Parasitic Scope: The Case of Same and Different

Carl Pollard
June 20, 2012

A Multiplicity of Same/Different (S/D) Constructions

1. Anaphora
a. Chris saw a pangolin in Westerville. Then Michael saw the (very/exact) same pangolin in Hilliard.
b. Chris saw a pangolin in Westerville. Then Michael saw a (completely) different pangolin in Hilliard.
2. Associate-Remnant
a. MANJUAN saw the same pangolin as TYLER.
b. MANJUAN saw a different pangolin than/from TYLER.
3. Ellipsis
a. Michelle patted the same pangolin that/as Murat kicked.
b. Michelle patted a different pangolin than Murat kicked.
4. Plural Associate (Parasitic Scope)
a. MAX AND ALEX saw the same pangolin.
b. MAX AND ALEX saw different pangolins.

S/D Expression and Associate in Different Positions

5. YUSUKE AND BOB reviewed the same abstract/different abstracts.
6. The same donkey/different donkeys kicked PEDRO AND JUAN.
7. Kerry voted FOR AND AGAINST the same bill/different bills.
8. The same professor/different professors WROTE AND REVIEWED this hoax article.
9. The same pangolin/different pangolins PAWED CRAIGE AND LICKED JUDITH.
10. Ambiguity
a. KIM AND SANDY gave the same present/different presents to Kevin and Dana.
b. Kim and Sandy gave the same present/different presents to KEVIN AND DANA.

SD Construction with Plural Plurals

11. [KIM AND SANDY] AND [KEVIN AND DANA] met on the same day/different days.

SD Construction with Exotic Coordinations

12. Nonconstituent Coordination

The same pangolin/different pangolins pawed JUSTIN TIMBERLAKE ON MONDAY AND JUSTIN BIEBER ON TUESDAY.
13. Right Node Raising

KIM SUBMITTED, AND SANDY REVIEWED, the same grant proposal/different grant proposals.
14. Gapping

* KIM gave the same present/different presents TO SANDY, AND KEVIN TO DANA.

The Gist of the Analysis (1/3)
As an example, we analyze
16. Mo and Jo saw the same cat.

- Every S/D sentence is made up of three pieces:
- the \mathbf{S} / \mathbf{D} expression, here the same cat, which in turn is made up of the same (treated as a single lexical item) and its (first) argument N cat
- the associate, always a plural (or a quantifer ranging over plurals), here the plural NP Mo and Jo.
- the continuation, a functional abstraction of the rest of the sentence, i.e. a constituent of type NP $\multimap \mathrm{NP} \multimap \mathrm{S}$ formed by introducing traces (hypothetical NPs) in the positions of the S/D expression and the associate) and then binding them using hypothetical proof. Here, the transitive verb saw is already such a constituent to begin with.

The Gist of the Analysis (2/3)

- The analysis is driven by the lexical entry for the same, which takes as arguments, in this order:
- the N cat
- the NP $\multimap \mathrm{NP} \multimap \mathrm{S}$ continuation saw
- the plural associate NP Mo and Jo
- This is the lexical entry:
$\vdash \lambda_{s r t} . r t$ the \cdot same $\cdot s ; \mathrm{N} \multimap(\mathrm{NP} \multimap \mathrm{NP} \multimap \mathrm{S}) \multimap \mathrm{NP} \multimap \mathrm{S} ;$ same
where s and t are variables of type s (string) and r is a variable of type $\mathrm{s} \rightarrow \mathrm{s} \rightarrow \mathrm{s}$.
- Here same is a semantic term of type
$(\mathrm{e} \rightarrow \mathrm{t}) \rightarrow(\mathrm{e} \rightarrow \mathrm{e} \rightarrow \mathrm{t}) \rightarrow \mathrm{e}^{\prime} \rightarrow \mathrm{t}$
where e^{\prime} is the type of plural entities (for each semantic type A there is a type A^{\prime} for the A-pluralities).

The Gist of the Analysis (3/3)

- In our example, the three arguments taken by the same are:

$$
\begin{aligned}
& \vdash \text { cat; } \mathrm{N} ; \text { cat } \\
& \vdash \lambda_{s t} \cdot s \cdot \text { saw } \cdot t ; \mathrm{NP} \multimap \mathrm{NP} \multimap \mathrm{~S} ; \text { see } \\
& \vdash \mathrm{mo} \cdot \text { and } \cdot \mathrm{jo} ; \mathrm{NP} ; \mathrm{m}+\mathrm{j}
\end{aligned}
$$

- Successively applying the same to these three arguments by three modus ponens steps results in the sign
\vdash mo \cdot and \cdot jo \cdot saw \cdot the \cdot same \cdot cat; S; same cat see $m+j$
- All that remains is to provide the right definition of the term same.
- Once that (and many lambda conversions) are done, it will be clear that (16) is true just in case there is a constant function f from the doubleton set of Mo and Jo to the set of cats such that for each member x of the former set, x saw $f(x)$.

The Meaning of the same (1/3)
Here and henceforth, A and B are metavariables ranging over semantic types.

- By an (extensional) relation between A and B, we mean something of type $A \rightarrow B \rightarrow \mathrm{t}$.
- For expository simplicity, we consider only relations between e and e.
- The functions defined below are all polymorphic with respect to the type parameters A and B, but (again for expository simplicity) we give the definitions only for the case $A=B=\mathrm{e}$.
- In these definitions, the variable s is of type $A \rightarrow B \rightarrow \mathrm{t}$ (here, $\mathrm{e} \rightarrow \mathrm{e} \rightarrow \mathrm{t}$).

The Meaning of the same (2/3)
parfun $\left.={ }_{\operatorname{def}} \lambda_{S} \cdot \forall_{x y z} \cdot((S x y) \wedge(S x z)) \rightarrow(y=z)\right)$
parfun S says that the relation S is (curry of the characteristic function of the graph of) a (partial) function.
$\operatorname{dom}={ }_{\text {def }} \lambda_{S x} \cdot \exists_{y} \cdot S x y$
dom S is the (characteristic function of the) domain of S.
$\operatorname{ran}={ }_{\operatorname{def}} \lambda_{S} \cdot \lambda_{y} \cdot \exists_{x} \cdot S x y$
ran S is the (characteristic function of the) range of S.
const $={ }_{\operatorname{def}} \lambda_{S} \cdot \exists_{z} \cdot(\operatorname{ran} S)=\lambda_{x} \cdot x=z$
const S says that S is constant, i.e. its range is a singleton.
$\mathbf{i n j}={ }_{\text {def }} \lambda_{S} \cdot \forall_{x y z} \cdot((S x z) \wedge(S y z)) \rightarrow(x=y)$
inj S says that S is injective, i.e. each member of the range is related to exactly one member of the domain.

The Meaning of the same (3/3)

- We assume there is a polymorphic function at $_{A}: A^{\prime} \rightarrow A \rightarrow \mathrm{t}$ that maps each plurality to the (characteristic function of) the set of its atoms.
- For example:

$$
\vdash(\text { at } \mathrm{m}+\mathrm{j})=\lambda_{x} \cdot(x=\mathrm{m}) \vee(x=\mathrm{j})
$$

- $\operatorname{same}={ }_{\operatorname{def}} \lambda_{P R X} \cdot \exists_{S} \cdot($ parfun $S) \wedge($ const $S) \wedge((\operatorname{dom} S)=($ at $X)) \wedge$ $\forall_{x y} \cdot(S x y) \rightarrow((P y) \wedge(R x y))$

Here the types of the variables are: $x, y: \mathrm{e} ; X: \mathrm{e}^{\prime} ; P: \mathrm{e} \rightarrow \mathrm{t}$; and $R, S: \mathrm{e} \rightarrow \mathrm{e} \rightarrow \mathrm{t}$.

- It's easy to verify that the meaning term (same cat see $m+j$) reduces to:
$\exists_{S} \cdot($ parfun $S) \wedge($ const $S) \wedge(\operatorname{dom} S)=\left(\lambda_{x} \cdot x=\mathrm{j} \vee x=\mathrm{m}\right) \wedge \forall_{x y} .(S x y) \rightarrow$ $(($ cat $y) \wedge($ see $x y))$

Extensions (1/2)

- The other the same examples in (5-9) are handled by varying the type B for the plurality type B^{\prime}.
- Examples with different instead of the same are analyzed analogously, with the following lexical entry for different:
$\vdash \lambda_{s r t} . r t$ different $\cdot s ; \mathrm{N}^{\prime} \multimap(\mathrm{NP} \multimap \mathrm{NP} \multimap \mathrm{S}) \multimap \mathrm{NP} \multimap \mathrm{S}$; diff
where N^{\prime} is the category of plural common nouns and
$\operatorname{diff}={ }_{\operatorname{def}} \lambda_{P R X} \cdot \exists_{S} \cdot($ parfun $S) \wedge(\operatorname{inj} S) \wedge((\operatorname{dom} S)=($ at $X)) \wedge$ $\forall_{x y} \cdot(S x y) \rightarrow((P y) \wedge(R x y))$
- This is the same as the definition of same with const (constant) replaced by inj (injective).

Extensions (2/2)

- Smith and Pollard (2012) show how to adapt this analysis to cover internal readings of superlatives such as
(Of all the dogs) FIDO chased the most cats.
where the Fido is the member of the contextually determined set of alternatives that maximizes the function mapping each member to the number of cats that it chased.

