possible worlds). This
improves on Montague’s IL (complete proof theory, no up and down
operators).

h. Meanings are assigned to expressions by translating them into the
logic and then interpreting the logic.

i. Thus meanings, their extensions, and worlds all live in the same
model, and one can write nonlogical axioms (meaning postulates)
about how these things are related to each other,

j. In any model, the set of propositions is equipped with a natural
boolean structure in terms of which entailment and the meanings
of NL “logical words” can be represented.

By contrast, I identify the following features of the Standard Formaliza-
tion as the problematic ones to be weeded out:

(3) The Standard Formalization: Aspects to Eliminate

a. The type World is basic, i.e. worlds are primitives (cf. Kripke 1963).

b. Meanings are intensions, i.e. functions from the set of worlds6

i. Name meanings (individual concepts):

• are functions from worlds to entities (World ⇒ Ent); and so

• if one assumes the rigidity of names (Kripke 1972), then
co-referring names have the same meaning.

ii. Declarative sentence meanings (propositions):

• are sets of worlds (World ⇒ Bool);

• entailment is the subset-inclusion ordering;

• the meanings of and, or, and if . . . then are, respectively,
intersection, union, and relative complement.

• In particular, entailment is antisymmetric. Thus:

• equivalent propositions are identical; and so

• sentences that follow from each other have the same mean-
ing.

5In the sense that the interpretations of the functional types only have to contain
enough functions to interpret all closed terms.

6Or at least are equivalent to such functions, up to a permutation of their arguments.
See, e.g. Carpenter 1997.
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I will show that eliminating these undesirable aspects of mainstream seman-
tics is not only easy, but also that it does no harm; nothing that linguistics
actually uses semantic theory for depends on these features. To put it an-
other way: they do not really model anything about linguistic meanings,
but are mere artifacts of the formalization.

With the scene set, we can now turn to the first of the two problems
with the Standard Formalization that we have set our sights on: there are
not enough intensions.

2 The Granularity Problem

2.1 Hesperus and Phosphorus

Starting at the beginning (both historically and with respect to the type
hierarchy), the Standard Formalization does not have enough individual
concepts. As Frege (1892) realized, having the same reference is not a suffi-
cient condition to allow replacement of one name for another in a sentence
while preserving truth. For example:

(4) Hesperus and Phosphorus

a. (The ancients realized that) Hesperus was Hesperus.

b. (The ancients realized that) Hesperus was Phosphorus.

(5) Frege’s analysis of Hesperus and Phosphorus:

a. The sense expressed by an expression depends on the senses ex-
pressed by its parts.7

b. Although they have the same reference, the names Hesperus and
Phosphorus express different senses.

c. Hence the sentences in (4) express different propositions, so it is
unsurprising that the ancients believed one but not the other.

In essence Frege’s view was simply that the sense expressed by a sentence
is determined by the senses expressed by its parts. Even though Hesperus
and Phosphorus have the same extension—viz. the planet Venus—they are
distinct senses, and therefore the propositions expressed by (3)a and (3)b
are distinct as well. This was not a problem for Frege; it simply provided

7This is half of what is usually called Fregean Compositionality. The other half is the
analogous statement about reference, which I take to be one of Frege’s missteps. The
proposal I am leading up to explicitly rejects it.
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one motivation among many for him to posit the ontological category of
senses.

In the Standard Formalization, the senses of the two names Hesperus and
Phosphorus are functions from worlds to entities, and at least one of these
worlds, the two functions have the same value, namely the planet Venus.
But if Kripke was right about the rigidity of names, then the two functions
must both be the constant function that maps each world to Venus. So
Hesperus and Phosphorus mean the same thing, a most unwelcome (and
un-Fregean) consequence.

(6) Hesperus and Phosphorus in the Standard Theory

a. The meanings of Hesperus and Phosphorus are functions from worlds
to entities.

b. Assuming rigidity of names (Kripke 1972), they are constant func-
tions.

c. At at least one world, both functions take the value Venus, and so
they are the same constant function.

d. So Hesperus and Phosphorus mean the same thing, and conse-
quently (pace Frege) the sentences in (4) express the same proposi-
tion.

2.2 Equivalent Propositions

As we noted, in the Standard Formalization, entailment is antisymmetric
and so equivalent propositions are identical. This is problematic because
there is a naive, robust intuition that declarative sentences can follow from
each other without meaning the same thing. This problem was noted at
least as early as 1944 by C.I. Lewis. His response was to say that the mean-
ing (in his terminology, analytic meaning) of an expression is not merely
an intension but something more fine-grained, in more contemporary par-
lance essentially a phrase-structure tree of the expression with associated
intensions for each constituent. Carnap’s (1947) notion of intensional iso-

morphism is just identity of analytic meaning in Lewis’s sense.8.
The Lewis-Carnap proposal was the starting point for the (ongoing)

tradition of so-called “structured meaning” approaches to the granularity

8But Lewis’s notion was limited in application to synthetic expressions, ones whose
reference depends how things are; Carnap dropped this restriction
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problem9. Almost as venerable is the tradition (initiated at least as early
as Church (1950)) of exposing the inadeqacies of such approaches. In the
intervening decades, a vast array of competing proposals have been made,
involving, inter alia, partial possible worlds, impossible worlds, moving to
an untyped lambda calculi, abandoning bivalence, abandoning one or more
of Gentzen’s structural rules, and abandoning Boolean Extensionality.

Some of these proposals are merely programmatic, with no explicit logic.
Some provide a logic but don’t quite manage to nail down the model the-
ory. Some don’t actually solve the problems they claim to solve. And the
mathematical sophistication of some puts them beyond the reach of work-
ing semanticists who are not mathematical logicians but want a framework
they can understand and use for linguistic analysis. Limitations of space
preclude discussion of competing proposals here; for surveys, see Fox and
Lappin (2005) and Pollard (in preparation). Here, I will just discuss briefly
two examples of problems that equivalent propositions pose for the Standard
Formalization, and then lead up to my own proposal.

(7) Woodchucks and Groundhogs

a. Phil is a woodchuck.

b. Phil is a groundhog.

(8) Woodchucks and Groundhogs in the Standard Theory

a. Standard-Theory Meaning Postulate10:

∀w∈World∀i∈Ind(woodchuck(i)(w) ↔ groundhog(i)(w))

b. By HOL, woodchuck = groundhog

c. Therefore (i) and (ii) express the same proposition:

i. Jim believes Phil is a groundhog.

ii. Jim believes Phil is a woodchuck.

9These in turn were a refinement of “inscriptional” approaches that treat objects of be-
lief, knowledge, etc. not as propositions, but rather as linguistic expressions, or something
syntactic associated with them, e.g. graphical representations or Gödel numbers.

10Under fairly standard assumptions, the verb phrase meanings here are functions from
individual concepts to propositions (type Ind ⇒ Prop = Ind ⇒ (World ⇒ Bool)). Uncur-
rying, permuting the arguments, and then currying shows this type to be equivalent (in
terms of the Curry-Howard type logic) to the intensional type World ⇒ (Ind ⇒ Bool),
i.e. the VP meanings amount to properties of individual concepts. In fact, they are more-
over extensional properties, in the sense that whether an individual concept has one of
them depends only on the extension of the individual concept; but this fact doesn’t bear
directly on the matter at hand.
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The problem here of course is that the conclusion (c) seems wrong: Jim
might well believe (i) without believing (ii), for example if he mistakenly
thought that woodchcucks were those dam-building creatures with buck
teeth.

The classic mainstream possible-worlds response to such examples, given
its most careful articulation by Stalnaker (1984), is that Jim in fact does

believe Phil is a woodchuck; he just wouldn’t put it that way. I will return
to Stalnaker’s view of these matters in due course, but before that let’s
consider a different kind of example. In the mainstream possible-worlds
account, there is exactly one necessarily true proposition. Now consider the
propositions (expressed by the following sentences:

(9) Paris Hilton and the Riemann Hypothesis

a. Paris Hilton is Paris Hilton.

b. All nontrivial zeros of ζ have real part 1/2.

(9b) is the Riemann Hypothesis, the most famous unresolved conjecture in
all mathematics; here ζ is the Riemann ζ-function, a certain function of a
complex variable.

Now it is standard amlong linguistic semanticists to assume that for a
declarative sentence R, to know whether R s to know that R (if R is true),
or to know the denial f R (if R is false). Now consider:

(10) Paris Hilton and Riemann in the Standard Theory

a. There is only one necessary truth, so whichever of (9b) and its
denial is true expresses the same proposition as (9a).

b. Presumably, Paris Hilton knows that Paris Hilton is Paris Hilton.

c. So if (9b) is true, then Paris Hilton knows that all nontrivial zeros
of ζ have real part 1/2.

d. And if (9b) is false, then Paris Hilton knows that not all nontrivial
zeros of ζ have real part 1/2.

e. Hence, Paris Hilton knows whether all nontrivial zeros of ζ have
real part 1/2.

To summarize, on the standard account, it seems that, as long as we are
willing to concede that Paris Hilton knows that Paris Hilton is Paris Hilton,
then we are forced to conclude that Paris Hilton knows whether the Riemann
hypothesis is true. Of course it is possible, as Stalnaker has shown, to
defend the drawing of such conclusions. My point here is not to argue with
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Stalnaker’s defense, but rather to point out that it is unnecessary. He must

mount such a defense, because his semantic theory has as a consequence
the identity of mutually entailing propositions; but on the proposal I will
develop below, nothing forces entailment to be antisymmetric, so there is no
need to come to terms with such a consequence.

3 Soft Actualism Recalled

In his defense of possible worlds, Stalnaker compares the standard view (that
propositions are sets of possible worlds) with an alternative position, soft
actualism, put forward by Robert Adams (1974). In Adams’ terminology,
this contrasts with hard actualism, which flatly denies the existence of
nonactual possible worlds. Adams’ position can be summarized as follows:

(11) An Alternative: Robert Adams’ (1974) “Soft Actualism”

a. Nonactual possible worlds exist in the sense of being logically con-
structed out of the actual world. Specifically:

b. possible worlds are maximal consistent sets of propositions.

c. Thus propositions are primitive and worlds are constructed, (not
the other way around as per the Standard Formalization).

In fact, soft actualism was anticipated by Kripke’s (1959) completeness
theorem for S5, which implemented possible worlds as complete assignments

of truth values to formulas, which are exactly the same thing as maximal
consistent sets of formulas. But in 1963, Kripke abandoned this approach
in favor of possible worlds as unanalyzed primitives, for his more general
completeness theorem for normal modal propositional calculi, and that is
where Montague got them from.

(12) Kripke 1959: An Earlier Avatar of Soft Actualism

a. 1959: Completness for S5. Worlds implemented as complete assign-
ments of truth values to formulas (= maximal consistent sets).

b. 1963: Completness for normal modal PC: switched to primitive
worlds.

c. Montague’s IL followed Kripke 1963, not Kripke 1959 (alas).

Indeed, as Kripke acknowledged in a footnote to his 1963 paper, the
essentials of his analysis of modal logic in turn had been anticipated in
algebraic form even earlier by Jónsson and Tarski’s (1950) representation
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theorem for boolean algebras with n-ary operators; the Kripke semantics is
just the case n = 1.

(13) And Earlier Still: Jónsson and Tarski (1950)

a. They proved a general representation theorem for boolean algebras
with n-ary operators (their Theorem 3.10).

b. The essence of Kripke’s (1959) modal semantics is the case n = 1.

c. This theory is the extension to boolean algebras with operators of
Stone’s (1936) Representation Theorem for boolean algebras.

For our purposes, the essential content of the Stone Representation The-
orem can be summarized as follows:

(14) Stone Representation Theorem

a. Any boolean algebra B is isomorphic to a subalgebra of a powerset
algebra ℘(X).

b. X can be taken to be the set of ultrafilters of B.

c. By definition, a subset U of B is an ultrafilter iff:

i. it is closed under finite meets;

ii. it is upper-closed; and

iii. for every b ∈ B, exactly one of b and b′ is in it.

d. The Stone embedding maps each b ∈ B to the set of ultrafilters
containing it.

For example, if B is the set of (logical equivalence classes of) sentences of
a classical logic , the ultrafilters are just the consistent complete theories,
i.e. the maximal consistent sets of (equivalence classes of) sentences.

Based on these considerations, we can now cast Soft Actualism in alge-
braic form as follows:

(15) Soft Actualism in Algebraic Form (Preliminary Version)

a. Propositions are primitives;

b. they are the elements of a boolean algebra whose order is entail-
ment;

c. possible worlds are just the ultrafilters; and

d. ‘p is true in w’ just means p ∈ w.

By comparison, the algebra of the Standard Formalization is as follows:
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(16) In the Standard Formalization:

a. Worlds are primitives;

b. Propositions form a boolean algebra ordered by entailment;

c. The boolean algebra is the powerset of the set of worlds and the
entailment order is subset inclusion.

How different are the two approaches? We focus on this question in the
next two sections.

4 Nonprincipal Ultrafilters: an Overlooked Prob-

lem

To facilitate the comparison of (algebraicized) Soft Actualism and the Stan-
dard Formalization, it will be helpful to first lay out some of the basic facts
about ultrafilters.

(17) Basic Facts about Ultrafilters of Boolean Algebras

a. A principal ultrafilter is one with a least element (its generator).

b. If u ∈ B is an atom of the algebra, then

↑ u =def {b ∈ B | u v b}

is a principal ultrafilter with generator u, and every principal ultra-
filter is of that form.

c. If B is finite, every ultrafilter is principal. In this case the Stone
embedding maps each b∈B to the set of principal ultrafilters whose
generators are the atoms less than or equal to b.

d. But if B is infinite, then (assuming the Axiom of Choice)
B can be proven to have a nonprincipal ultrafilter.

This last fact has a consequence for the Standard Formalization that seem
to have gone unnoticed. Consider:

(18) Standard Formalization meets Stone Representation

a. Let B be the boolean algebra B of propositions (= sets of possible
worlds).

b. Since B is a powerset algebra, the atoms are the singleton sets {w}
where w is a possible world.
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c. So there is a one-to-one correspondence between possible worlds and
principal ultrafilters, with w corresponding to ↑ {w}; the generator
{w} is the conjunction of all the propositions true in w.

d. So, if there were no nonprincipal ultrafilters, the Standard Formal-
ization and Soft Actualism would be notational variants.

e. But, uncontroversially, there are infinitely many propositions. So
(assuming our ambient set theory has Choice) there is a nonprinci-
pal ultrafilter; i.e. there is a maximal consistent set of propo-
sitions which is not the set of propositions true in some
fixed world.

As far as I know this last point has not been noticed before, but it should
have been. It points to something amiss about the Standard Formalization:

(19) The Case of the Missing Worlds

a. Intuitively, any maximal consistent set of propositions is a way the
world might be,

b. But in the Standard Formalization, the ones which are nonprincipal
ultrafilters are missing from the set of possible worlds!

What should a defender of the Standard Formalization say about the missing
worlds? There seem to be only two ways open:

(20) Options for Defending the Standard Formalization

a. Give up Choice, just so that it can be consistently maintained that
the algebra of propositions has no nonprincipal ultrafilters.

b. Try to argue that even though there are maximal consistent sets of
propositions that the semantic theory is not taking into considera-
tion, for some reason they just don’t count.

Of course it is imaginable to go with one of these two options. But it seems
odd, to say the least, that one’s semantic theory, which is after all a collec-
tion of empirical hypotheses about the natural phenomenon of entailment
(based on native speaker’s judgments about when one sentence follows from
another) could lead one to deprive oneself of Choice! And I don’t even no
where to begin in defending the thesis that certain maximal consistent sets
of propositions shouldn’t count as possible worlds, for the purposes of mod-
elling Fregean senses as intensions. Why not just avoid the whole problem
by just accepting Soft Actualism instead? Nobody, as far as I can tell, ever
seems to have argued persuasively against it. Rather, the general acceptance
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of the Standard Formalization seems to have come about as a consequence
of an accident of history, viz. that Montague happened to borrow Kripke’s
1963 semantics for S5 instead of his 1959 one. In fact the proposal I am lead-
ing up to will be a form of Soft Actualism, so the existence of nonprincipal
ultrafilters will not be a problem.

5 Soft Actualism Algebraicized

But what about Paris Hilton and the Riemann Hypothesis? As formulated
algebraically in (13), Soft Actualism shares with the Standard Formalization
the problem that equivalent propositions are identical. Why? Simply be-
cause in both cases, entailment is being modelled by the order on a boolean
algebras, and orders are antisymmetric. It’s time to meet this problem
head-on.

In classical logics, the set of sentences does not form a boolean algebra
under entailment. To get one you have to ”divide out by logical equiva-
lence”; this is the Lindenbaum algebra construction. Why bohter to carry
out this construction? Well, if you only care about sentences up to equiv-
alence, it is a perfectly reasonable thing to do. But in our dealings with
propositions, things are different. We still need boolean operations, in order
to give meanings to the logical words like and and or, and we still want ultra-
filters to do duty for possible worlds. What we definitely do not want is for
entailment to be antisymmetric. In short, what we want is something just
like a boolean algebra, but without the antisymmetry. Fortunately, there is
just such a thing: a boolean preordered algebra, or (for short) a boolean pre-

algebra.11 These were described, rather telegraphically, in Fox et al. (2002)
under the name boolean prelattices12. Here I present them in a somewhat
more leisurely fashion.

(21) Definition (Equivalence in a Preorder)

Let v be a preorder on a set B. The equivalence induced by v,
written ≡v, is defined by a ≡v b iff a v b and b v a.

The subscript is omitted when no confusion can arise.

11Categorists call these strict boolean categories, and then dismiss them on the grounds
that up to categorical equivalence they are the same thing as boolean algebras.

12They were used provide a model theory for a logic called FIL (fine-grained intensional
logic). The present proposal can be seen as an attempt to fix what was wrong with FIL
(see Pollard in preparation for discussion).
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(22) Definition: Boolean Prealgebra

A boolean prealgebra is a set equipped with a preorder |=; two
nullary operations Truth and Falsity; one unary operation not ′; and
three binary operations and′, or′, and if ′ . . . then′ . . ., such that, for all
p, q, and r,

a. Truth: p |= Truth

b. Falsity: Falsity |=p.

c. and′-elimination: (i) (p and′ q) |= p; and (ii) (p and′ q) |= q.

d. and′-introduction: If p |= q and p |= r, then p |= (q and′ r).

e. or′-introduction: (i) p |= (p or′ q); and (ii) q |= (p or′ q).

f. or′-elimination: If p |= r and q |= r, then (p or′ q) |= r.

g. Modus Ponens: ((if ′ p then′ q) and′ p) |= q.

h. Deduction: If (r and′ p) |= q, then r |= (if ′ p then′ q).

i. Negation: not′ p ≡ (if ′ p then′ Falsity)

j. Double Negation: (not′ (not′ p)) |= p

Later, the boolean prealgebra we care about is going to be used to model
the entailment relation on propositions qua declarative sentence meanings;
Truth is going to be some necessarily true proposition and Falsity some nec-
essarily false one; the other boolean operations are going to be the meanings
of the English logical words of the same spelling (less the prime).

The names given to the constraints on the boolean operations are chosen
from logic rather than algebra as a gentle reminder of the origins of classical
propositional logic as an attempt to codify the laws of valid natural-language
argumentation. In algebraic terms: Truth is a top (greatest element); Falsity
a bottom (least element); and′ a meet (greatest lower bound); or′ a join
(least upper bound); if ′ . . . then′ a relative pseudocomplement; and not′

a pseudocomplement. Double negation makes the algebra (so far just a
heyting prealgebra, i.e. a bicartesian closed preorder) boolean (and so we
can drop the ‘pseudo’-prefixes.

The fundamental fact about boolean prealgebras is that any equalities
we expect to obtain in a boolean algebra obtain here too, but only up to

equivalence; double negation is a case in point here. To put it another
way: a boolean algebra is just a boolean prealgebra in which entailment is
antisymmetric (i.e. ≡ is equality of propositions).
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(23) Fundamental Facts about Boolean Prealgebras

a. Equalities that hold for boolean algebras still hold as equivalences
for boolean prealgebras.

b. A boolean algebra is just an antisymmetric boolean prealgebra.

c. Example: formulas of classical PL preordered by logical conse-
quence. For this reason I usually refer to the members of a boolean
prealgebra as its propositions.

A preordered algebra is of course both a preorder and an algebra, but
there is more to it than that. Crucially, the algebra operations harmonize
with the preorder in the sense of being tonic (either monotonic or antitonic)
on each of their arguments. Explicitly:

(24) Theorem (Tonicity of Boolean Operations)

For all propositions p, q, r in a boolean prealgebra, if p |= q, then:

a. (i) (p and′ r) |= (q and′ r), and (ii) (r and′ p) |= (r and′ q)

b. (i) (p or′ r) |= (q or′ r), and (ii) (r or′ p) |= (r or′ q)

c. (if ′ q then′ r) |= (if ′ p then′ r)

d. (if ′ r then′ p) |= (if ′ r then′ q)

e. (not′ q) |= (not′ p)

An immediate consequence of tonicity is the following highly restrictive
principle of substitutivity:

(25) Corollary (Substitutivity with respect to Booleans)

For all propositions p, q, r in a boolean prealgebra, if p ≡ q, then:

a. (i) (p and′ r) ≡ (q and′ r), and (ii) (r and′ p) ≡ (r and′ q)

b. (i) (p or′ r) ≡ (q or′ r), and (ii) (r or′ p) ≡ (r or′ q)

c. (if ′ q then′ r) ≡ (if ′ p then′ r)

d. (if ′ r then′ p) ≡ (if ′ r then′ q)

e. (not′ q) ≡ (not′ p)

From the Corollary, it is easy to see (inductively) that if the only proposi-

tional operators are the booleans, then substitution of equivalent propositions
is always truth-preserving.
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(26) An Important Consequence of Boolean Substitivity

a. If the only propositional operators are the booleans, then,
by induction, substituting an equivalent proposition inside another
proposition is always truth-preserving.

b. But there is no reason to expect this of propositional operators in
general, e.g. it is believed by Paris Hilton that . . .!

Looking at things from this perspective, it is perhaps not so surprising
that an expectation came to prevail among people concerned with such
matters that we should expect to always be able to substitute equivalents
preserving truth. The Standard Formalization is constructed on the basis of
this expectation. But this is an unreasonable expectation, of the same order
of unreasonableness as expecting every function of a real variable to be either
monotone increasing or monotone decreasing. The tonicity of the booleans
makes them special; there is no reason to expect it to hold of propositional
operators in general, e.g. it is believed by Paris Hilton that . . .!

The notion of an ultrafilter generalizes straightforwardly from boolean
algebras to boolean prealgebras:

(27) Definition (Ultrafilters in a Boolean Prealgebra)

A subset w of a boolean prealgebra is called an ultrafilter iff, for all
propositions p and q:

a. if p, q ∈ w then (p and′ q) ∈ w;

b. if p ∈ w and p |= q, then q ∈ w; and

c. either (exclusive disjunction) p ∈ w or (not′ p) ∈ w.

The following generalizes a standard result about boolean algebras:

(28) Theorem (Ultrafilters and Boolean Homomorphisms)

A subset of a boolean prealebra is an ultrafilter iff its characteris-
tic function is a boolean homomorphism to the two-element boolean
(pre)algebra.

It is obvious on a moment’s reflection that the Stone Representation
Theorem does not generalize to boolean prealgebras, since powerset algebras
are antisymmetric. However, the principal lemma Stone used to prove it
does:

(29) Stone’s Lemma (There are Enough Ultrafilters)

If p and q are propositions in a boolean prealgebra and p 6|= q, then
there is an ultrafilter w such that p ∈ w but q 6 ∈w.
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This has the following important consequence:

(30) Corollary (Propositional Equivalence and Ultrafilters)

If p and q are propositions in a boolean prealgebra, then p ≡ q iff for
every ultrafilter w, p ∈ w iff q ∈ w.

With these technical preliminaries behind us, we can now revise the
algebraicization of Soft Actualism to the following form:

(31) Soft Actualism in Algebraic Form (Revised Version)

a. Propositions are primitives;

b. they form a boolean prealgebra preordered by entailment;

c. possible worlds are just the ultrafilters; and

d. ‘p is true in w’ just means p ∈ w.

e. Only change from (15): replace “algebra” by “prealgebra” in (b).

The only change from the preliminary version (15) are to the second clause,
where the boolean algebra is replaced with a boolean prealgebra. With this
change, which will be incorporated as a central feature of my proposal, Alge-
braic Soft Actualism solves both the problem of equivalent propositions and
the problem with nonprincipal ultrafilters. In particular, equivalent propo-
sitions, even though true in exactly the same possible worlds, need not be
identical. An analogous move is not available for the Standard Formaliza-
tion because there the propositions are a powerset algbebra with entailment
as subset inclusion, and there is just no getting around the fact that subset
inclusion is antisymmetric.

(32) Algebraic Soft Actualism solves both:

a. the problem with equivalent propositions (they need not be
equal), and

b. the problem with nonprincipal ultrafilters (they are included).

c. No analog of this solution exists for the Standard Formal-
ization: there is just no getting around the fact that subset inclu-
sion is antisymmetric!

d. The remaining task is to incorporate Algebraic Soft Actualism into
a formal theory of NL meaning.

The remainder of this paper is devoted to laying out a proposal incor-
porating this form of Soft Actualism into a logical theory that preserves
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the desirable features of the Standard Formalization (2) while excluding the
problematic ones (3). We begin by describing the lambda calculus underly-
ing trhe logic within which the theory will be expressed.

6 The Underlying Typed Lambda Calculus

Our point of departure is a (simply) typed lambda calculus (hereafter, TLC)
along the lines of Henkin 1950 and Gallin 1975. The only difference is that we
follow Lambek and Scott(1986) in having finite product types, both nullary
(1) and binary (A × B)13

(33) TLC overview

a. Syntactically, a TLC consists of:

i. types;

ii. terms of each type; and

iii. an equivalence relation on terms.

b. In a (set-theoretic) interpretation:

i. types denote sets;

ii. a term denotes a member of the set denoted by its type; and

iii. equivalent terms denote the same thing.

(34) Types of the Underlying Typed Lambda Calculus

a. Each basic type is a type;

b. 1 is a type;

c. if A and B are types, so is A × B; and

d. if A and B are types, so is A ⇒ B.

(35) Terms of the Underlying Typed Lambda Calculus

a. Each basic constant of type A is a term of type A;

b. For each type A there is a countably infinite set of variables xA
i

(i ∈ ω) of type A ;

c. ∗ :: 1;

d. For all f :: A and g :: B, (f, g) :: (A × B);

e. For all h :: (A × B), πA,B(h) :: A and π′
A,B(h) :: B;

13Thus the underlying type logic is positive intuitionistic propositional logic.
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f. For all f :: A ⇒ B and a :: A,

f(a) :: B;

g. For all b :: B, λx∈Ab :: A ⇒ B.

In the preceding, ‘::’ is to be read as ‘is of type’.
In the following, ‘=’ is used as a metalanguage name for the term equiv-

alence relation:

(36) Term Equivalence for the Underlying Typed Lambda Calculus

a. (equivalence relation)

i. ` a = a (reflexivity);

ii. a = b ` b = a (symmetry);

iii. a = b, b = c ` a = c (transitivity);

b. (congruence with respect to the term constructors)

i. a = c, b = d ` (a, b) = (c, d);

ii. f = g, a = b ` f(a) = g(b);

iii. a = b ` λxa = λxb;

c. (products)

i. ` a = ∗ for all a :: 1;

ii. ` π(f, g) = f ;

iii. ` π′(f, g) = g;

iv. ` (π(h), π′(h)) = h;

d. (conversion)

i. (β) ` [λx∈Aφ[x]](a) = φ[a] if a :: A is substitutable for x14;

ii. (η) ` λx∈Af(x) = f for all f :: A ⇒ B provided x does not
occur freely in f ; and

iii. (α) ` λx∈Aφ[x] = λy∈Aφ[y] if y is substitutable for x.

14‘Substitutable for x’ means that no free variable occurrence in a or y becomes bound
upon substitution for x.
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(37) Interpretation of the Underlying Typed Lambda Calculus

A (set-theoretic) interpretation I15 assigns to to each type A a set
I(A) and to each basic constant a :: A a member I(a) of I(A), subject
to the following constraints:

a. I(1) = {0};16

b. I(A × B) = I(A) × I(B);

c. I(A ⇒ B) ⊆ I(A) ⇒ I(B).17

(38) Definition

A variable assignment relative to an interpretation I is a function
α that maps each variable to a member of the set that interprets its
type, i.e. for each x :: A, α(x) ∈ I(A).

(39) Extending an Interpretation Relative to an Assignment

Given a variable assignment α relative to and interpretation I, there is
a unique extension of I, denoted by Iα, that assigns interpretations to
all terms, such that:

a. For each variable x, Iα(x) = α(x);

b. for each basic constant a, Iα(a) = I(a);

c. Iα(∗) = 0;

d. for each f :: A and g :: B, Iα((f, g)) is 〈Iα(f), Iα(g)〉;

e. for each h :: (A×B), Iα(π(h)) is the first component (= projection
onto I(A)) of Iα(h); and Iα(π′(h)) is the second component (=
projection onto I(B)) of Iα(h);

f. for each f :: A ⇒ B and a :: A, Iα(f(a)) = (Iα(f))(Iα(a)); and

g. for each b :: B, Iα(λx∈Ab) is the function from I(A) to I(B) that
maps each a ∈ I(A) to Iβ(b), where β is the variable assignment
that coincides with α except that β(x) = a.

15More generally, typed lambda calculi can be interpreted into (strict cartesian closed)
categories which need not be set-theoretic. In the more general setting, I(A) is an object
of the category and for a term α :: A, I(α) is an arrow from the terminal object I(1) to
I(A). To simplify the exposition, I speak as if the set-theoretic interpretations are the
only ones, but there is no theoretical justification for this restriction, and it may not even
be desirable.

16Since {0} = 1, this means that I am not distinguishing notationally between the type
1 and its set-theoretic interpretation.

17I am not distinguishing notationally between × and ⇒ as lambda-calculus type con-
structors and as set operations (or categorical bifunctors). Note that, as in Henkin 1950,
the set inclusion in clause (3) can be proper, as long as there are enough functions to
interpret all functional terms.
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Note that for any term a, Iα(a) depends only on the restriction of α to the
free variables of a. In particular, if a is a constant (i.e. a closed term), then
Iα(a) is independent of α so we can simply write I(a). Thus, an interpre-
tation for the basic types and basic constants extends uniquely to all types
and all constants. Moreover, in any such interpretation, the interpetations
of equivalent terms are always identical.

7 From Typed Lambda Calculus to Higher-Order

Logic

In typed lambda calculi such as the one just introduced, the equality symbol
denoting term equivalence is a metalanguage symbol, not a symbol of the
calculus; and correspondingly, an “equation” between two terms is not itself
a term: the equivalence of two terms can only be asserted in the metalan-
guage, not in the calculus itself.

Following Henkin (1950) and Lambek and Scott (1986), we now turn our
typed lambda calculus into a higher-order predicate logic as follows:

(40) From TLC to HOL

a. Assume a basic type Bool of truth values.

b. For each type A, add an equality basic constant =A:: (A × A) ⇒
Bool.

c. The equations (36) are no longer taken as defining an equivalence
relation on terms terms but rather as object-language axioms about
equality (of whatever the terms denote).

Now all the usual (intuitionistic) connectives and quantifiers are defin-
able:18

(41) Definitions of Logical Constants in HOL

a. true =def ∗ = ∗

b. ∀x∈Aφ =def λx∈Aφ = λy∈Atrue for φ ∈ Bool

c. false =def ∀x∈Boolx

18Church went in the other direction, introducing negation, disjunction, and universal
quantification as basic constants and then defining equality via Leibniz’s Law:

a =A b =def ∀f∈A⇒Bool[f(a) → f(b)]
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d. ∧ =def λ(x,y)∈Bool×Bool(x, y) = (true, true)

e. → =def λ(x,y)∈Bool×Bool(x = x ∧ y)

f. ↔ =def λ(x,y)∈Bool×Bool[(x → y) ∧ (y → x)]

g. ¬ =def λx∈Boolx → false

h. ∨ =def λ(x,y)∈Bool×Bool∀t∈Bool(((x ⇒ t) ∧ (y ⇒ t)) ⇒ t)

i. ∃x∈Aφ =def ∀t∈Bool(∀x∈A(φ ⇒ t) ⇒ t)

In spite of the suggestive name Bool, so far this higher-order logic is only
intuitionistic.19 To make it classical, we add (again following Lambek and
Scott) the axiom20

(42) Axiom of Excluded Middle

` ∀t∈Bool(t ∨ ¬t)

We also need the following axiom, explicitly rejected by Church but
added by Henkin (for completeness relative to Henkin models):

(43) Axiom of Boolean Extensionality

` ∀(x,y)∈Bool×Bool[(x ↔ y) → (x = y)]

This axiom equates bi-implication with boolean equality. Church deliber-
ately omitted this axiom because he had a more intensional notion of the
boolean type: for him it was a type of propositions, not just truth values.
But for us, this axiom is not problematic, because in our semantic theory
we will add another basic type Prop for propositions. For our purposes, two
truth values (i.e. members of I(Bool)) will be just fine.

The next ingredient of our HOL, again borrowing from Lambek and
Scott, provides for (separation) subtypes:

(44) Subtypes and Characteristic Functions

a. Besides (34), we have one more way of forming types: if a :: A ⇒
Bool is closed, then Aa is a type (intuitively: the subtype of A

whose members satisfy the predicate a);

19This is reflected by the definitions of false, ∨, and ∃. In the presence of (42), these
reduce to the familiar definitions as DeMorgan duals of true, ∧, and ∀, respectively.

20Caution: This axiom looks as if it makes the logic not only classical but also bivalent.
In fact it does give bivalence for set-theoretic models, but not for general categorical ones;
in the general case other machinery (see (ii) below) is needed to enforce bivalence.
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b. Besides (35), we have one more way of forming terms: if a :: A ⇒
Bool is closed, then kera :: Aa ⇒ A (intuitively: the embedding of
Aa into A); and

c. we have one further axiom schema

` ∀(x,a)∈A×(A⇒Bool)(a(x) ↔ ∃y∈Aax = kera(y))

(Intuitively: a is the characteristic function of Aa.)
21

The preceding says of a set-theoretic model that for any set in the model
that interprets a type A, any subset of that set whose characteristic function
is lambda-definable (i.e. which interprets a closed term of type A ⇒ Bool)
is also in the model.22 To summarize: the set-theoretic interpretations are
Henkin models which are closed under (1) finite cartesian products, and (2)
taking of subsets whose characteristic functions are lambda-definable.

21In categorical terms, this means that a model is not only cartesian closed, but also a
topos, with I(true) : I(1) → I(Bool) as its subobject classifier.

22Together with (42), it says of a categorical model that it is a boolean topos. It is a
fact about such models that coproducts (the categorical generalizations of disjoint unions,
and the disjunction in the underlying type logic) are definable, and moreover that Bool
is isomorphic to 1 + 1, with I(true) and I(false) being the canonical injections of the
cofactors. So even though Bool was introduced as a basic nonlogical type, with the
addition of (42), (43), and (44c), Bool is actually a logical type, in the sense of being
definable in the underlying type logic. In the special case of the set-theoretic models, this
has as a bivalence as a consequence (i.e. that true and false are the only truth values). For
the categorical models, more work is needed to enforce bivalence. First, we require the
following axiom that forces true and false to be distinct:

(i) Nondegeneracy

` ¬(true = false)

And second, we must impose the following condition on provability:

(ii) Disjunctivity

We require that for all boolean terms φ and ψ, if ` φ ∨ ψ, then ` φ or ` ψ.

In the presence of the axioms already imposed, this condition can be shown to be equivalent
to bivalence. The categorical models are local boolean toposes, or equivalently, bivalent

boolean toposes. Up to isomorphism, the set-theoretic interpretations are the local boolean
toposes which are well-pointed (i.e. have no uninhabited types other than the counit (null
coproduct) type. It is an open question which class of models is more suitable for NL
semantics. But for familiarity, I will speak of the models as if they were well pointed,
e.g. ‘set’ for ‘object’, ‘subset’ for ‘subobject’, ‘function’ for ‘arrow’, ‘preorder’ for ‘internal
preorder object’, etc.
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8 A Hyperintensional Semantic Theory

8.1 First Steps

Now that we have a suitable logic, we can use it to precisely formalize a Soft
Actualist semantic theory that retains the desirable characteristics of stan-
dard possible-worlds semantics while eliminating the problematic aspects
discussed earlier. We start by choosing our basic nonlogical types. Instead
of one (Henkin) or two (Gallin), we have three: Ind (individual concepts),
Ent (entities, the things that can be extensions of individual concepts), and
Prop (propositions). The type Bool of things (truth values) that can be ex-
tensions of propositions has already been supplied by the HOL.23 Crucially,
there is no basic type World.

(45) Basic Nonlogical Types for Hyperintensional Semantics

a. Ent (entities);

b. Ind (individual concepts, the hyperintensions that have entities as
their extensions)

c. Prop (propositions, the hyperintensions that have truth values as
their extensions)

d. Bool, the type of truth values, is supplied by the HOL.

e. There is not a basic type World!

Although we will be able to construct Carnap/Montague-style intensions
in our theory, we will not use them to model meanings (Fregean senses).
Instead, we use hyperintensions, which are of the following types:

(46) The set of hyperintensional types is defined as follows:

a. 1 is a hyperintensional type;

b. Ind and Prop are hyperintensional types;

c. If A and B are hyperintensional types, so are A × B and A ⇒ B;

d. If a :: A ⇒ Bool is closed and A is a hyperintensional type, so is
Aa.

e. Nothing else is a hyperintensional type.

23The basic types Ent and Prop (but not Ind) should be reminiscent of Thomason’s
(1980) Intentional Logic. This and other points of comparison with Thomason’s system
are discussed in Pollard (in preparation).
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For simplicity, let us assume that the syntactic (i.e. tectogrammatical)
part of our linguistic theory provides the basic syntactic types NP, NP it,
NPthere, N, and S, and that × and ⇒ are the syntactic type constructors.24

Then at the level of types, the mapping from linguistic expressions (i,e. signs,
or syntactic derivations) to their senses (hyperintensions) is defined recur-
sively as follows:

(47) NL Semantic Interpretation is Structure-Preserving25

a. Sem(NPit) = Sem(NPthere) = 1;

b. Sem(NPname) = Ind;

c. Sem(S) = Prop;

d. Sem(N) = Ind ⇒ Prop

e. Sem(X × Y ) = Sem(X) × Sem(Y ); and

f. Sem(X ⇒ Y ) = Sem(X) ⇒ Sem(Y ).

Again at the level of types, the mapping from hyperintensions to exten-
sions is defined recursively as follows:26

(48) Extensional types corresponding to hyperintensional types

a. Ext(1) =def 1;

b. Ext(Ind) =def Ent;

c. Ext(Prop) =def Bool;

d. Ext(A × B) =def Ext(A) × Ext(B); and

e. Ext(A ⇒ B) =def A ⇒ Ext(B)

What about the extensions themselves? Since the extension of a given
hyperintension varies from world to world, it might appear that the lack of a
basic type World is going to pose a problem. In fact it won’t; we will return
to this point too in the following subsection.

24That is, we follow Curry, de Groote, Muskens, Pollard, Ranta, and others in assuming
that tectogrammatical combinatorics is nondirectional, with word order determined by
the interface between tectogrammar and phenogrammar.

25Categorically: Sem is a cartesian closed functor.
26Here we make the usual, but unjustified, simplifying assumption that every meaning

has an extension at every world. In a refinement of the theory discussed in Pollard (in
preparation), partial function types are used to account for the fact that some meanings
(e.g. meanings of names of fictional characters) may lack extensions at some worlds. We
also defer to Pollard (in preparation) the question of what the extensional type corre-
sponding to a subtype is.
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The time has come to deal with the relation that forms the central sub-
ject matter of NL semantics, viz. entailment. In a model of our theory,
entailment is the interpretation of the object-language constant

|=:: (Prop × Prop) ⇒ Bool

and equivalence of propositions is defined as mutual entailment:

≡ =def λ(p,q)((p |= q) ∧ (q |= p))

We now introduce nonlogical axioms which say of entailment that it is a
preorder;

(49) Preorder Axioms for Entailment

a. ` ∀p(p |= p)

b. ` ∀(p,q,r)(p |= q) → ((q |= r) → (p |= r)))

Crucially, entailment is not antisymmetric; ≡ cannot be proven equal to
=Prop.

27

Next we introduce the constants used to translate English logic words:

(50) Translations of English “Logic Words”

a. truth :: Prop abbreviates the translation of an arbitrarily chosen
necessarily true English sentence.

b. false :: Prop abbreviates the translation of an arbitrarily chosen
necessarily false English sentence.

c. not’ :: Prop ⇒ Prop translates it is not the case that.

d. and’, or’ :: (Prop × Prop) ⇒ Prop are the respective translations of
(the sentential conjunctions) and and or.

e. if’ . . . then’ translates if . . . then.

and suitable nonlogical (!) axioms (meaning postulates) for them which
ensure that in a model of the semantic theory, the interpretation of the type
Prop forms a boolean prealgebra with the meanings of the logic words as
the boolean operations (cf. 22):

27Cf. (43), which says ↔ is equal to =Bool.
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(51) Meaning Postulates for the Translations of English Logic Words

a. ` ∀p(p |= truth)

b. ` ∀p(falsity |= p)

c. ` ∀(p,q)((p and’ q) |= p)

` ∀(p,q)((p and’ q) |= q)

d. ` ∀(p,q)[((p |= q) ∧ (p |= r)) → (p |= (q and’ r))]

e. ` ∀(p,q)(p |= (p or’ q))

` ∀(p,q)(q |= (p or’ q))

f. ` ∀(p,q,r)[((p |= r) ∧ (q |= r)) → ((p or’ q) |= r)]

g. ` [((if’ p then’ q) and’ p) |= q]

h. ` ∀(p,q,r)[((r and’ p) |= q) → (r |= (if’ p then’ q))]

i. ` ∀p((not’ p) ≡ (if’ p then’ falsity))

j. ` ∀p[(not’ (not’ p)) |= p]

8.2 Constructed Worlds

Now we have meanings, but how can we have any notion of meanings hav-
ing extensions at worlds if we don’t have worlds? In order to conduct the
usual semantic business with worlds (modality, counterfactuals, the taking
of extensions at worlds, etc.), we need to have worlds in the theory. This
might seem problematic, since we have no basic type for them. However,
the existence of lambda-definable subtypes comes to our rescue. The fact of
the matter is: we do have worlds:

(52) Without Worlds, how can Meanings have Extensions?

a. We do have worlds, but they are hiding. Where are they hiding?

b. Well, worlds are certain sets of propositions, so they are a subset of
the set that interprets Prop ⇒ Bool. Which subset?

c. Answer: the subset whose members are ultrafilters of the boolean
prealgebra that interprets Prop.

d. But this just a set-theoretic construction on models, isn’t it? Don’t
we really need a type of worlds in the logical theory?

e. Yes, but we have such a type: World is the type

[Prop ⇒ Bool]u

where u :: (Prop ⇒ Bool) ⇒ Bool is the predicate on sets of propo-
sitions such that u(s) says of s that it is an ultrafilter!
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This is possible because ultrafilterhood is a definable predicate of sets of
propositions:

(53) Being an Ultrafilter is a Lambda-Definable Predicate:

a. u is λs[a(s) ∧ b(s) ∧ c(s) where

i. a(s) says s is closed under entailment;

ii. b(s) says s is closed under and’; and

iii. c(s) says that for each proposition p, exactly one of p and (not’p)
is in s.

b. To be explicit:

i. a(s) is ∀(p,q)[(s(p) ∧ p |= q) → s(q)];

ii. b(s) is ∀(p,q)[(s(p) ∧ s(q)) → s(p and’ q)]; and

iii. c(s) is ¬s(falsity’) ∧ ∀p(s(p) ∨ s(not’ p)).

So we really had worlds all along. This means we are in a position to
say what it means for a proposition to be true at one of them.

(54) How to Say “p is True at w”

a. In the Standard Formalization: p(w).

b. Under our proposal: the first guess would be w(p), but this is ill-
typed since w :: World, not w :: Prop ⇒ Bool.

c. But World = [Prop ⇒ Bool]u where u is defined as in (53), so
keru :: World ⇒ (Prop ⇒ Bool) denotes the embedding of the set
of worlds into the set of sets of propositions.

d. So the right way to say p is true at w is keru(w)(p).

e. For this reason, I will usually abbreviate keru(w)(p) to p@w.

8.3 Extensions of Hyperintensions at Worlds

Now that we know what worlds are and what it means for a proposition
to be true at one of them, the time has come to make sense of the notion
of a meaning having an extension at a world. Remember: we can’t just
“evaluate” the meaning at the world, since meanings are hyperintensions,
not intensions! Instead, we treat the notion of extension as a family of
functions parametrized by the set of hyperintensional types

extA :: A ⇒ (World ⇒ Ext(A))

that take hyperintensions to functions from worlds to extensions of the ap-
propriate type. These functions are constrained by the following axioms:
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(55) Axioms for Extensions

a. ` ∀w,p(extProp(p)(w) = p@w)

b. ` ext1(w)(∗) = ∗

c. ` ∀w,c(extA×B(c)(w) = (extA(π(c))(w), extB(π′(c))(w)))

d. ` ∀w,f(extA⇒B(f)(w) = λx∈AextB(f(x))(w))

The last of these is the most interesting, because it makes explicit why it
is that, even though we are good Fregeans as far as the compositionality
of meanings (hyperintensions) is concerned28, we part company with Frege
with respect to compositionality of reference. For example, we translate the
sentential adverb obviously :: S ⇒ S by a constant obviously’ : Prop ⇒ Prop,
which is interpreted set-theoretically as a function from propositions to
propositions. So the reference of obviously at a world w is the extension at
w of that function, which is (the characteristic function of) a set of propo-
sitions, viz. the ones which are obvious at that world.29

For A a hyperintensional type, we call a closed term of type A ⇒ Prop an
A-predicate and its interpretation an A-property. For many properties
that serve as NL meanings, for any world w, whether something a of type A

has the property at w depends only on the extension of a at w. Such proper-
ties (and by extension, predicates whose interpretations are such properties)
are called extensional.

(56) Extensionality for Predicates

a. We define an A-predicate f to be extensional iff

∀w,a,a′ [(ext(a)(w) = ext(a′)(w)) → (f(a)@w = f(a′)@w)]

b. More generally, a closed hyperintensional term f :: A ⇒ B is called
extensional iff:

∀w,a,a′ [(ext(a)(w) = ext(a′)(w)) → (ext(f(a)(w) = ext(f(a′)(w))

For example, NL determiners are (A-parametrized) families of extensional
(A ⇒ Prop) × (A ⇒ Prop)-predicates: for two A-predicates P and Q and a
world w, whether every P is a Q at w depends only on the extensions of P

and Q at w. In our theory, this fact would be a consequence of the following
nonlogical axiom scheme:

28Composiitonality of meaning is embodied by the cartesian-closed functoriality of the
mapping Sem from linguistic expressions to meanings.

29Thus we avoid having to say that in certain contexts the reference of a sentence is its
customary sense.
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(57) Meaning Postulate for every

` ∀P,Q,w[every’(P,Q)@w ↔ ∀x(ext(P )(w)(x) → ext(Q)(w)(x))]

8.4 Equivalence Revisited

It is noteworthy that even though meanings are not intensions according to
our theory, there is still a place for intensions, because. for any hyperin-
tensional term a :: A, ext(a) is of type World ⇒ Ext(A). In other words,
Ext is interpreted as a (type-parametrized) function from hyperintensions
to intensions! It might seem paradoxical for the extension of a meaning to
be an intension, but from the hyperintensional perspective, intensions are
nothing more than the result of gluing together extensions across all worlds.

We call two hyperintensional terms of the same type equivalent iff “ext
maps them to the same intension”, i.e.:

` ext(a) = ext(b)

Correspondingly, we call two hyperintensions equivalent if, at every world
w, they have the same extension at w. This generalizes the notion of equiv-
alent propositions as ones that are true at the same worlds. Examples of
equivalent hyperintensions are the meanings of:

1. Hesperus and Phosphorus

2. woodchuck and groundhog

3. Paris Hilton is Paris Hilton and whichever is true, the Riemann Hypoth-
esis or its denial.

Of course nothing forces equivalent hyperintensions to be the same. This
being the case, within the framework of hyperintensional semantics it be-
comes possible to raise a question which does not even make sense in inten-
sional semantics: are there any properties which, though not extensional,
are nevertheless intensional in the sense that, at any world and for any
hyperintension a of type A, whether a has the property at w depends only
on Ext(a)?

(58) Intensional Hyperintensions

Call a closed hyperintensional term f :: A ⇒ B intensional iff

` ∀a,b(ext(a) = ext(b) → ext(f(a)) = ext(f(b)))
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Consider, for example, an S5-style neccessity operator as follows30:

(59) S5 Necessity

a. Introduce a constant nec :: Prop ⇒ Prop

b. Meaning Postulate: ` ∀w,p((nec(p))@w ↔ (p ≡ truth))

Clearly, nec is an intensional property of propositions; if a proposition has
it at a world (and therefore at any world), then so does any equivalent
proposition. As expected, all necessary truths are equivalent. By contrast,
the propositional property of being obvious to Paris Hilton isn’t intensional:
presumably, that Paris Hilton is Paris Hilton is obvious to her, but whichever
of the Riemann Hypothesis and its denial is true surely is not. Indeed, we
might define a modal operator to be an intensional property of proposi-
tions.31

9 Conclusion

For over 60 years, it’s been known that there are not enough intensions to
model NL meanings in a natural way. And the hitherto unremarked yet per-
plexing problem of nonprincipal ultrafilters (that some maximal consistent
sets of propositions don’t count as possible worlds) suggests that the idea of
taking worlds as a primitive of semantic theory is a serious misstep. In this
paper, I proposed an axiomatic theory of NL meaning that straightforwardly
solves both of these problems, seemingly at no penalty.

The theory is expressed in a straightforward extension of classical higher-
order predicate logic, which in turn is based on an altogether mainstream
typed lambda calculus; the only essential difference between the logic used
here and the familiar Henkin/Gallin-style logic is an analog of the set-
theoretic axiom scheme of separation. The set theoretic models are just
the familiar Henkin models, augmented with cartesian products and subsets
with lambda-definable characteristic functions; and a more general, categori-
cal model theory is also available should one care to explore the consequences
of setting aside familar assumptions (such as wellpointedness or double nega-
tion). Worlds and intensions are still available, for whatever semantic uses
one might choose to put them to; only the worlds are constructed rather than

30This illustrates another difference between the present proposal and Thomason (1980):
there is no need to reintroduce a basic world type to handle modality

31Another question suggested by this definition: besides modal operators, are there
other classes of intensional hyperintensions of semantic interest?
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primitive, and the intensions are not meanings but rather what equivalent
meanings have in common.

There are two key ideas that make the theory work:

1. Entailment is not assumed to be antisymmetric.

2. Worlds are constructed from propositions (as in Kripke 1959), not the
other way around (as in Kripke 1963).

The theory makes no recourse to untyped lambda calculus, polymorphic
typing, partial possible worlds, impossible worlds, giving up one or more of
Gentzen’s structural rules, or even giving up possible worlds. The math is no
harder than the math in PTQ, just a little different and less idiosynacratic.
As far as I can tell, we can still do everything we wanted to do in mainstream
semantics, without accepting (as mainstream semantics requires us to do)
that Paris Hilton knows whether the Riemann hypothesis is true.
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