
CHAPTER

ONE

DEVELOPERS’ GUIDE

1.1 Starting development

This guide will serve as a basic introduction to installing Magik for development purposes. The steps
have been tested on Linux and Mac OS X.

Before starting the development process you need to have Python installed on your system. Also Mer-
curial, a version control system, is required to get the source code.

1.1.1 Setting up Mercurial

To use Mercurial you need to set up your username.

By default Mercurial uses a username of the form user@localhost for commits. This is often
meaningless. It’s best to configure a proper email address in ~/.hgrc (or on a Windows system in
%USERPROFILE%\Mercurial.ini) by adding lines such as the following 1:

[ui]
username = John Doe <john@example.com>

For more detail refer to the Mercurial wiki, Mercurial: The Definitive Guide or MoinMoin Mercurial
guide

The Hg tip has handy tips for Mercurial users.

1.1.2 Getting the source code

To get sources you need to clone the main repository:

hg clone https://magik.inf.unibz.it/hg/magik/

The command will copy the source code from the server to your local computer to folder ./magik with
the following structure:

./magik/

-- bootstrap.py

-- buildout.cfg

-- conftest.py

-- doc

-- magik

1 http://mercurial.selenic.com/wiki/QuickStart#Setting_a_username

1

A Tool for Managing Data Completeness, Release 0.2.2dev

-- setup.cfg

-- setup.py

• bootstrap.py and buildout.py are files required by Buildout to build the development
environment.

• conftest.py configures the testing toolkit.

• doc/ contains package documentation.

• magik/ is, actually, the source code of the program.

• setup.cfg and setup.py are files required to cread a Python egg.

1.1.3 Buildout

Buildout Buildout is a Python-based build system for creating, assembling and deploying applications.

It is used for automatic project deployment and dependency installation in an isolated environment.

First of all we need to “cd” to the folder with repository, bootstrap the project, and buildout it:

cd magik/

python bootstrap.py

bin/buildout

Note: You must have at least Python 2.6 to run Magik.

To specify which Python should be used, run the bootstrap script with it.

python2.6 bootstrap.py # Use Python 2.6
/usr/bin/python bootstrap.py # Explicitly define python interpretator.

Bootstrapping creates needed directories and generates the buildout script, which downloads all the
Magik dependencies and places command-line scripts to the bin/ directory.

The most important executables in the bin/ directory are:

• bin/buildout

• bin/bpython bpython is a fancy interface to the Python interpreter.

• bin/py.test py.test is a command line tool to collect, run and report about automated tests. It
is a part of the py library.

You can find more information about buildout at Buildout documentation or A brief introduction to
Buildout.

1.2 Developing Magik

1.2.1 Running tests

py.test is a testing toolkit that is used in Magik to run unit tests. To execute all of them them run:

bin/py.test magik

2 Chapter 1. Developers’ guide

A Tool for Managing Data Completeness, Release 0.2.2dev

In this case the toolkit will run unit tests of the magik module and doctests in the doc/ directory.

You can specify which test to run by providing a directory or a file path which contains test fiels to
py.test. For example:

bin/py.test magik # Run unit tests
bin/py.test doc # Run doctests
bin/py.test magik/statement/_tests/test_select_parser.py # Run tests defined in magik/statement/_tests/test_select_parser.py

Note: Sometimes it is handy to share the output of a test run.

py.test can submit its output to a pastebin, a hosting for text snippets. To send your output run:

bin/py.test magik --pastebin=all

There is another test runner: bin/py.test-friends. It additionally to unit and doc tests performs
the PEP 8 check and static analysis by pyflakes. To execute these additional tests run:

bin/py.test-friends

It is also possible to check test coverage. Run:

bin/py.test --cover=magik --cover-report=html

File coverage/index.html contains the coverage report in the HTML format.

See to bin/py.test --help for more details.

1.2.2 Making changes

Coding standarts

In general, Magik is written with PEP 8 in mind.

• Lines longer then 79 characters are fine.

• The last line of a file is a blank line.

• some_string.format(...) is preferred to some_string %

Todo

pep8

Actually, there still some work needs to be done to respect pep8 more.

Read MoinMoin coding style to get inspiration.

Todo

codereview

It would be nice to setup codereview at http://magik.inf.unibz.it/rb

Writing tests

Unit tests is an important part of the project, they help to ensure that the program works as was ment by
the programmer.

1.2. Developing Magik 3

A Tool for Managing Data Completeness, Release 0.2.2dev

As a rule of thumb, try not to run the code manually to see if the feature you have written works, but
write tests that implement such a run. In other words, after running the tests, you should pretty sure that
the code works well.

Test are located in the _tests directory of the module. For example, tests that test the
magik.statement module are located in magik.statement._tests. Inside the test mod-
ule (or directory) an __init__.py file should be located, and files that contains test classes named
test_*.py. Test class names should start with Test and test methods with test_.

Committing changes

Once a feature is implemented, code changes have to be committed.

Warning: Make sure that all test are passed before making a commit.

If you have created new files, they needed to be added to the version control. Use hg add file1

file1 command to do so.

hg st shows the status of the repository: what files were changed, removed, deleted, added and so on.

hg diff shows which content of files was removed, added or changed.

Note: To make output of Mercurial more readable, the color extension can be enabled.

To enable it ad to the extensions sections of your .hgrc line color =. For example:

[extensions]
color =

hg st and hg diff are very handy in finding out what have been changed, what files are missing
(were not added to the repository). Try to make commits that refer to one thing: it can be either a bugfix,
a formatting fix, a new feature, a new unit test, or anything else, what is important that it is one item, not
several.

Having atomic commits is important in teams, where team members need to track how the source code
changes.

Once you prepared the code base for a new commit, run hg ci to make a commit to the local repository.
In general, it better to make small, often commits than rare and big ones.

To share your changes wit the world, you need to push your changes either to the main repository, or to
any other repository. hg push sends changes sets (commits) to other repository. hg pull gets them
from other repository.

hg in shows commits that you are missing, hg out shows commits that other repository is missing.

hg up allows to switch to desired commit. The most recent commit has label tip. Refer to the Mercurial
documentation for more details.

1.3 Writing documentation

Documentation is located in the doc/ directory. Read Sphinx documentation for more details.

4 Chapter 1. Developers’ guide

