Pheno Technology

Carl Pollard

June 25, 2012

Beyond Strings

- We can't keep pretending that all there is to pheno is strings and functions over strings.
- Often we need to ask: strings of what? Syllables? Phonological words? Intonation phrases?
- And it's not enough just to stick things together; often we need to know 'how tightly' or by 'what flavor of glue' things are stuck together.
- For example, there is a difference between putting two phonological words (a type we'll now call p) next to each other and attaching a clitic (which we'll call type c) to a phonological word.
- Also there is the issue of *non-determinism*: sometimes there is some freedom of variation in how things are ordered which does not affect the meaning.
- We need to develop some technology for talking about such things within the higher-order pheno theory.

The String Type Constructor

- Instead of just having a type s of strings, we assume that for each phenotype A there is a type Str_A of A-strings.
- That is, Str is not a type, but rather a unary type constructor.
- In terms of the Curry-Howard correspondence, Str can be thought of as similar to a modal operator.
- $\vdash \mathbf{e}_A : \operatorname{Str}_A$ (the **null** A-string)
- $\vdash \cdot_A : \operatorname{Str}_A \to \operatorname{Str}_A \to \operatorname{Str}_A$ (concatenation, written infix)
- \vdash toS_A : A \rightarrow Str_A maps each A to an A-string. Intuitively, this can be thought of as a string of length one.
- We usually drop the subscript 'A' when it can be inferred from the context.

Axiom Schemas for Strings

Our previous string axioms now must be schematized over the type metavariable A (here the variables are of type Str_A):

$$\vdash \forall_{xyz} . (x \cdot y) \cdot z = x \cdot (y \cdot z)$$
$$\vdash \forall_x . x \cdot \mathbf{e}_A = x$$
$$\vdash \forall_x . \mathbf{e}_A \cdot x = x$$

Notation for Phenotypes

- We revive the notation s as an *abbreviation* for Str_p, i.e. strings of phonological words.
- For any phenotype A, $Str_A \to t$ is the type of A-languages, i.e. sets of A-strings.
- We write S as an abbreviation for s → t, the type of p-languages, i.e. sets of strings of phonological words.
- We write z as an abbreviation for Str_S, i.e. strings of p-languages.
- We write Z as an abbreviation for z → t, the type of S-languages, i.e. sets of strings of p-languages!

Conventions for Pheno Variables

- We use c as a variable of type c.
- We use p and q as variables of type p.
- We use s, t, and u as variables of type s.
- We use P, Q, and R as variables of type S.
- We use w, x, y, and z as variables of type z.
- We use W, X, Y, and Z as variables of type Z.

Representing the Natural Numbers

- Often it's useful to be able to identify a numerical position in a string or to know the length of a string.
- We can represent the natural numbers as the type Str_T , which we abbreviate as n.
- We represent 0 as \mathbf{e}_T .
- We define the $\mathbf{successor}$ function $\mathbf{suc}:n\to n$ by

$$\mathbf{suc} =_{\mathrm{def}} \lambda_n . (\mathbf{toS}_n *) \cdot n$$

- Then we write 0, 1, 2, 3, etc. as *abbreviations* for \mathbf{e}_T , $\mathbf{toS}_n *, **, ***$, etc.
- If necessary we can define the usual arithmetic functions (addition, multiplication, exponential) by mimicking in HOL the way they are recursively defined in set theory.

Abbreviations for Pheno Terms

- \mathbf{e}_{p} , the null p-string, is abbreviated to \mathbf{e} .
- \cdot_{p} , concatenation of p-strings, is abbreviated to \cdot .
- $\cdot_{\rm S}$, concatenation of S-strings, is abbreviated to \circ .
- $\mathbf{toS}_{p} : p \rightarrow s$ is abbreviated to \mathbf{toS} .
- $\mathbf{toS}_{S} : S \rightarrow z$ is abbreviated to \mathbf{toZ} .
- For a phonological word foo:
 - \mathbf{toS} foo is abbreviated to $\mathrm{foo}_{\mathrm{s}}$
 - the singleton p-language $\lambda_s \cdot s = foo_s$ is abbreviated to FOO
 - **toZ** FOO is abbreviated FOO_z
- \vdash toS : p \rightarrow s (abbreviates toS_p)
- \vdash toZ : S \rightarrow z (abbreviates toS_S)
- If a_0, \ldots, a_n are terms of type A (n > 0), then $a_0 \ldots a_n$ abbreviates the term $(\mathbf{toS} \ a_0) \cdot \ldots \cdot (\mathbf{toS} \ a_n)$ of type Str_A .

Operations on p-Languages

 $\vdash 0_{p} : S$ (the empty p-language)

 $\vdash 1_{\mathbf{p}} : \mathbf{S} \text{ (the singleton language } \lambda_s.s = \mathbf{e})$

 $\vdash \bullet_{p} : S \to S \to S$ (language fusion)

 $\bullet_{\mathbf{p}} =_{\mathrm{def}} \lambda_{PQs} \exists_{tu} (P \ t) \land (Q \ u) \land (s = t \cdot u)$

 $\vdash \cup_{p} : S \rightarrow S \rightarrow S$ (language union)

$$\cup_{\mathbf{p}} =_{\mathrm{def}} \lambda_{PQs} \cdot (P \ s) \lor (Q \ s)$$

 $\vdash \mathbf{per}_p: s \to S$

For any p-string s, (**per** s) is the set of **permutations** of s.

All these have counterparts when p is replaced by any other pheno type (most often, S).

Standard String Functions

The following are all schematized over a phenotype A.

 $\mathbf{cns}: A \to \operatorname{Str}_A \to \operatorname{Str}_A$: sticks an A onto the left edge of an A-string

fst : $Str_A \rightarrow A$: returns the first A of a (non-null) A-string

 $\mathbf{rst}:\operatorname{Str}_A\to\operatorname{Str}_A$ returns all but the first A of a (non-null) $A\text{-string, in the same order$

 $\operatorname{snc} : A \to \operatorname{Str}_A \to \operatorname{Str}_A$: sticks an A onto the right edge of an A-string

lst : $Str_A \rightarrow A$: returns the last A of a (non-null) A-string

 $\mathbf{tsr}:\operatorname{Str}_A\to\operatorname{Str}_A$ returns all but the last A of a (non-null) $A\text{-string, in the same order$

Some Relationships between String Functions

$$\begin{aligned} \forall_{ps}.(\mathbf{cns}\ p\ s) &= (\mathbf{toS}\ p) \cdot s \\ \forall_{ps}.(\mathbf{snc}\ p\ s) &= s \cdot (\mathbf{toS}\ p) \\ \forall_{p}.(\mathbf{toS}\ p) &= (\mathbf{cns}\ \mathbf{p}\ \mathbf{e}) \\ \forall_{s}.s &= (\mathbf{cns}\ (\mathbf{fst}\ s)\ (\mathbf{rst}\ s)) \\ \forall_{s}.s &= (\mathbf{snc}\ (\mathbf{lst}\ s)\ (\mathbf{tsr}\ s)) \end{aligned}$$

Note: the last two are not quite correct, because they have to be restricted to the case where s is non-null.

This calls for a slightly more sophisticated approach in which each string type is decomposed into a *coproduct* (i.e. disjoint union) of a null string type and a non-null string type.

Linguification

- $\bullet \ \vdash \mathbf{L}: z \to S$
- This fuses a string of p-languages into a single language:
 - $\vdash (\mathbf{L} \mathbf{e}_{\mathrm{S}}) = \mathbf{1}_{\mathrm{S}}$

```
\vdash \forall_{Pz}.(\mathbf{L} \ (\mathbf{cns} \ P \ z)) = P \bullet (\mathbf{L} \ z)
```

• So for any p-language *P*:

$$(\mathbf{L} \ (\mathbf{toZ} \ P)) = P$$

• And for any string of p-languages $P_0 \dots P_n$ (n > 0),

$$(\mathbf{L} P_0 \dots P_n) = P_0 \bullet \dots \bullet P_n$$

Compaction

- $\bullet \ \vdash \mathbf{k}: \mathrm{Z} \to \mathrm{S}$
- Compaction fuses an S-language (i.e. a *set* of strings of p languages) into a single planguage by unioning together the linguifications of all the strings in the set:

 $\vdash (\mathbf{k} \ \mathbf{0}_{\mathrm{Z}}) = \mathbf{0}_{\mathrm{S}}$

Here 0_Z is the empty set of strings of languages.

 $\vdash \forall_{Zw}.(\mathbf{k} \ (Z \cup (\lambda_z.z = w))) = (\mathbf{k} \ Z) \cup (\mathbf{L} \ w)$

The Length of a String

We can define the **length** function $\mathbf{len}_A : \operatorname{Str}_A \to \mathbf{n}$ by the axioms:

 $\vdash (\mathbf{len e}) = 0$

 $\vdash \forall_{xs}.(\mathbf{len} \ (\mathbf{cns} \ x \ s)) = (\mathbf{suc} \ (\mathbf{len} \ s))$

Cliticization

• Pro- and en-cliticization to a phonological word are distinguished contextually, not typographically:

 $\vdash #: c \rightarrow p \rightarrow p$ (**procliticization**, written infix)

 \vdash # : p \rightarrow c \rightarrow p (encliticization, written infix)

• Likewise for pro- and en-cliticization to a p-string:

 $\vdash +: c \to s \to s \text{ (procliticization, written infix)}$ $\vdash +: s \to c \to s \text{ (encliticization, written infix)}$

which are defined, respectively, as follows:

 $+ =_{\text{def}} \lambda_{cs} \cdot \mathbf{cns} \ c \#(\mathbf{fst} \ s) \ (\mathbf{rst} \ s)$ $+ =_{\text{def}} \lambda_{cs} \cdot \mathbf{snc} \ (\mathbf{lst} \ s) \#c \ (\mathbf{tsr} \ s)$