Pheno Technology

Carl Pollard
June 25, 2012

Beyond Strings

The

We can’t keep pretending that all there is to pheno is strings and functions
over strings.

Often we need to ask: strings of what? Syllables? Phonological words?
Intonation phrases?

And it’s not enough just to stick things together; often we need to know
‘how tightly’” or by ‘what flavor of glue’ things are stuck together.

For example, there is a difference between putting two phonological words
(a type we’ll now call p) next to each other and attaching a clitic (which
we’ll call type c) to a phonological word.

Also there is the issue of non-determinism: sometimes there is some free-
dom of variation in how things are ordered which does not affect the
meaning.

We need to develop some technology for talking about such things within
the higher-order pheno theory.
String Type Constructor

Instead of just having a type s of strings, we assume that for each pheno-
type A there is a type Strs of A-strings.

That is, Str is not a type, but rather a unary type constructor.

In terms of the Curry-Howard correspondence, Str can be thought of as
similar to a modal operator.

Fea:Stry (the null A-string)
b4 :Stry — Stry — Stru (concatenation, written infix)

FtoS4 : A — Stry maps each A to an A-string. Intuitively, this can be
thought of as a string of length one.

We usually drop the subscript ‘A’ when it can be inferred from the context.



Axiom Schemas for Strings
Our previous string axioms now must be schematized over the type metavari-
able A (here the variables are of type Stra):

FVaelz-y)-z=2a-(y-2)
FV,r-eq ==z

FV,esq - x==x

Notation for Phenotypes

We revive the notation s as an abbreviation for Stry, i.e. strings of phono-
logical words.

For any phenotype A, Stry — t is the type of A-languages, i.e. sets of
A-strings.

We write S as an abbreviation for s — t, the type of p-languages, i.e. sets
of strings of phonological words.

We write z as an abbreviation for Strg, i.e. strings of p-languages.

We write Z as an abbreviation for z — t, the type of S-languages, i.e. sets
of strings of p-languages!

Conventions for Pheno Variables

We use ¢ as a variable of type c.

We use p and ¢ as variables of type p.

We use s, t, and u as variables of type s.
We use P, (), and R as variables of type S.
We use w, z, y, and z as variables of type z.

We use W, X, Y, and Z as variables of type Z.

Representing the Natural Numbers

Often it’s useful to be able to identify a numerical position in a string or
to know the length of a string.

We can represent the natural numbers as the type Strp, which we abbre-
viate as n.

We represent 0 as er.

We define the successor function suc : n — n by



SUC = gef Ap-(tOS, *) - n

e Then we write 0, 1, 2, 3, etc. as abbreviations for ep, toS, *, *x, * *x %,
etc.

e If necessary we can define the usual arithmetic functions (addition, multi-
plication, exponential) by mimicking in HOL the way they are recursively
defined in set theory.

Abbreviations for Pheno Terms
e e, the null p-string, is abbreviated to e.
e -, concatenation of p-strings, is abbreviated to -.

e g, concatenation of S-strings, is abbreviated to o.

toS, : p — s is abbreviated to toS.

toSg : S — z is abbreviated to toZ.

For a phonological word foo:

— toS foo is abbreviated to foog
— the singleton p-language \s.s = foog is abbreviated to FOO
— toZ FOO is abbreviated FOO,

F toS : p — s (abbreviates toS,)

F toZ : S — z (abbreviates toSg)

If ag,...,a, are terms of type A (n > 0), then ay...a, abbreviates the
term (toS ag) - ... (toS a,) of type Stra.

Operations on p-Languages

F 0, : S (the empty p-language)

F 1, : S (the singleton language ;.5 = €)

Fe,:S— S — S (language fusion)
o =det APQs-Tiu-(P 1) AN(Q u) A (s=1-u)
FU,:S—S—S (language union)
Up =def Apgs-(P )V (Q s)
Fper, :s =S

For any p-string s, (per s) is the set of permutations of s.

All these have counterparts when p is replaced by any other pheno type
(most often, S).



Standard String Functions
The following are all schematized over a phenotype A.

cns : A — Stry — Stra: sticks an A onto the left edge of an A-string
fst : Str4 — A: returns the first A of a (non-null) A-string

rst : Stry — Stra returns all but the first A of a (non-null) A-string, in
the same order

snc : A — Stry — Stra: sticks an A onto the right edge of an A-string
Ist : Stry — A: returns the last A of a (non-null) A-string

tsr : Strg — Stry returns all but the last A of a (non-null) A-string, in
the same order

Some Relationships between String Functions
Vps.(cns p s) = (toS p) - s
Vps.(snc p s) = s - (toS p)
V,.(toS p) = (cns p e)
Vs.s = (cns (fst s) (rst s))

Vs.s = (snc (Ist s) (tsr s))

Note: the last two are not quite correct, because they have to be restricted
to the case where s is non-null.

This calls for a slightly more sophisticated approach in which each string
type is decomposed into a coproduct (i.e. disjoint union) of a null string type
and a non-null string type.

Linguification
eL:z—S
e This fuses a string of p-languages into a single language:
|— (L es) = 15
FVp..(L (cns P z)) = Pe (L 2)
e So for any p-language P:
(L (toZ P))=P
e And for any string of p-languages Py ... P, (n > 0),

(LP()Pn):P()..Pn



Compaction

ek:Z—S

e Compaction fuses an S-language (i.e. a set of strings of p languages) into a
single planguage by unioning together the linguifications of all the strings
in the set:

F (k 0z) = 0g
Here 07 is the empty set of strings of languages.

F V0K (ZU (M2 = w))) = (k Z) U (L w)

The Length of a String
We can define the length function len 4 : Str4 — n by the axioms:

F(lene)=0
F Vus.(len (cns z s)) = (suc (len s))
Cliticization

e Pro- and en-cliticization to a phonological word are distinguished contex-
tually, not typographically:

F # :c¢— p — p (procliticization, written infix)

F# :p — ¢ — p (encliticization, written infix)
e Likewise for pro- and en-cliticization to a p-string:

F 4+ : ¢ — s — s (procliticization, written infix)

F +:s — ¢ — s (encliticization, written infix)
which are defined, respectively, as follows:

+ = et Acs-cns c#(fst s) (rst s)
+ =det Acs-snc (Ist s)#c (tsr s)



