Pheno Technology

Carl Pollard

June 25, 2012

Beyond Strings

- We can't keep pretending that all there is to pheno is strings and functions over strings.
- Often we need to ask: strings of what? Syllables? Phonological words? Intonation phrases?
- And it's not enough just to stick things together; often we need to know 'how tightly' or by 'what flavor of glue' things are stuck together.
- For example, there is a difference between putting two phonological words (a type we'll now call p) next to each other and attaching a clitic (which we'll call type c) to a phonological word.
- Also there is the issue of non-determinism: sometimes there is some freedom of variation in how things are ordered which does not affect the meaning.
- We need to develop some technology for talking about such things within the higher-order pheno theory.

The String Type Constructor

- Instead of just having a type s of strings, we assume that for each phenotype A there is a type Str_{A} of A-strings.
- That is, Str is not a type, but rather a unary type constructor.
- In terms of the Curry-Howard correspondence, Str can be thought of as similar to a modal operator.
- $\vdash \mathbf{e}_{A}: \operatorname{Str}_{A}$ (the null A-string)
- $\vdash{ }_{A}: \operatorname{Str}_{A} \rightarrow \operatorname{Str}_{A} \rightarrow \operatorname{Str}_{A}$ (concatenation, written infix)
$-\vdash \operatorname{toS}_{A}: A \rightarrow \operatorname{Str}_{A}$ maps each A to an A-string. Intuitively, this can be thought of as a string of length one.
- We usually drop the subscript ' A ' when it can be inferred from the context.

Axiom Schemas for Strings

Our previous string axioms now must be schematized over the type metavariable A (here the variables are of type Str_{A}):

$$
\begin{aligned}
& \vdash \forall_{x y z} \cdot(x \cdot y) \cdot z=x \cdot(y \cdot z) \\
& \vdash \forall_{x} \cdot x \cdot \mathbf{e}_{A}=x \\
& \vdash \forall_{x} \cdot \mathbf{e}_{A} \cdot x=x
\end{aligned}
$$

Notation for Phenotypes

- We revive the notation s as an abbreviation for $\operatorname{Str}_{\mathrm{p}}$, i.e. strings of phonological words.
- For any phenotype $A, \operatorname{Str}_{A} \rightarrow \mathrm{t}$ is the type of A-languages, i.e. sets of A-strings.
- We write S as an abbreviation for $s \rightarrow t$, the type of p-languages, i.e. sets of strings of phonological words.
- We write z as an abbreviation for $\operatorname{Str}_{\mathrm{s}}$, i.e. strings of p-languages.
- We write Z as an abbreviation for $\mathrm{z} \rightarrow \mathrm{t}$, the type of S-languages, i.e. sets of strings of p-languages!

Conventions for Pheno Variables

- We use c as a variable of type c.
- We use p and q as variables of type p .
- We use s, t, and u as variables of type s .
- We use P, Q, and R as variables of type S .
- We use w, x, y, and z as variables of type z.
- We use W, X, Y, and Z as variables of type Z .

Representing the Natural Numbers

- Often it's useful to be able to identify a numerical position in a string or to know the length of a string.
- We can represent the natural numbers as the type Str_{T}, which we abbreviate as n .
- We represent 0 as \mathbf{e}_{T}.
- We define the successor function suc $: n \rightarrow n$ by

$$
\mathbf{s u c}={ }_{\operatorname{def}} \lambda_{n} \cdot\left(\mathbf{t o S}_{\mathrm{n}} *\right) \cdot n
$$

- Then we write $0,1,2,3$, etc. as abbreviations for $\mathbf{e}_{T}, \boldsymbol{t o S}_{\mathrm{n}} *, * *, * * *$, etc.
- If necessary we can define the usual arithmetic functions (addition, multiplication, exponential) by mimicking in HOL the way they are recursively defined in set theory.

Abbreviations for Pheno Terms

- \mathbf{e}_{p}, the null p-string, is abbreviated to \mathbf{e}.
- ${ }_{p}$, concatenation of p-strings, is abbreviated to \cdot.
- $\cdot \mathrm{s}$, concatenation of S-strings, is abbreviated to o.
- $\boldsymbol{\operatorname { t o }} \mathbf{S}_{\mathrm{p}}: \mathrm{p} \rightarrow \mathrm{s}$ is abbreviated to toS.
- $\boldsymbol{t o S}_{\mathrm{S}}: \mathrm{S} \rightarrow \mathrm{z}$ is abbreviated to toZ.
- For a phonological word foo:
- toS foo is abbreviated to foo $_{s}$
- the singleton p-language $\lambda_{s} . s=$ foo $_{\mathrm{s}}$ is abbreviated to FOO
- toZ FOO is abbreviated $\mathrm{FOO}_{\mathrm{z}}$
- \vdash toS $: \mathrm{p} \rightarrow \mathrm{s}\left(\right.$ abbreviates $\left.\operatorname{toS}_{\mathrm{p}}\right)$
- \vdash toZ $: \mathrm{S} \rightarrow \mathrm{z}$ (abbreviates $\operatorname{toS}_{\mathrm{S}}$)
- If a_{0}, \ldots, a_{n} are terms of type $A(n>0)$, then $a_{0} \ldots a_{n}$ abbreviates the term $\left(\boldsymbol{t o S} a_{0}\right) \cdot \ldots \cdot\left(\boldsymbol{t o S} a_{n}\right)$ of type Str_{A}.

Operations on p-Languages

$\vdash 0_{\mathrm{p}}: \mathrm{S}$ (the empty p-language)
$\vdash 1_{\mathrm{p}}: \mathrm{S}$ (the singleton language $\left.\lambda_{s} . s=\mathbf{e}\right)$
$\vdash \bullet_{\mathrm{p}}: \mathrm{S} \rightarrow \mathrm{S} \rightarrow \mathrm{S}$ (language fusion)

$$
\bullet_{\mathrm{p}}={ }_{\operatorname{def}} \lambda_{P Q s} \cdot \exists_{t u} \cdot(P t) \wedge(Q u) \wedge(s=t \cdot u)
$$

$\vdash \cup_{\mathrm{p}}: \mathrm{S} \rightarrow \mathrm{S} \rightarrow \mathrm{S}$ (language union)

$$
\cup_{\mathrm{p}}={ }_{\operatorname{def}} \lambda_{P Q s} .(P s) \vee(Q s)
$$

$\vdash \operatorname{per}_{\mathrm{p}}: \mathrm{s} \rightarrow \mathrm{S}$
For any p-string s, (per $s)$ is the set of permutations of s.
All these have counterparts when p is replaced by any other pheno type (most often, S).

Standard String Functions

The following are all schematized over a phenotype A.
cns : $A \rightarrow \operatorname{Str}_{A} \rightarrow \operatorname{Str}_{A}:$ sticks an A onto the left edge of an A-string
fst : $\operatorname{Str}_{A} \rightarrow A$: returns the first A of a (non-null) A-string
rst : $\operatorname{Str}_{A} \rightarrow \operatorname{Str}_{A}$ returns all but the first A of a (non-null) A-string, in the same order
snc : $A \rightarrow \operatorname{Str}_{A} \rightarrow \operatorname{Str}_{A}$: sticks an A onto the right edge of an A-string
lst : $\operatorname{Str}_{A} \rightarrow A$: returns the last A of a (non-null) A-string
tsr : $\operatorname{Str}_{A} \rightarrow \operatorname{Str}_{A}$ returns all but the last A of a (non-null) A-string, in the same order

Some Relationships between String Functions

$$
\begin{aligned}
& \forall_{p s} .(\mathbf{c n s} p s)=(\boldsymbol{\operatorname { t o S }} p) \cdot s \\
& \forall_{p s} .(\operatorname{snc} p s)=s \cdot(\boldsymbol{\operatorname { t o S }} p) \\
& \forall_{p} .(\mathbf{t o S} p)=(\mathbf{c n s} \mathrm{p} \mathbf{e}) \\
& \forall_{s} . s=(\mathbf{c n s}(\mathbf{f s t} s)(\mathbf{r s t} s)) \\
& \forall_{s} . s=(\mathbf{s n c}(\mathbf{l} \mathbf{s t} s)(\mathbf{t s r} s))
\end{aligned}
$$

Note: the last two are not quite correct, because they have to be restricted to the case where s is non-null.

This calls for a slightly more sophisticated approach in which each string type is decomposed into a coproduct (i.e. disjoint union) of a null string type and a non-null string type.

Linguification

- $\vdash \mathbf{L}: \mathrm{z} \rightarrow \mathrm{S}$
- This fuses a string of p-languages into a single language:
$\vdash\left(\mathbf{L} \mathbf{e}_{\mathrm{S}}\right)=1_{\mathrm{S}}$

$$
\vdash \forall_{P z} \cdot(\mathbf{L}(\mathbf{c n s} P z))=P \bullet(\mathbf{L} z)
$$

- So for any p-language P :

$$
(\mathbf{L}(\boldsymbol{\operatorname { t o Z }} P))=P
$$

- And for any string of p-languages $P_{0} \ldots P_{n}(n>0)$,

$$
\left(\mathbf{L} P_{0} \ldots P_{n}\right)=P_{0} \bullet \ldots \bullet P_{n}
$$

Compaction

- $\vdash \mathrm{k}: \mathrm{Z} \rightarrow \mathrm{S}$
- Compaction fuses an S-language (i.e. a set of strings of planguages) into a single planguage by unioning together the linguifications of all the strings in the set:
$\vdash\left(\mathbf{k} 0_{\mathrm{Z}}\right)=0_{\mathrm{S}}$
Here 0_{Z} is the empty set of strings of languages.
$\vdash \forall_{z w} \cdot\left(\mathbf{k}\left(Z \cup\left(\lambda_{z} . z=w\right)\right)\right)=(\mathbf{k} Z) \cup(\mathbf{L} w)$

The Length of a String

We can define the length function $\operatorname{len}_{A}: \operatorname{Str}_{A} \rightarrow \mathrm{n}$ by the axioms:

$$
\begin{aligned}
& \vdash(\text { len } \mathbf{e})=0 \\
& \vdash \forall_{x s} \cdot(\mathbf{l e n}(\mathbf{c n s} x s))=(\operatorname{suc}(\operatorname{len} s))
\end{aligned}
$$

Cliticization

- Pro- and en-cliticization to a phonological word are distinguished contextually, not typographically:

$$
\begin{aligned}
& \vdash \#: \mathrm{c} \rightarrow \mathrm{p} \rightarrow \mathrm{p} \text { (procliticization, written infix) } \\
& \vdash \#: \mathrm{p} \rightarrow \mathrm{c} \rightarrow \mathrm{p} \text { (encliticization, written infix) }
\end{aligned}
$$

- Likewise for pro- and en-cliticization to a p-string:

$$
\begin{aligned}
& \vdash+: \mathrm{c} \rightarrow \mathrm{~s} \rightarrow \mathrm{~s} \text { (procliticization, written infix) } \\
& \vdash+: \mathrm{s} \rightarrow \mathrm{c} \rightarrow \mathrm{~s} \text { (encliticization, written infix) }
\end{aligned}
$$

which are defined, respectively, as follows:

$$
\begin{aligned}
& +={ }_{\operatorname{def}} \lambda_{c s} \cdot \mathbf{c n s} c \#(\mathbf{f s t} s)(\mathbf{r s t} s) \\
& +==_{\operatorname{def}} \lambda_{c s} \cdot \mathbf{s n c}(\mathbf{l s t} s) \# c(\mathbf{t s r} s)
\end{aligned}
$$

