
Advances in Logical Grammar: Review of Typed

Lambda Calculus

Carl Pollard

June 6, 2012

The Two Sides of Typed Lambda Calculus
A typed lambda calculus (TLC) can be viewed in two complementary ways:

• model-theoretically, as a system of notation for functions

• proof-theoretically, as an elaboration of natural deduction for intuitionistic
propositional logic (IPL)

• In our linguistic application, we’ll view it both ways simultaneously.

• But first, what is a TLC?

A TLC is a Lot Like a First-Order Logic

• A TLC has a lot in common with a FOL, starting with having both a
syntax and a semantics.

• The syntax of a TLC has a lot in common with the syntax of a FOL, in-
cluding constants, variables, variable binding, and rules for forming terms.

• The semantics of a TLC has a lot in common with the semantics of a FOL,
including a class of set-theoretic interpretations and variable assignments.

What a TLC has that an FOL doesn’t

• A FOL only has two types of terms: individual terms (often just called
terms) and truth-value terms (often called formulas); whereas a TLC
has an infinite number of types of terms, formed with type constructors
by starting with a finite number of basic types.

• A TLC has the binding operator λ (lambda), which is the crucial ingredi-
ent for notating functions.

1



What a FOL has that a TLC doesn’t

• A FOL has a special type of term – truth value terms (also called for-
mulas) that can be used to express theories.

• A FOL has an equality symbol which can be used to form formulas (by
placing it between two individual terms).

• A FOL has logical connectives and quantifiers for forming more complex
formulas.

The Best of Both Worlds

• Before long, we’ll see how to construct systems—higher order logics
(HOLs) that combine all the features of TLCs and FOLs.

• We’ll use one of these, the pheno logic, to notate (and theorize about)
phenogrammar.

• We’ll use another one, the semantic logic, to notate (and theorize about)
meanings.

• the tecto linear logic makes three.

• When we analyze signs, we’ll be doing proofs in all three of these logics,
in parallel.

Specifying the Syntax of a TLC

1. We start by specifying the basic types.

2. We use the type constructors to recursively define the full set of types.

3. We specify a finite number of constants and assign each constant a type.

4. Finally, we use the term-forming rules to recursively define the full set of
terms and assign each term a type.

As running examples, we’ll go through this process for two different TLCs
(one for pheno and one for semantics).

Basic Types

• In the simplest approach to pheno, the pheno TLC has just one basic type
s (string). (Eventually it becomes necessary to add more basic pheno
types, e.g. for phonological words, clitics, pitch accents, etc.).

• The semantic TLC has the two basic types e (entities, the meanings of
(uses of) proper nouns), and p (propositions, the meanings of (uses of)
declarative sentences).

2



Defining the Full Set of Types of a TLC

• T is a type.

• If A and B are types, then so are:

– A→ B

– A ∧B
– A ∨B

• Nothing else is a type (in particular, we don’t make use of F, negation, or
quantifiers).

Note: The set of types is the same as the set of IPL formulas obtained by
taking the basic types to be the atomic formulas.

TLC Constants

Note: we write ‘` a : A’ to mean term a is of type A.

• Every TLC has the logical constant ` ∗ : T.

• Constants of the pheno TLC:

` e : s (null string)

` · : s→ s→ s (concatenation)

Note: usually written infix, e.g. s · t for (· s t)
constants for strings of single phonological words, e.g. ` pig : s for
the string of /pIg/.

• Constants of the semantic TLC, e.g.

` fido : e

` bark : e→ p

` maybe : p→ p

` bite : e→ e→ p

` give : e→ e→ e→ p

` believe : e→ p→ p

TLC Terms (1/2)

a. For each constant a of type A, ` a : A.

b. For each type A there are variables ` xiA : A (i ∈ ω).

c. If ` f : A→ B and ` a : A, then ` app(f, a) : B.

Note: app(f, a) is abbreviated to (f a).

d. If ` x : A is a variable and ` b : B, then ` λx .b : A→ B.

3



TLC Terms (2/2)

e. If ` a : A ∧B, then ` π(a) : A.

f. If ` a : A ∧B, then ` π′(a) : B.

g. If ` a : A and ` b : B, then ` (a, b) : A ∧B.

h. If ` x : A and ` y : B are variables, ` d : A ∨ B, ` c : C, and ` c′ : C,
then [case d (ι(x) c) (ι′(y) c′)] : C.

i. If ` a : A, then ` ιA,B (a) : A ∨B

j. If ` b : B, then ` ι′A,B (b) : A ∨B

Note: subscripted A,B on π, π′, ι, and ι′ are suppressed for the sake of
readability.

TLC Term Equivalences (1/3)

Here t, a, b, p, and f are metavariables ranging over terms.

a. Equivalences for the term constructors:

1. t ≡ ∗ (for t a term of type T)

2. π(a, b) ≡ a

3. π′(a, b) ≡ b

4. (π(p), π′(p)) ≡ p

TLC Term Equivalences (2/3)

b. Equivalences for the variable binder (‘lambda conversion’)

(α) λx .b ≡ λy .[x/y]b

(β) (λx .b) a ≡ [x/a]b

(η) λx .(f x) ≡ f , provided x is not free in f

Note 1: The notation ‘[x/a]b’ means the term resulting from substitution
in b of all free occurrences of x : A by a : A. This presupposes a is free for
x in b.

Note 2: ‘Free’ and ‘bound’ are defined just as in FOL, except that λ is
the variable binder rather than ∀ and ∃.

4



TLC Term Equivalences (3/3)

c. Equivalences of Equational Reasoning

(ρ) a ≡ a

(σ) If a ≡ a′, then a′ ≡ a.

(τ) If a ≡ a′ and a′ ≡ a′′, then a ≡ a′′.

(ξ) If b ≡ b′, then λx .b ≡ λx .b′.

(µ) If f ≡ f ′ and a ≡ a′, then (f a) ≡ (f ′ a′).

Set-Theoretic Interpretation of a TLC

A (set-theoretic) interpretation I of a TLC assigns to each type A a
set I(A) and to each constant ` a : A a member I(a) of I(A), subject to the
following constraints:

1. I(T) is a singleton

2. I(A ∧B) = I(A)× I(B)

3. I(A ∨B) = I(A) + I(B) (disjoint union)

4. I(A→ B) ⊆ I(A)→ I(B)

Note: The set inclusion in the last clause can be proper, as long as there are
enough functions to interpret all terms.

Assignments
An assignment relative to an interpretation is a function that maps each

variable to a member of the set that interprets that variable’s type.

Extending an Interpretation Relative to an Assignment

Given an assignment α relative to an interpretation I, there is a unique
extension of I, denoted by Iα, that assigns interpretations to all terms, such
that:

1. for each variable x, Iα(x) = α(x)

2. for each constant a, Iα(a) = I(a)

3. if ` a : A and ` b : B, then Iα((a, b)) = 〈Iα(a), Iα(b)〉
4. if ` p : A ∧B, then Iα(π(p)) = the first component of Iα(p); and Iα(π′(p))

= the second component of Iα(p)

5. if ` f : A→ B and ` a : A, then Iα((f a)) = (Iα(f))(Iα(a))

6. if ` b : B, then Iα(λx∈A.b) is the function from I(A) to I(B) that maps
each s ∈ I(A) to Iβ(b), where β is the assignment that coincides with α
except that β(x) = s.

5



Observations about Interpretations

• Two terms ` a : A and ` b : B of TLC are term-equivalent iff A = B and,
for any intepretation I and any assignment α relative to I, Iα(a) = Iα(b).

• Another way of stating the preceding is to say that term equivalence
(viewed as an equational proof system) is sound and complete for the
class of set-theoretic interpretations described earlier.

• For any term a, Iα(a) depends only on the restriction of α to the free
variables of a.

• In particular, if a is a closed (i.e. has no free variables), then Iα(a) is
independent of α so we can simply write I(a).

• Thus, an interpretation for the basic types and constants extends uniquely
to all types and all closed terms.

Sequent-Style ND with Proof Terms for IPL

• This is a style of ND designed to analyze not just provability, but also
proofs.

• It is an elaboration of the sequent-style ND for IPL already introduced.

• We’ll see that in addition to being thought of as denoting elements of
models, TLC terms can also be thought of as notations for proofs.

• This idea was first articulated by Curry (1934, 1958), then elaborated by
Howard (1969 [1980]), Tait (1967), etc..

• We’ll use this kind of ND for phenos and meanings in linear grammar
derivations.

Preliminary Definitions

1. A (TLC) term is called closed if it has no free variables.

2. A closed term is called a combinator if it contains no nonlogical con-
stants.

3. A type is said to be inhabited if there is a closed term of that type.

Curry-Howard Correspondence (1/2)

• Types are (the same thing as) formulas.

• Type constructors are logical connectives.

• (Equivalence classes of) terms are proofs.

6



• The free variables of a term are the undischarged hypotheses on which the
proof depends.

• The nonlogical constants of a term are the nonlogical axioms used in the
proof.

• A type is a theorem iff it is inhabited.

• A type is a pure theorem (requires no nonlogical axioms to prove it) iff it
is inhabited by a combinator.

Curry-Howard Correspondence (2/2)

• Application corresponds to Modus Ponens.

• Abstraction corresponds to Hypothetical Proof (discharge of hypothesis).

• Pairing corresponds to Conjunction Introduction.

• Projections correspond to Conjunction Eliminations.

• Case corresponds to Disjunction Elimination.

• Canoniical injections correspond to Disjunction Introductions

• Identification of free variables corresponds to collapsing of duplicate hy-
potheses (Contraction).

• Vacuous abstraction corresponds to discharge of a nonexistent hypothesis
(Weakening).

Notation for Sequent-Style ND with Proof Terms

Judgments are of the form Γ ` a : A, read ‘a is a proof of A with hypotheses
Γ’, where

1. A is a formula (= type)

2. a is a term (= proof)

3. Γ, the context of the judgment, is a set of variable/formula pairs of the
form x : A, with a distinct variable in each pair.

Axiom Schemas

Hypotheses:

x : A ` x : A

(x a variable of type A)

7



Nonlogical Axioms:

` a : A

(a a nonlogical constant of type A)

Logical Axiom:

` ∗ : T

Rule Schemas for Implication

→-Elimination or Modus Ponens:

Γ ` f : A→ B ∆ ` a : A
→E

Γ,∆ ` (f a) : B

This presupposes no variable occurs in both Γ and ∆.

→-Introduction or Hypothetical Proof:

x : A,Γ ` b : B
→I

Γ ` λx .b : A→ B

Other Rule Schemas
There are also schemas (which we will introduce as needed) for:

• pairing/conjunction introduction

• projections/conjunction elimination

• case/disjunction elimination

• canonical injections/disjunction introduction

• identifying variables/contraction

• useless hypotheses/weakening

8


