
Donkeys in DyCG without Discourse Referents

Carl Pollard

Linguistics 812
April 4, 2011

(1) DyCG Overview

Dynamic Categorial Grammar (DyCG) is a framework for lin-
guistic analysis that integrates and builds on results from three
distinct research traditions:

• the curryesque tradition in categorial grammar that dis-
tinguishes phenogrammar (concrete syntax) from tec-
togrammar (abstract syntax).

• the hyperintensional tradition in (static) semantics that
takes propositions rather than worlds as basic

• the dynamic tradition in discourse semantics, where utter-
ance interpretation depends on and transforms context

(2) Salient Features of DyCG

• The underlying static meanings are fine-grained hyperin-
tensions, rather than the usual Montague-style intensions.

• Worlds, intensions, and extensions can be defined within
the semantic theory, but grammars needn’t refer to them.

• There is no extensional version of the theory.

• Heim’s Logical Forms are replaced by DyCG sentences (the-
orems of the grammar of tectogrammatical type S).

• The semantic theory is written in a type theory (like Muskens
or de Groote), not in the metalanguage (like Heim’s file
change semantics).

• Sentence meanings specified by the grammar are (adapting
Roberts’ terminology) proffered contents, what is to be
added to the input context in case of acceptance.

• In case of acceptance, the input context is transformed by
the context change obtained by applying the context change
function cc to the proffered content.

1

(3) This Fragment

• This fragment uses a new, simplified version of DyCG in
which anchors (essentially, Heim’s assignments) are replaced
with tuples of entities.

• Thus the role of discourse referents (DR’s) is taken over by
the linear positions in the tuples in the domains of contexts.

• Unlike previous versions of the grammar, the subject of a
verb is taken to be the first rather than the last argument.
This simplifies most derivations, since all NPs have raised
types and usually their relative scope coincides with their
linear order.

• The fragment analyzes the classic donkey sentence every
farmer that owns a donkey beats it with the strong reading
(every farmer beats every donkey s/he owns).

• Weak readings and the proportion problem with most farm-
ers that own a donkey beat it will be dealt with another day.

• Since we are focusing on the semantics, we finesse the prag-
matic issue of anaphora resolution using the ‘cheap trick’
(à la Montague, Heim, and Muskens) of treating pronouns
as ambiguous with respect to which DR is the antecedent.

• Anaphora resolution too will be dealt with another day.

• However, we do handle the semantic aspect of pronominal
presupposition, namely that the antecedent be practically
entailed by the context to satisfy the descriptive content of
the pronoun (in the case of it, being nonhuman).

• New Notation

– We write the natural number type as n, and reserve ω
for the metalanguage name of the set of natural num-
bers in the ambient set theory.

– We use vector notation for tuples of entities:

xn = (x0, . . . , xn−1) for n > 0

with the superscript indicating the length of the tu-
ple only on the leftmost occurrence of the tuple in a
formula.

2

(4) Types from HOL

t (truth values, a basic type)

n (naturals, a basic type)

Variables: i, j, n

The n-th cartesian power of A is written An, thus A0 = 1,
A1 = A, and An+1 = An × A (n > 0)

(5) Pheno Types

s (strings, a basic type, axiomatized as a monoid)

Variables: s, t, u

N.B. Constants of type s include the null string e and prime
strings, e.g. DONKEY.

s→ s (string functions)

Variables: f , g

s → s → s (the type of the constant · (concatenation),
written infix)

(6) Types from (Static) Hyperintensional Semantics

e (entities, a basic type)

Variables: x, y, z

p (propositions, a basic type)

Variables: p, q

p0 =def p (0-ary properties)

pn+1 =def e→ pn (n-ary properties, n > 0)

Variables of type p1: P , Q

p1 → p (static generalized quantifiers)

p1 → p1 → p (static generalized determiners)

(7) Types for Contexts

c0 =def p (0-ary contexts)

cn =def en → p (n-ary contexts, n > 0)

c =def

∐
n∈ω .cn (contexts)

Variables: c, d

3

(8) Dynamic Semantic Types

k =def c ⇀ c (proffered contents and context changes)

Variables: k, h

These correspond to what other dynamic semantic theo-
ries variously call file change potentials, boxes, updates, or
dynamic propositions.

d0 =def k (0-ary dynamic properties)

dn+1 =def n→ dn (n-ary dynamic properties, n > 0)

d =def d1 ((unary) dynamic properties)

Variables: D, E

d→ k (dynamic generalized quantifiers)

d→ d→ k (dynamic generalized determiners)

(9) The Arity of a Context

• For an n-ary context c, the arity of c, written |c|, is n.

• Intuitively, |c| is ‘the number of DRs that c knows about’.

• Example. |c| = 2, where c is the output context from an
accepted utterance of A farmer owns a donkey in the trivial
input context true. Here c is equivalent to

λx,y.(farmer x) and (donkey y) and (own x y)

(10) The Degree of a Context Change

• Context changes will be defined in such a way that, for any
context change k, there is a unique natural number called
the degree of h, also written |k|, such that, for any context
c in the domain of k, |k c| = |c|+ |k|.

• Intuitively, the degree of a context change is the number of
new DRs that it introduces.

• Example. |cold| = 0, where cold = def λc.λx|c| .cold is the
translation of it is cold.

Example. |exists donkey| = 1, where (as shown later)

exists donkey = λc.λx|c|,y.donkey y

is the translation of Chinese you lü ‘there is a donkey’.

4

(11) Composition of Partial Functions

• For any three types A,B,C, the composition f ; g : A ⇀ B
of any two partial functions f : A ⇀ B and g : B ⇀ C is

f ; g =def λa|(f ↓ a)∧(g ↓(f a)).g (f a)

• And so the composition of two context changes h and k is

k;h =def λc|(k ↓ c)∧(h ↓(k c)).h (k c)

(12) The Context Change of a Proffered Content

• The context change function cc : k → k, which maps
every proferred content to a context change of the same
degree, is defined as follows:

cc k =def λc|k ↓ c.λx|c|,y|k| .(c x) and (k c x,y))

• First conjunct is the ‘carryover’ from the input context c.

• Second conjunct is determined by the proffered content k.

• The motivation for this will become clearer when we look
at examples with indefinites in them.

• Example: It is cold cold =def λc.λx|c| .cold. Application
of cc to this proffered content produces the context change

cc cold =def λc.λx|c| .(c x) and cold.

(13) The Dynamic Conjunction of Proffered Contents (1/2)

• The dynamic conjunction function and : k→ k→ k is
defined as follows:

k and h =def λc|(k ↓ c)∧(h ↓(cc k c)).λx|c|,y|k|,z|h| .
(k c x,y) and (h (cc k c) x,y, z)

• The usual definitions of dynamic conjunction as composi-
tion of context changes makes no reference to static con-
junction. Distinguishing proffered contents from their in-
duced context changes makes it easier to see the connection
between dynamic and static conjunction.

5

(14) The Dynamic Conjunction of Proffered Contents (1/2)

Theorem: The dynamic conjunction of proffered contents is the
composition of their context changes.

` ∀kh.cc (k and h) = (cc k); (cc h)

Proof hint: show that both sides of the equality are equal to:

λc|(k ↓ c)∧(h ↓(cc k c)).λx|c|,y|k|,z|h| .
(c x) and (k c x,y) and (h (cc k c) x,y, z)

(15) Dynamicization of Properties

• Dynamic properties that are not presupposition triggers
can be defined by applying the dynamicization function
dyn to their static counterparts.

• For each n, dynn : pn → dn. For n = 0, 1, 2 these are
defined as follows:

dyn0 p =def λc.λx|c| .p

dyn1 P =def λm.λc||c|>m.λx|c| .P xm

dyn2 R =def λmn.λc||c|>m,n.λx|c| .R xm xn

• Examples:

cold =def dyn0 cold = λc.λx|c| .cold

donkey =def dyn1 donkey = λm.λc||c|>m.λx|c| .donkey xm

beat =def dyn2 beat = λmn.λc||c|>m,n.λx|c| .beat xm xn

(16) Dynamic Property Conjunction

• In static semantics, property conjunction (involved in rela-
tivization and VP-coordination) is defined as follows:

P that Q =def λx.(P x) and (Q x)

• Dynamic property conjunction is defined analogously:

D that E =def λn.(D n) and (E n)

6

(17) Dynamic Negation of Proffered Contents

• Dynamic negation not : k→ k is defined by not k =def

λc|k ↓ c.λx|c| .not (k c x) (for |k| = 0)

λc|k ↓ c.λx|c| .not (existsy|k| .k c xy) (for |k| > 0)

• Example. No way it’s cold

λc.λx|c| .not cold

• Example. Chinese meiyou lü ‘there isn’t a donkey’

λc.λx|c| .not (existsy.donkey y)

cf. above, you lü ‘there’s a donkey’ λc.λx|c|,y.donkey y.

• As we’ll see, indefinites don’t have existential force. But
they sometimes appear to, because certain operators (such
as not) introduce an existential that delimits the lifespans
of the DRs introduced by the operator’s argument.

(18) Dynamic Double Negation

Theorem. ` ∀k. |not k| = 0

Corollary. For proffered contents of degree 0, the dynamic Dou-
ble Negation Law is satisfied up to equivalence.

` ∀k∈k0 .not (not k)) ≡ k

Corollary. For a proffered content k of positive degree m, dy-
namic double negation is equivalent to simultaneous existential
binding of all m DRs that k introduces.

` ∀k∈kn .not (not k) ≡ λc|k ↓ c.λx|c| .existsym .k c x,y

(19) Dynamic Property Negation

• In static semantics, property negation is defined as follows:

non P =def λx.not (P x)

• Dynamic property negation is defined analogously:

non D =def λn.not (D n)

7

(20) (So-Called) Dynamic Existential Quantification

• First, we define a function + : c → c that adds a new DR
to an arbitrary context:

c+ =def λx|c|,y.c x

Obviously |c+| = |c|+ 1.

• Then we define the dynamic generalized quantifier exists:

exists D =def λc|(D |c|) ↓ c+ .D |c| c+

• Note that in this definition, the new DR |c| depends on c,
which is λ-bound, but not existentially bound.

• Exercise. Recall that

donkey = λn.λc||c|>n.λx|c| .donkey xn

and show that

exists donkey = λc.λx|c|,y.donkey y

(21) The Dynamic Indefinite Determiner

• In static semantics, the indefinite determiner is defined as
follows:

a P Q =def exists (P that Q)

• The dynamic indefinite determiner a is defined analogously:

a D E =def exists (D that E)

• Exercise: Show that

a donkey bray = λc.λx|c|,y.(donkey y) and (bray y)

• The fact that the restriction and the scope of an indefinite
are dynamically conjoined has the consequence that presup-
positions of the scope can be satisfied from the restriction,
e.g. A farmer that owns [a donkey]i beats iti.

This will become clearer once we see how a definite pronoun
like it gives rise to an anaphoric presupposition.

8

(22) Toward a Dynamic Universal Determiner

• Disregarding generic readings, sentence (2) seems ambigu-
ous in a way that sentence (1) isn’t:

(1) A farmer that owns a donkey beats it.

(2) Every farmer that owns a donkey beats it.

• For (2) to be true, does each farmer have to beat every
donkey s/he owns, or just one of them?

• Early dynamic approaches to donkey anaphora in terms of
unselective binding only predicted the first known as the
strong) reading, not the second (weak) reading.

• One way to characterize the difference is to say that in
strong readings, the determiner in question (here, every,
treats (a) the DR introduced by the head noun of the re-
striction (here, farmer) on a par with (b) the DRs intro-
duced by the indefinites in the relative clause (here, don-
key), whereas in weak readings, (a) and (b) are treated
asymmetrically.

• Sometimes the weak reading is the obvious or only one:

(3) Every man that had a quarter put it in the parking
meter.

(4) Most farmers that own a donkey beat it.

• The usual story says that (4) is false if there are exactly
100 farmers, 99 of them have only one donkey and don’t
beat it, while the other has 1000 donkeys and beats them
all.

• That is, most donkey-owning farmers beat at least one of
their donkeys; it doesn’t matter that 1000 out of the 1009
farmer-donkey pairs involve human-asinine battery.

• Explaining this asymmetry is known as the proportion
problem, or alternatively, the problem of farmer-donkey
asymmetry.

• To get started, we’ll propose a dynamic meaning for every
that yields strong readings.

• But we will revisit this set of issues soon.

9

(23) A Strong Dynamic Universal Determiner

• Recall that in HOL (or FOL):

` (∀x.φ)↔ ¬(∃x.¬φ)

• Analogously, in static semantics,

` forall ≡ λP .not (existsx.not (P x))

and

` every ≡ λPQ.forallx .(P x) implies (Q x)

where

` implies ≡ λpq.not (p and (not q)

from which we can derive (using the fact that static not
obeys the Double Negation Law up to equivalence)

` every ≡ λPQ.not (existsx.(P x) and (not (Q x)))

or equivalently

` every ≡ λPQ.not (exists (P that (non Q)))

• Analogizing again at the dynamic level, we define

every D E =def not existsn ((D n) and (not (E n)))

or equivalently

every D E =def not exists (D that (non Q))

• Exercise. Once our grammar is in place, we will have every
donkey brays every donkey bray. Show that this can
be reduced to

λc.λx|c| .not(exists (donkey that (non bray))) =

λc.λx|c| .not(existsy.(donkey y) and (not (bray y))

10

(24) The Definite Pronoun it, Intuitively

• Here’s the intuition:

(a) The definite pronoun it ‘picks up’ a DR, the ‘antecedent’,
already in the input context (or inferrable from it).

(b) The antecedent is practically entailed by the context to
satisfy the ‘descriptive content’ of the pronoun (in this
case, the property of being nonhuman).

(c) The speaker believes the context provides enough in-
formation for the addressee to resolve which DR is the
antecedent.

• Here we handle (a) and (b), which are presuppositional in
nature, in the lexical semantics of the pronoun.

• For now, we finesse the pragmatic issues posed by (c) by the
familiar cheap trick of treating the pronoun as ambiguous
with respect to which DR is its antecedent.

(25) The Definite Pronoun it, Formally

• As a point of departure, suppose we give it this lexical entry
schema (for i ∈ n):

` IT; NP; i

This is simplicity itself, but it doesn’t impose on the context
the presuppositons corresponding to (a) and (b) above.

• So instead we type-raise the preceding to a dynamic gen-
eralized quantifier:

` λf .f IT; (NP(S)(S;λD.D i

• And then, finally, we refine the preceding by restricting the
domain to satisfy the two presuppositions in question:

` λf .f IT; (NP(S)(S;
λc|(|c|>i)∧(c pentails λ

x|c| .nonhuman xi).λD.D i c

• Exercise. Show that iti bray equals

λc|(|c|>i)∧(c pentails λ
x|c| .nonhuman xi).λx|c| .bray xi

11

(26) Tectogrammatical Types (Syntactic Categories)

S; NP (noun phrase); N; D (discourse).
Also, QP abbreviates (NP (S)(S

(27) Rules of the Grammar Logic

Hypothesize/Variable/Trace:

T
x : A;B; y : C ` x : A;B; y : C

Modus Ponens/Application/Merge:

Γ ` f : A→ B;C (D; g : E → F ∆ ` a : A;C; b : E
M

Γ,∆ ` (f a) : B;D; (g b) : F

Hypothetical Proof/Abstraction/Move:

Γ, x : A;B; y : C ` d : D;E; f : F
H` λx; d : A→ D;B(E;λy.f : C → F

Initiate Discourse:

` s; S; k
I` s; D; k

Continue Discourse:

` s; D; k ` t; S; h
C` s · t; D; k and h

(28) Summary of Lexical Meanings Employed

every =def λDE.not exists (D that (non Q))

farmer =def dyn1 farmer = λn.λc||c|>n.λx|c| .farmer xn

that =def λDE.λn.(D n) and (E n)

own =def dyn2 own = λmn.λc||c|>m,n.λx|c| .own xm xn

a =def λDE.exists (D that E)

donkey =def dyn1 donkey = λn.λc||c|>n.λx|c| .donkey xn

beat =def dyn2 beat = λmn.λc||c|>m,n.λx|c| .beat xm xn

iti =def λc|(|c|>i)∧(c pentails λ
x|c| .nonhuman xi).λD.D i c

12

(29) The Lexical Entries

a ` λsf .f EVERY · s; N(QP;every

b ` λsf .s · THAT · (f e); N((NP(S)(N; that

c ` FARMER; N; farmer

d ` λsf .f A · s; N(QP;a

e ` DONKEY; N;donkey

f ` λst.s ·OWNS · t; NP(NP(S;own

g ` λf .f IT; QP; iti
h ` λst.s · BEATS · t; NPv(NP(S;beat

(30) Notational Conventions for Grammar Proofs

1. Leaves (other than traces) are keyed to the lexical entries.

2. Only the tectotype of non-leaves are shown.

3. Unlabelled binary rule applications are modus ponens.

4. Unlabelled unary rule applications are hypothetical proof.

5. (t) abbreviates s; NP;x ` s; NP;x (trace of NP)

6. Withdrawal of traces is indicated (Prawitz-style) by indices.

(31) Grammar Proof for the Donkey Sentence

a

b c
(NP(S)(N

d e
QP

f (t1)

NP(S
S

1
NP(S

N
QP

g

h (t2)

NP(S
S

2
NP(S

S

(32) Semantics Produced by the Preceding Proof

every (farmer that (λm.a donkey (own m))) (λm.iti (beat m)) =

λcx|c| .not (existsy.(farmer y) and existsz.(donkey z) and (own y z) and (not (beat y w)

where w is the i-th component of the tuple x|c|, y, z. When
i = |c| + 1, then w = z and we obtain donkey anaphora with
the strong reading:

λcx|c| .not (existsy.(farmer y) and existsz.(donkey z) and (own y z) and (not (beat y z)

13

