Visual Attention in Human-Robot Interaction

When robot gaze helps human listeners

Gaze in HRI

- Can robot gaze fulfill similar functions as human gaze?
 - * Coordinating dialogue (e.g. Cassell et al. '99)
 - Information structure (e.g. Mutlu et al. '06)
 - * Engagement (e.g. Sidner et al.'05, Breazeal et al.'06, Kuno et al.'07, Yamazaki et al.'08)
 - Visual reference, grounding
 - Signaling and checking understanding / joint attention

People do...

- …look at an object they are about to mention
 - * (about 1 sec before mentioning)
- * ...look at an object that someone else mentions
 - * (about 200-500 msec after mentioning)
- …look at where the speaker looks

Should robots do...

- …look at an object they are about to mention?
 - * (about 1 sec before mentioning)
- …look at an object that someone else mentions?
 - * (about 200-500 msec after mentioning)
- …look at where the speaker looks?

Should robots do...

- …look at an object they are about to mention?
 - (about 1 sec before mentioning)
- Will people look at an object the robot mentions?
 - (about 200-500 msec after mentioning)
- Will people look at where the robot looks?

Research Questions

- * Is cognitively-motivated robot gaze interpreted as a visual reference? Is it beneficial for interaction?
 - Can it be used to quickly identify intended referents?
- * How are visual and linguistic references integrated?

Multimodal Reference

Experiment 1

Objectives

- Do people follow robot gaze at all?
- If so, this could indicate:
 - An automatic response to robot gaze when it works as attention directing cue, or
 - * A response based on the understanding that the robot also *sees*, i.e., has visual attention -> Does that entail *joint attention*?
- * Does gaze as a referential cue affect comprehension of linguistic reference?

Example: true - congruent

		Spoken Sentence:
Statement	Gaze	Gaze towards:
TRUE	congruent	The cone is taller than the heart that's silver. <cone> <silver heart=""></silver></cone>
TRUE	incongruent	The cone is taller than the heart that's silver. <cone> <green heart=""></green></cone>
TRUE	neutral	The cone is taller than the heart that's silver.
FALSE	congruent	The cone is taller than the heart that's green. <cone> <green heart=""></green></cone>
FALSE	incongruent	The cone is taller than the heart that's green. <cone> <silver heart=""></silver></cone>
FALSE	neutral	The cone is taller than the heart that's green.

		Spoken Sentence:
Statement	Gaze	Gaze towards:
TRUE	congruent	The cone is taller than the heart that's silver . <cone> <silver heart=""></silver></cone>
TRUE	incongruent	The cone is taller than the heart that's silver . <cone> <green heart=""></green></cone>
TRUE	neutral	The cone is taller than the heart that's silver .
FALSE	congruent	The cone is taller than the heart that's green. <cone> <green heart=""></green></cone>
FALSE	incongruent	The cone is taller than the heart that's green. <cone> <silver heart=""></silver></cone>
FALSE	neutral	The cone is taller than the heart that's green.

		Spoken Sentence:
Statement	Gaze	Gaze towards:
TRUE	congruent	The cone is taller than the heart that's silver. <cone> <silver heart=""></silver></cone>
TRUE	incongruent	The cone is taller than the heart that's silver. <cone> <green heart=""></green></cone>
TRUE	neutral	The cone is taller than the heart that's silver.
FALSE	congruent	The cone is taller than the heart that's green . <cone> <green heart=""></green></cone>
FALSE	incongruent	The cone is taller than the heart that's green . <cone> <silver heart=""></silver></cone>
FALSE	neutral	The cone is taller than the heart that's green .

		Spoken Sentence:
Statement	Gaze	Gaze towards:
TRUE	congruent	The cone is taller than the heart that's silver . <pre><cone> <silver heart=""></silver></cone></pre>
TRUE	incongruent	The cone is taller than the heart that's silver. <pre><cone> < green heart></cone></pre>
TRUE	neutral	The cone is taller than the heart that's silver.
FALSE	congruent	The cone is taller than the heart that's green . <cone> < green heart></cone>
FALSE	incongruent	The cone is taller than the heart that's green. <cone> <silver heart=""></silver></cone>
FALSE	neutral	The cone is taller than the heart that's green.

		Spoken Sentence:
Statement	Gaze	Gaze towards:
TRUE	congruent	The cone is taller than the heart that's silver. <cone> <silver heart=""></silver></cone>
TRUE	incongruent	The cone is taller than the heart that's silver . <cone> < green heart></cone>
TRUE	neutral	The cone is taller than the heart that's silver.
FALSE	congruent	The cone is taller than the heart that's green. <cone> <green heart=""></green></cone>
FALSE	incongruent	The cone is taller than the heart that's green . <cone> <silver heart=""></silver></cone>
FALSE	neutral	The cone is taller than the heart that's green.

False Congruent vs. Incongruent

Design Details

- * Task: Validate the robot's statement by pressing a button (correct/false) as fast and as accurate as possible
- 48 subjects
- * 6 conditions
 - * 24 items + 48 fillers = 72 trials
- Logistic Regression (inspection probability)
- Linear Mixed-Effects Models (response time)

Eye-Movements

Results: Eye Movements

True - congruent

True - incongruent

Results: Response Time

Results

- Gaze and utterance mediated eye-movements
 - People follow robot gaze to objects & look at mentioned objects
 - More frequent looks to object that was looked at compared to shape competitor that was not looked at
- * When robot gazed and mentioned the same object (compared to different objects), people were faster to validate the utterance.
 - Match/mismatch of people hypotheses with actual utterance?
- Congruent gaze facilitates comprehension, incongruent gaze disrupts comprehension!

Experiment 2

Objectives

- * Congruent Gaze facilitated comprehension, incongruent gaze disrupted comprehension!
- Is this effect a result of
 - * Intention Recognition: Gaze reflects referential intentions
 - * Attention Direction: Gaze directs visual attention maybe even automatically
- * Do people believe that robot gaze signals an intention of the robot to mention it? What do they believe when gaze and utterance are incongruent?
 - * How to assess peoples beliefs (indirectly)?

False - Neutral Gaze

"The cone is taller than the heart that's green."

(Predicted) Correction:

- The cone is shorter than the heart that's green.
- The cone is taller than the heart that's <u>silver</u>.

False - Congruent Gaze

"The cone is taller than the heart that's green."

(Predicted) Correction:

- The cone is shorter than the heart that's green.
- The cone is taller than the heart that's <u>silver</u>.

False - Incongruent Gaze

"The cone is taller than the heart that's green."

(Predicted) Correction:

- The cone is <u>shorter</u> than the heart that's green.
- The cone is taller than the heart that's <u>silver</u>.

Design Details

- * Task: Correct robot's mistake by giving a sentence that would have been correct to say (starting with same NP)
- 36 subjects
- 6 conditions
 - * 24 items + 48 fillers = 72 trials
- Logistic Regression (produced sentences contain target/ competitor & inspection probabilities)

Results

- Eye-Movements: Gaze and utterance mediated eye-movements
 - * People follow robot gaze to objects & look at mentioned objects
- Produced Corrections: Robot gaze affects what people correct

Robot Utterance: "The cone is taller than the heart that's green."

Conclusions (Exp 1 & 2)

- People follow robot gaze
 - * Consistent with results on reflexive visual orienting in response to human eyes (Driver et al '99, Langton & Bruce '99, Friesen & Kingstone '98)
- * Robot gaze influences utterance comprehension!
 - * 'Long-term' effect of gaze-following (our RT data vs. cueing effect)
 - * Integration of multi-modal references:
 - * Gaze influences (intended) referent resolution!

Gaze as Reflexive Cue

- * Stimulus onset asychrony (100/1000ms delay before target onset)
- * For 100ms: Response faster for cued target
- * For 1000ms: No cueing effect

Conclusions (Exp 1 & 2)

- People robustly follow robot gaze
 - * Consistent with results on reflexive visual orienting in response to gaze cues (Driver et al '99, Langton & Bruce '99, Friesen & Kingstone '98)
- Robot gaze also influences utterance comprehension!
 - * 'Long-term' effect of gaze-following (our RT data vs. short-lived cueing effect)
 - * Integration of multi-modal references:
 - Gaze influences resolution of (intended) referents!

Conclusions (Exp 1 & 2)

- Gaze influences resolution of (intended) referents!
 - * Gaze affects people's beliefs about referential intentions, i.e. supports *Intentional Account*
 - * Could a purely *attentional* explanation account for these phenomena?

Synchronicity

- * Does gaze communicate speaker's goals and referential intentions any time or does its occurrence define its meaning?
- Inferred referential intentions would be expected to be more persistent than a purely attentional effect of gaze
- * Is chronological/sequential order and temporal alignment critical?
 - For indirect gaze cues (Kreysa et al '09)
 - Direct versus indirect gaze cue?
 - * Temporal vs. sequential alignment?

Alignment of Indirect Cues

(Kreysa et al '09)

- Task: Identify described objects as fast as possible
- Record initial speaker gaze
- Display to listeners
- Measure clicking latencies

NB: brackets indicate significant planned comparisons, p < .05

Experiment 3

Objectives

- * How flexible are people in using gaze cues? What role does synchronization play?
- * The temporal and sequential flexibility will reveal insights into the nature of this cue:
 - Intentional: Reflects referential intentions
 - Purely Attentional: Directs visual attention maybe even automatically
- Temporal and sequential synchronization will be manipulated

- Temporally synchronized vs. preceding
 - * <cylinder><pyramid> The cylinder is taller than the pink pyramid.
 - <cylinder> The cylinder is taller than the <pyramid> pink pyramid.
- * Sequentially original/congruent vs. reverse
 - <cylinder> The cylinder is taller than the <pyramid> pink pyramid.
 - <cylinder> The pyramid is shorter than the <pyramid> cylinder.

Original vs. Reverse

Synchronized vs. Preceding

Design Details

- * Task: Validate the robot's statement by pressing a button (correct/false) as fast and as accurate as possible
- * 32 subjects
- * 4 conditions
 - * 20 items + 36 fillers = 56 trials
- Logistic Regression (inspection probability)
- Linear Mixed-Effects Models (response time)

	Sentence Order original	Sentence Order reverse
Synchro nized	The cone is taller than the silver heart. <cone> <heart></heart></cone>	The silver heart is shorter than the cone. <cone> <heart></heart></cone>
Precedi	The cone is taller than the <cone> <heart></heart></cone>	The silver heart is shorter than <cone> <heart></heart></cone>

(Confounded) Conditions

	Sentence Order original / +adjective	Sentence Order reverse / -adjective
Synchro nized	The cone is taller than the silver heart. <cone> <heart></heart></cone>	The silver heart is shorter than the cone. <cone></cone>
Precedi	The cone is taller than the <cone> <heart></heart></cone>	The silver heart is shorter than <cone> <heart></heart></cone>

Response Times

(Noun Onset - Button Press)

	original	reverse
synchronized	1331.8	1548.6
preceding	1289.1	1586.6

Eye-movements

Conclusions

- * Kreysa's results suggest that temporally shifted cues (>2sec) are not so useful anymore, even similar to random cues
- * Our results suggest no influence of temporal synchronization, i.e., effect of gaze seems to be persistent and even when preceding it is:
 - beneficial, when in congruent sequential order with spoken reference
 - not so beneficial, when in reversed order

Experiment 4

Objectives

- * Our results suggest no influence of temporal synchronization, i.e., effect of gaze seems to be persistent and even when preceding it is:
 - beneficial, when in congruent sequential order with spoken reference
 - not so beneficial, when in reversed order
- Reversed gaze and speech cues are not as beneficial as congruently ordered cues, but do they disrupt comprehension? -> compare to neutral gaze

	Sentence Order original	Sentence Order reverse
Synchronized	The yellow cone is taller than the silver heart. <cone> <heart></heart></cone>	The silver heart is shorter than the yellow cone. <cone> <heart></heart></cone>
Neutral	The yellow cone is taller than the silver heart.	The silver heart is shorter than the yellow cone.

	Sentence Order original	Sentence Order reverse
Synchronized	The yellow cone is taller than the silver heart . <cone> <heart></heart></cone>	The silver heart is shorter than the yellow cone . <cone> <heart></heart></cone>
Neutral	The yellow cone is taller than the silver heart.	The silver heart is shorter than the yellow cone.

	Sentence Order original	Sentence Order reverse
Synchr onized	The yellow cone is taller than the silver heart . <cone> <heart></heart></cone>	The silver heart is shorter than the yellow cone . <cone> <heart></heart></cone>
Neutral	The yellow cone is taller than the silver heart.	The silver heart is shorter than the yellow cone.

Design Details

- * Task: Validate the robot's statement by pressing a button (correct/false) as fast and as accurate as possible
- * 32 subjects
- 4 conditions
 - * 20 items + 32 fillers = 52 trials
- Logistic Regression (inspection probability)
- Linear Mixed-Effects Models (response time)

Response Times

(Adjective Onset - Button Press)

	original	reverse
synchronized	1459.8	1567.6
neutral	1544.1	1404.2

Response Times

Summary

- * Human behaviour in HRI is consistent with that in HHI
 - Utterance-mediated & gaze-mediated gaze
 - Congruent robot gaze influences comprehension time
 - Incongruent robot gaze disrupts comprehension
 - * Reference mismatch & sequential mismatch
 - Interpretation and integration of both visual (gaze) and linguistic reference to resolve intended referent
 - People align visual attention with robot's "visual attention": Joint Attention?

Gaze Spectrum (?)

- Moving to Virtual Agents
- More complex scenes
- * Adding other multimodal cues, e.g. pointing

- Replication with virtual agents
 - * Will two single eye/head movements that the robot made in the particular condition appear strange for a human-like character?
- * Gaze reveals something about intentions. Can it also trigger affordances or even override mentioned actions?
 - * What relevance are looked-at-objects assigned when involved but not mentioned in a situation.
 - * Interaction of object affordances with mentioned action verbs?

- Replication with virtual agents
 - * Will two single eye/head movements that the robot made in the particular condition appear strange for a human-like character?
- * Gaze reveals something about intentions. Can it also trigger affordances or even override mentioned actions?
 - * What relevance are looked-at-objects assigned when involved but not mentioned in a situation.
 - Interaction of object affordances with mentioned action verbs?

Object Affordances

Organizational Things

- * Student Presentation
 - * 1 hour talk
 - 20-30 min. for discussion (maybe take up issues/questions explicitly)
- * For questions, feedback for slides etc. come and see us!
 - Make individual appointments in the week before the talk
 - * Florian -> Maria
 - * Katerina & Tristan -> Matt