
Pheno Technology

Carl Pollard

June 25, 2012

Beyond Strings

• We can’t keep pretending that all there is to pheno is strings and functions
over strings.

• Often we need to ask: strings of what? Syllables? Phonological words?
Intonation phrases?

• And it’s not enough just to stick things together; often we need to know
‘how tightly’ or by ‘what flavor of glue’ things are stuck together.

• For example, there is a difference between putting two phonological words
(a type we’ll now call p) next to each other and attaching a clitic (which
we’ll call type c) to a phonological word.

• Also there is the issue of non-determinism: sometimes there is some free-
dom of variation in how things are ordered which does not affect the
meaning.

• We need to develop some technology for talking about such things within
the higher-order pheno theory.

The String Type Constructor

• Instead of just having a type s of strings, we assume that for each pheno-
type A there is a type StrA of A-strings.

• That is, Str is not a type, but rather a unary type constructor.

• In terms of the Curry-Howard correspondence, Str can be thought of as
similar to a modal operator.

• ` eA : StrA (the null A-string)

• ` ·A : StrA → StrA → StrA (concatenation, written infix)

• ` toSA : A → StrA maps each A to an A-string. Intuitively, this can be
thought of as a string of length one.

• We usually drop the subscript ‘A’ when it can be inferred from the context.

1



Axiom Schemas for Strings
Our previous string axioms now must be schematized over the type metavari-

able A (here the variables are of type StrA):

` ∀xyz .(x · y) · z = x · (y · z)

` ∀x .x · eA = x

` ∀x .eA · x = x

Notation for Phenotypes

• We revive the notation s as an abbreviation for Strp, i.e. strings of phono-
logical words.

• For any phenotype A, StrA → t is the type of A-languages, i.e. sets of
A-strings.

• We write S as an abbreviation for s→ t, the type of p-languages, i.e. sets
of strings of phonological words.

• We write z as an abbreviation for StrS, i.e. strings of p-languages.

• We write Z as an abbreviation for z→ t, the type of S-languages, i.e. sets
of strings of p-languages!

Conventions for Pheno Variables

• We use c as a variable of type c.

• We use p and q as variables of type p.

• We use s, t, and u as variables of type s.

• We use P , Q, and R as variables of type S.

• We use w, x, y, and z as variables of type z.

• We use W , X, Y , and Z as variables of type Z.

Representing the Natural Numbers

• Often it’s useful to be able to identify a numerical position in a string or
to know the length of a string.

• We can represent the natural numbers as the type StrT , which we abbre-
viate as n.

• We represent 0 as eT .

• We define the successor function suc : n→ n by

2



suc =def λn .(toSn ∗) · n

• Then we write 0, 1, 2, 3, etc. as abbreviations for eT , toSn ∗, ∗∗, ∗ ∗ ∗,
etc.

• If necessary we can define the usual arithmetic functions (addition, multi-
plication, exponential) by mimicking in HOL the way they are recursively
defined in set theory.

Abbreviations for Pheno Terms

• ep, the null p-string, is abbreviated to e.

• ·p, concatenation of p-strings, is abbreviated to ·.

• ·S, concatenation of S-strings, is abbreviated to ◦.

• toSp : p→ s is abbreviated to toS.

• toSS : S→ z is abbreviated to toZ.

• For a phonological word foo:

– toS foo is abbreviated to foos

– the singleton p-language λs .s = foos is abbreviated to FOO

– toZ FOO is abbreviated FOOz

• ` toS : p→ s (abbreviates toSp)

• ` toZ : S→ z (abbreviates toSS)

• If a0 , . . . , an are terms of type A (n > 0), then a0 . . . an abbreviates the
term (toS a0 ) · . . . · (toS an) of type StrA.

Operations on p-Languages

` 0p : S (the empty p-language)

` 1p : S (the singleton language λs .s = e)

` •p : S→ S→ S (language fusion)

•p =def λPQs .∃tu .(P t) ∧ (Q u) ∧ (s = t · u)

` ∪p : S→ S→ S (language union)

∪p =def λPQs .(P s) ∨ (Q s)

` perp : s→ S

For any p-string s, (per s) is the set of permutations of s.

All these have counterparts when p is replaced by any other pheno type
(most often, S).

3



Standard String Functions
The following are all schematized over a phenotype A.

cns : A→ StrA → StrA: sticks an A onto the left edge of an A-string

fst : StrA → A: returns the first A of a (non-null) A-string

rst : StrA → StrA returns all but the first A of a (non-null) A-string, in
the same order

snc : A→ StrA → StrA: sticks an A onto the right edge of an A-string

lst : StrA → A: returns the last A of a (non-null) A-string

tsr : StrA → StrA returns all but the last A of a (non-null) A-string, in
the same order

Some Relationships between String Functions

∀ps .(cns p s) = (toS p) · s

∀ps .(snc p s) = s · (toS p)

∀p .(toS p) = (cns p e)

∀s .s = (cns (fst s) (rst s))

∀s .s = (snc (lst s) (tsr s))

Note: the last two are not quite correct, because they have to be restricted
to the case where s is non-null.

This calls for a slightly more sophisticated approach in which each string
type is decomposed into a coproduct (i.e. disjoint union) of a null string type
and a non-null string type.

Linguification

• ` L : z→ S

• This fuses a string of p-languages into a single language:

` (L eS) = 1S

` ∀Pz .(L (cns P z)) = P • (L z)

• So for any p-language P :

(L (toZ P )) = P

• And for any string of p-languages P 0 . . . Pn (n > 0),

(L P 0 . . . Pn) = P 0 • . . . • Pn

4



Compaction

• ` k : Z→ S

• Compaction fuses an S-language (i.e. a set of strings of p languages) into a
single planguage by unioning together the linguifications of all the strings
in the set:

` (k 0Z) = 0S

Here 0Z is the empty set of strings of languages.

` ∀Zw .(k (Z ∪ (λz .z = w))) = (k Z) ∪ (L w)

The Length of a String
We can define the length function lenA : StrA → n by the axioms:

` (len e) = 0

` ∀xs .(len (cns x s)) = (suc (len s))

Cliticization

• Pro- and en-cliticization to a phonological word are distinguished contex-
tually, not typographically:

` # : c→ p→ p (procliticization, written infix)

` # : p→ c→ p (encliticization, written infix)

• Likewise for pro- and en-cliticization to a p-string:

` + : c→ s→ s (procliticization, written infix)

` + : s→ c→ s (encliticization, written infix)

which are defined, respectively, as follows:

+ =def λcs .cns c#(fst s) (rst s)

+ =def λcs .snc (lst s)#c (tsr s)

5


