
The Role of Motion Information in
Learning Human-Robot Joint Attention

Yukie Nagai
National Institute of Information and Communications Technology
3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0289 Japan

yukie@nict.go.jp

Abstract—To realize natural human-robot interactions and
investigate the developmental mechanism of human communi-
cation, an effective approach is to construct models by which a
robot imitates cognitive functions of humans. Focusing on the
knowledge that humans utilize motion information of others’
action, this paper presents a learning model that enables a
robot to acquire the ability to establish joint attention with a
human by utilizing both static and motion information. As the
motion information, the robot uses the optical flow detected
when observing a human who is shifting his/her gaze from
looking at the robot to looking at another object. As the
static information, it extracts the edge image of the human
face when he/she is gazing at the object. The static and motion
information have complementary characteristics. The former
gives the exact direction of gaze, even though it is difficult to
interpret. On the other hand, the latter provides a rough but
easily understandable relationship between the direction of
gaze shift and motor output to follow the gaze. The learning
model utilizing both static and motion information acquired
from observing a human’s gaze shift enables the robot to
efficiently acquire joint attention ability and to naturally
interact with the human. Experimental results show that the
motion information accelerates the learning of joint attention
while the static information improves the task performance.
The results are discussed in terms of analogy with cognitive
development in human infants.
Index Terms—human-robot joint attention, learning, mo-

tion information, optical flow

I. INTRODUCTION

To design artificial models that imitate abilities of human
beings or other animals is an effective methodology to de-
velop intelligent and adaptive robots. Especially in studies
on human-robot communication, implementing human-like
cognitive models into a robot helps the robot and a human
to understand each other’s internal states. This understand-
ing can lead to the emergence of natural human-robot
communication. In addition, it is interesting to investigate
how a robot develops and learns such cognitive capabilities
through interactions with a human from a constructivist
viewpoint [1]. The author [18], [19] has focused on joint
attention as a form of nonverbal communication between a
robot and a human (see Fig. 1). Joint attention is defined as
a process to look at an object that someone else is looking
at by following his/her gaze [5]. Through this interaction,
human beings are able to infer others’ internal states, i.e.
desire, intention, knowledge and so on, and to naturally
interact with others. Many researchers [4], [17], [20] in
cognitive science and developmental psychology place im-
portance on joint attention ability for social development in

Fig. 1. Human-robot joint attention, in which an infant-like robot, called
Infanoid [11], is looking at a stuffed toy that a human is holding in her
hand by following the direction of her gaze.

human infants. The ability enables infants to interact with
adults and learn from adults. As it is important for infants,
joint attention ability could play an important role for a
robot to achieve natural interactions and acquire knowledge
from humans.
The author [18], [19] proposed learning models by which

a robot acquired joint attention ability through interactions
with a human. On the basis of cognitive developmental
findings, I have been investigating how a robot with limited
and immature capabilities, like those of infants, acquires the
ability to follow human gaze. As a related study, Triesch
and his colleagues [6], [13] have been investigating joint
attention development in infants by taking a computational
approach in closely cooperating with cognitive develop-
mental research. There are a number of studies aiming at fa-
cilitating human-robot interactions based on joint attention
[3], [8] and discussing further cognitive development based
on joint attention [12], [21]. Joint attention mechanisms not
only between a human and a robot but also between two
robots have been developed [10]. This recent work related
to human-robot/robot-robot joint attention demonstrates the
significance of joint attention in communication. However,
the joint attention models described in the recent work have
utilized only static information from another agent, e.g.
the posture and/or the face direction of the agent, but did
not use any visually perceived motion information from
another agent.
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Fig. 2. A learning model of joint attention utilizing the edge image of a human face as static information and the optical flow of the human’s gaze
shift as motion information.

Human beings clearly utilize motion information from
others’ action. That is, we receive cues from others’ move-
ments from which we infer their desires and intentions.
Movement provides novel information unlike static infor-
mation. For instance, it has been suggested that motion
information facilitates infants’ learning of joint attention
[14], [16]. Studies on neonatal imitation, which precedes
the development of joint attention, indicated the importance
of movement in eliciting facial and manual imitations by
newborns [9], [22]. In addition, physiological evidence
indicates that some animates have selective neurons to
motion directions in the visual cortex [2]. These findings
from cognitive science, developmental psychology, and
neuroscience support the validity of utilizing motion infor-
mation acquired from others for designing communication
mechanisms for a robot.
This paper presents a learning model by which a robot

acquires the sensorimotor coordination to establish joint
attention with a human by utilizing both motion and static
information acquired from observing a human’s gaze shift.
The motion information is the optical flow detected when
the robot is observing a human who shifts his/her gaze
from looking at the robot to looking at another object. The
static information is the edge image extracted when the
robot is looking at the human while he/she is gazing at
the object. These two kinds of information have comple-
mentary characteristics. The former provides a rough but
easily understandable relationship between the direction of
a gaze shift and motor output to follow the gaze. The latter
gives the exact gaze direction, even though it is difficult
to interpret. The learning model utilizing both static and
motion information enables a robot to efficiently acquire
joint attention ability and to establish natural interactions
with a human. The validity of the model was examined

using an infant-like humanoid robot, called Infanoid [11],
shown in Fig. 1. The experimental results show that the mo-
tion information accelerates the learning of joint attention
while the static information improves the task performance.
The following section explains the learning model of

joint attention utilizing static and motion information. Ex-
periments are then described, and their results are discussed
in terms of analogy with cognitive development in human
infants. Conclusions and future work are given at the end.

II. LEARNING MODEL OF JOINT ATTENTION UTILIZING
EDGE IMAGE AND OPTICAL FLOW

A learning model of joint attention utilizing both static
and motion information is shown in Fig. 2. The model
consists of three modules: an image feature detector, a
learning module, and a coordinator. Utilizing the model,
a robot learns the sensorimotor coordination between the
camera images, It−1 and It, from which the edge image
and the optical flow of human gaze are detected, and the
motor output ∆θ to follow the gaze. The mechanisms of
the three modules are explained below.

A. Image Feature Detector
The image feature detector extracts the edge image E

of a human face and the optical flow F of the human’s
gaze shift from the camera images It−1, It. The edge
image provides static information while the flow provides
motion information. An example of input-output datasets is
shown in Fig. 3, in which (a) and (b) show a peripheral and
a foveal camera image; (c) and (d) show the edge image
and the optical flow detected from the center area (168
× 168 pixels) enclosed with a rectangle in (b); (e) shows
the output to follow the human gaze. The position of the
enclosed area is fixed at the center of the foveal image. The
robot controls the directions of the peripheral and foveal



cameras, which are mechanically fixed, so that it looks at
the human face at the center of the peripheral image.
The edge image E is generated by orientation selective

filters. Four filters that are selective with respect to four
orientations (e1, e2, e3, e4) = ( , , , ) extract edge
images En, where n = 1, . . . , 4, each of which includes
one oriented edge. The value of each pixel En(x, y) is
calculated as

En(x, y) =
{

1 if εn(x, y) > εthreshold
0 otherwise,

where

εn(x, y) =

∣∣∣∣∣∣

1∑

i=−1

1∑

j=−1

αn(i, j)I(x + i, y + j)

∣∣∣∣∣∣

−

∣∣∣∣∣∣

1∑

i=−1

1∑

j=−1

βn(i, j)I(x + i, y + j)

∣∣∣∣∣∣
. (1)

(x, y) indicate a position in a camera image, and the
coefficients, αn(i, j) and βn(i, j), are given as

1 = 3 =

[
0 0 0
0 1 1
0 −1 −1

]
, 1 = 3 =

[
0 0 0
0 1 −1
0 1 −1

]
,

2 = 4 =

[
0 1 0

−1 0 1
0 −1 0

]
, 2 = 4 =

[
0 1 0
1 0 −1
0 −1 0

]
,

where

αn =




αn(−1,−1) αn(0,−1) αn(1,−1)
αn(−1, 0) αn(0, 0) αn(1, 0)
αn(−1, 1) αn(0, 1) αn(1, 1)



 . (2)

Fig. 3 (c) shows the edge image E combining En

(n = 1, . . . , 4). Edges with one of the four orientations,
, , , and , are colored red, cyan, blue, and green,

respectively. The edge image provides static information
to estimate the direction of human gaze and allows the
robot to acquire the accurate sensorimotor coordination for
joint attention.
The image feature detector also extracts the optical flow

F as motion information. The center area of the foveal
image is divided into small image areas called receptive
fields (24 × 24 pixels). The optical flow F k in the k-th
receptive field is calculated as the cumulative displacement
of the image feature in the field over ten image frames:

F k =

[ ∑10frames(xk − px)∑10frames(yk − py)

]
, (3)

where (xk, yk) and (px, py) are the center position of
the k-th receptive field in It and that of the corresponding
image area detected by template matching in It−1, respec-
tively. Fig. 3 (d) shows the optical flow detected when the
human changes her gaze from looking straight at the robot’s
camera to looking at the yellow object shown in (a). Like
the edges, the flows are drawn with four colors. Although
the optical flow cannot provide enough information to
infer the exact gaze direction compared with the edge

(a) peripheral camera image (b) foveal camera image: t

(c) edge image: (d) optical flow:
(e) motor output:

e′f

Fig. 3. An example of input-output datasets: (a) and (b) show a peripheral
and a foveal camera image when the robot is looking at the human; (c)
and (d) show the edge image and the optical flow detected from the center
area in (b); (e) shows motor output to follow the human gaze, which is
encoded in motion direction selective neurons.

information, it gives a rough but easily understandable
relationship with the motor output to follow the gaze.
Therefore, the flow information should enable the robot
to quickly acquire the rough sensorimotor coordination of
joint attention.
In addition, the flow information is utilized as a cue

for the robot to control the timing of its own gaze shift.
The temporal change in the amount of the optical flow
indicates the start and end of the human’s gaze shift. In
other words, when the flow becomes zero after exceeding
an upper threshold, this means the human has shifted her
gaze direction from one location to another and is gazing
at a certain location. Based on this mechanism, the robot
obtains the optical flow when the flow has a maximum
value and the edge image when the flow becomes zero. It
then generates a motor command based on the inputs. This
enables the robot to immediately follow the human’s gaze
shift without any explicit cue.

B. Learning Module
This module learns the sensorimotor coordination be-

tween the edge input and motor output and between the
optical flow and motor output through two independent
neural networks (see Fig. 2). The neural network for edge
input (the edge-NN) consists of three layers: input, hidden,
and output layers, because edge information is difficult to
interpret into the human’s gaze direction. In contrast, the
neural network for optical flow input (the flow-NN) has two
layers: input and output layers, because flow information
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Fig. 4. The encoding of detected image features into the input neurons, in
which (a) and (b) show the encoding of edge and flow inputs into the four-
orientation selective neurons and the eight-direction selective neurons,
respectively. The length of a line in each circle denotes the activity of the
neuron. No line means there is zero activity.

gives an easily understandable relationship with the motor
output to follow the human’s gaze shift.
Input to the edge-NN is represented as activities of four

kinds of neurons that are selective to four orientations.
Fig. 4 (a) shows edge input encoding into the selective
neurons. The activities of the four neurons ak

en
(n =

1, . . . , 4) in the k-th receptive field are calculated as

ak
en

= Ek
n/ max

k

4∑

m=1

Ek
m

where Ek
n =

∑

xk

∑

yk

En(x, y). (4)

En(x, y) is given by (1), and Ek
n means the amount of the

edge en in the k-th receptive field. In the bottom of Fig. 4
(a), the length of a line in each circle shows the activity of
each neuron. No line means that the activity is zero.
Like the encoding of edge input, the optical flow is

encoded in eight kinds of neurons that are selective to
eight directions (f1, f2, . . . , f8) = (←, ↖, . . . , ↙) as
shown in Fig. 4 (b). The activities of the eight neurons ak

fn

(n = 1, 2, . . . , 8) in the k-th receptive field are calculated
as

ak
fn

=

{
F k · un/max

k
‖F k‖ if F k · un ≥ 0

0 otherwise,
(5)

where F k is given by (3), and un are unit vectors in eight
directions. The activities of the neurons are also drawn as
the length of the arrows in the circles as shown in Fig. 4 (b).
The methods for codings edge and flow information are
based on physiological evidence that the visual cortex in
some animates has orientation selective neurons [7] and
motion direction selective neurons [2]. The similarity in
the representation of edge and flow inputs leads to the
possibility that the robot may be able to translate a well-
acquired sensorimotor coordination in the edge-NN or the
flow-NN into the other.

Output from the edge- and flow-NNs is represented
as the activities of eight neurons, oe′

n
and ofn (n =

1, . . . , 8), which are selective to eight motion directions
(e′1, . . . , e′8) = (f1, . . . , f8) = (←, . . . , ↙), respectively.
The representation of the output neurons is similar to that
of encoded optical flow data. The activities of the output
neurons are decoded into a motor command ∆θ to rotate
the robot’s head by the coordinator.

C. Coordinator
This module coordinates motor output from the edge-

and flow-NNs. In the experiments, the robot used a simple
method that generated a motor command ∆θ by decoding
the mean value of the two outputs:

∆θ =
[

∆θpan

∆θtilt

]
=

[
gpan

∑
n unxoe′fn

gtilt
∑

n unyoe′fn

]
, (6)

where gpan and gtilt are scalar gains; unx and uny are the
horizontal and the vertical components in un; oe′fn is the
mean value of oe′

n
and ofn . A motor command to rotate

the robot’s head is represented as displacement angles in
the pan and tilt directions.

D. Learning Processing
The robot acquires the sensorimotor coordination to

achieve joint attention with the edge- and flow-NNs
through supervised learning. The learning processing as-
sumes that the object the human is looking at can be
detected in the peripheral image by using a given color
definition as shown in Fig. 3 (a), and that the robot can gaze
at the object to obtain the correct output. Note that the pe-
ripheral image cannot be used in joint attention experiments
conducted after learning; that is, the robot cannot detect the
position of the object that the human is looking at in the
joint attention experiment. In learning processing, the robot
encodes the motor command ∆θ obtained when looking
at the object into the eight-direction selective neurons by
using the inverse method to (6) and then independently
learns the two NNs by back propagation. Fig. 3 (e) shows
the motor output obtained when the robot changed its gaze
from looking at the human to looking at the object detected
in (a). The output data is used as the teacher signal for
learning. The independent learning of the two NNs enables
the robot to achieve joint attention using only one input,
either edge or flow input.

III. EXPERIMENTS
A. Robot and Experimental Setup
The validity of the model was evaluated using Infanoid

[11], shown in Fig. 1, which was developed by our group as
a tool for investigating the cognitive development of human
infants. Infanoid has a stereo vision head with three degrees
of freedom (DOFs) in its neck (one for the pan and two
for the tilt directions) and three DOFs in its eyes (two for
the each pan and one for the common tilt directions). Each
eye has two color CCD cameras: a peripheral camera and a
foveal camera. In the experiments described here, Infanoid
used two left camera images: a foveal image for extracting
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Fig. 5. The change in the task performance of joint attention over the
learning period. The red, blue, and green lines indicate the results when
the model utilized both edge and flow inputs, only the edge input, and
the flow input, respectively.

the edge image and the optical flow of human gaze and
a peripheral image for detecting the salient object that the
human was looking at during learning processing. The three
DOFs in the neck were used to change the robot’s gaze
direction while the three DOFs in the eyes were fixed at
the center positions. The displacement angle ∆θtilt derived
from (6) was equally divided into the two tilt DOFs in
the neck. The human sat face to face with Infanoid and
interacted with the robot by using a salient object. In every
trial, the human replaced the object at random positions and
then changed her gaze from looking at the robot to looking
at the object. The human always looked at the object in
front of her face.

B. Learning Experiment
The model was first evaluated in the learning experi-

ment. The experiment was conducted off-line by using 200
input-output datasets that Infanoid acquired beforehand.
The datasets were repeatedly used for learning. Fig. 5
shows the changes in joint attention performance over the
learning period, where the horizontal and the vertical axes
respectively denote the learning step and the success rate
of joint attention. The success of joint attention means that
the robot looked at the object that the human was looking
at within ±8 degrees of error by using the acquired model.
The red line shows the result when the model used both
edge and flow inputs. The blue and green lines show the
results when the model used only the edge or the flow
input, respectively. Each of the three lines plots the mean
result of fifty experiments with different initial conditions
and its standard deviation.
Comparing the results for when the robot used either

the edge or the flow input, we can see that the flow input
accelerated the start-up time of learning while the edge
input gradually improved the task performance. This com-
plementary result was anticipated from the characteristics
of the two inputs. As the result, by using both edge and flow
inputs, the proposed model enabled the robot to quickly
acquire the high performance of joint attention.

foveal image

o e’fmotor output:

o e’

edge image: E

optical flow: F

motor output:

o fmotor output:

(a) In the case that the human shifted her gaze from looking at the robot
to looking at an object in the outer left side of the foveal image.

foveal image

o e’fmotor output:
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o fmotor output:

(b) In the case that the human shifted her gaze from looking at the robot
to looking at an object in the outer lower right of the foveal image.

Fig. 6. The input-output datasets when the robot attempted to achieve
joint attention by using the acquired model. The robot was able to establish
joint attention in these two cases.

C. Joint Attention Experiments after Learning
The model acquired through learning using edge and

flow inputs was evaluated in joint attention experiments.
Fig. 6 (a) and (b) show the two cases of input-output
datasets when the robot attempted to achieve joint attention.
In case (a), the human shifted her gaze from looking
straight at the robot to looking at an object in the outer left
side of the foveal image. In case (b), the human shifted
her gaze direction from the robot to an object in the outer
lower right of the foveal image. The left side of each
figure shows the input-output datasets of the edge- and
flow-NNs, and the lower right shows the output from the
coordinator, which is the mean value of the two outputs.
From these results, we can confirm that the two NNs
generated appropriate output to achieve joint attention. The
success rate of joint attention with the same human in
the learning experiment was 90% (18/20 trials) in random
object positions.



IV. ANALOGY TO JOINT ATTENTION DEVELOPMENT IN
HUMAN INFANTS

The experimental results showed that motion information
can facilitate the learning of joint attention. We can find an
analogy between the experimental results and development
of joint attention in human infants.
Moore et al. [16] found that 9-month-old infants could

be trained to follow an adult’s gaze shift through trials
in which the infant was given experiences of an adult’s
head turning in association with an interesting sight in the
direction of the head turning. In their experiments, only
infants presented with the movement of the head turning
could acquire the gaze following behavior, whereas infants
not presented with the movement could not acquire the be-
havior. Lempers [14] examined the developmental change
in infants’ (9- to 14-months-old) capability to comprehend
others’ pointing and gaze. They compared the capability
when an infant was presented with the behaviors with
and without movement. Their observational results showed
that motion information enabled infants to understand the
gaze of others. The importance of movement has also
been pointed out in neonatal imitation, which precedes the
joint attention development. Vinter [22] found that newborn
infants were more likely to imitate tongue protrusion when
they observed an adult gesture with movement rather than
without movement. Meltzoff and Moore [15] showed that
newborn infants turned or moved their heads laterally in
response to an adult’s head turning. Such head turning
imitation by newborn infants could lead to gaze following
behavior. All these findings in cognitive science and devel-
opmental psychology support the importance of movement
in joint attention. The similarity between the cognitive
development of infants and my experimental results suggest
that the model could be helpful for understanding the
developmental mechanism of joint attention in infants.

V. CONCLUSION AND FUTURE WORK

This paper has indicated the importance of motion infor-
mation in learning human-robot joint attention. Human be-
ings utilize movement information detected from observing
others in order to infer their desires and intentions and to
establish natural communication. Furthermore, movement
facilitates the development of joint attention in infants.
Based on this knowledge, this paper proposed a joint
attention learning model utilizing both motion and static
information acquired from observing others’ gaze shift.
Experimental results demonstrated that motion information
accelerated the learning of joint attention while static
information improved the task performance.
The coordinator should be refined so that it can produce

appropriate output according to a situation. The present
model generates output as the mean value of the two
outputs from the edge- and flow-NNs. The two NNs have
advantages that complement each other. The coordinator
will be re-designed so that it can take better advantage of
the two NNs. Moreover, the learning experiments should be
conducted in real-time and with natural interactions with

humans. As infants do, a robot should be able to learn
the sensorimotor coordination to achieve joint attention
through interacting with several persons and several ob-
jects. Such learning will enable a robot to acquire more
general and robust joint attention ability.
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