## Language Technology I

010101001111010000100101110100

10101010101110100004

1010010

**Information Retrieval** 

LП

## **Information Retrieval**

- Traditional information retrieval is basically text search
  - A collection of text documents

- Documents are generally high-quality and designed to convey information
- Documents are assumed to have no structure beyond words
- Searches are generally based on meaningful phrases
- The goal is to find the document(s) that best match the search phrase, according to a search model

#### Language Technology I – Information Retrieval



#### Language Technology I – Information Retrieval

## Terminology

- Document
  - Unit of text indexed in the system
  - Result of the retrieval
- IR systems usually adopt index terms to process queries
- Index term:
  - a keyword or group of selected words
  - any word (more general)
- An inverted index is built for the chosen index terms
  - D0 = "it is what it is", D1 = "what is it" and D2 = "it is a banana"

0101010101011000

<u>nı.nnı.nlıı.nı.nn</u>

- "a": {D2}
- "banana": {D2}
- "is": {D0, D1, D2}
- "it": {D0, D1, D2}
- "what": {D0, D1}
- Query
  - User's information need as a set of terms

## IR models

- An IR model is characterized by three parameters:
  - representations for documents and queries
  - matching strategies for assessing the relevance of documents to a user query
  - methods for ranking query output
- Classic models
  - Boolean
  - Vector space
  - Probabilistic

- Set Theoretic
  - Boolean model
  - Fuzzy model
  - Extended boolean model
- Algebraic
  - Vector space model
  - Generalized vector model
  - Latent semantic index
  - Neural networks model
- Probabilistic
  - Probabilistic model
  - Inference network
  - Belief network

#### IR models – basic concepts

- Each document represented by a set of representative keywords or index terms
- An index term is a document word useful for remembering the document main themes
- Traditionally, index terms were nouns because nouns have meaning by themselves
- Not all terms are equally useful for representing the document contents: less frequent terms allow identifying a narrower set of documents
- The importance of the index terms is represented by weights associated to them

#### **Boolean Model**

- Based on set theory and Boolean algebra
  - Documents are sets of terms
  - Queries are Boolean expressions on terms
- D: set of words (indexing terms) present in a document
  - each term is either present (1) or absent (0)
- Q: A boolean expression
  - terms are index terms
  - operators are AND, OR, and NOT
- Matching: Boolean algebra over sets of terms and sets of documents
- No term weighting is allowed

#### **Boolean Model example**

((text [] information) [] retrieval [] []theory)

- "Information Retrieval"
- "Information Theory"
- "Modern Information Retrieval: Theory and Practice"

X

"Text Compression"

roroorororoorrrrorooooroo

#### **Boolean Model Disadvantages**

- Similarity function is boolean
  - Exact-match only, no partial matches
  - Retrieved documents not ranked
- All terms are equally important

- Boolean operator usage has much more influence than a critical word
- Query language is expressive but complicated

## **Vector Space Model**

 $vec(d_{j}) = (W_{1j}, W_{2j}, ..., W_{tj})$   $vec(q) = (W_{1q}, W_{2q}, ..., W_{tq})$  $Sim(q, d_{j}) = COS(::)$ 



- w<sub>ij</sub> is term's i weight in document j
- Cosine is a normalized dot product
- Since  $W_{ij} > 0$  and  $W_{iq} > 0$ ,  $0 \le sim(q,d_j) \le 1$
- A document is retrieved even if it matches the query terms only partially

# **Term Weighting**

- Higher weight = greater impact on cosine
- Want to give more weight to the more "important" or useful terms
- What is an important term?
  - If we see it in a query, then its presence in a document means that the document is relevant to the query.
  - How can we model this?

## Weights in the Vector Model

•  $Sim(q,dj) = [\Box w_{ij} * w_{iq}] / |d_j| * |q|$ 

101001111010000100

- How do we compute the weights wij and wig?
- A good weight must take into account two effects:
  - quantification of intra-document contents (similarity)

- tf factor, the term frequency within a document
- quantification of inter-documents separation (dissimilarity)
  - *idf* factor, the *inverse document frequency*
- Wij = tf(i,j) \* idf(i)

## **TF and IDF Factors**

• Let:

10100

- N be the total number of docs in the collection
- ni be the number of docs which contain ki
- freq(i,j) raw frequency of ki within dj
- A normalized tf factor is given by
  f(i,j) = freq(i,j) / max(freq(l,j))
  - the maximum is computed over all terms which occur within the document d<sub>i</sub>
- The *idf* factor is computed as *idf(i)* = *log* (N / n<sub>i</sub>)
  - the log is used to make the values of tf and idf comparable.

0101001111010000100101110

0101010101011101000

## **Vector Space Model, Summarized**

- The best term-weighting schemes tf-idf weights:
- $W_{ij} = f(i,j) * log(N/n_i)$
- For the query term weights, a suggestion is
- W<sub>iq</sub> = (0.5 + [0.5 \* freq(i,q) / max(freq(l,q)]) \* log(N / n<sub>i</sub>)
- This model is very good in practice:

.01.00111101000000

- tf-idf works well with general collections
- Simple and fast to compute
- Vector model is usually as good as the known ranking alternatives

## **Pros & Cons of Vector Model**

- Advantages:
  - term-weighting improves quality of the answer set
  - partial matching allows retrieval of docs that approximate the query conditions

- cosine ranking formula sorts documents according to degree of similarity to the query
- Disadvantages:
  - assumes independence of index terms; not clear if this is a good or bad assumption

## **Comparison of Classic Models**

roroororororrrrorooqoroororrrc

- Boolean model does not provide for partial matches and is considered to be the weakest classic model
- Some experiments indicate that the vector model outperforms the third alternative, the probabilistic model, in general
  - Recent IR research has focused on improving probabilistic models – but these haven't made their way to Web search

10101010101011101000

 Generally we use a variation of the vector model in most text search systems Why evaluate IR systems?

- There are many retrieval models/ algorithms/ systems, which one is the best?
- What is the best component for:
  - Ranking function (dot-product, cosine, ...)
  - Term selection (stopword removal, stemming...)
  - Term weighting (TF, TF-IDF,...)

11110100

 How far down the ranked list will a user need to look to find some/all relevant documents?

## **Difficulties in Evaluating IR Systems**

- Effectiveness is related to the **relevancy** of retrieved items.
- Relevancy is not typically binary but continuous.
- Even if relevancy is binary, it can be a difficult judgment to make.
- Relevancy, from a human standpoint, is:
  - Subjective: Depends upon a specific user's judgment.
  - Situational: Relates to user's current needs.
  - Cognitive: Depends on human perception and behavior.
  - Dynamic: Changes over time.

Language Technology I – Information Retrieval

Human Labeled Corpora (Gold Standard)

• Start with a corpus of documents.

- Collect a set of queries for this corpus.
- Have one or more human experts exhaustively label the relevant documents for each query.
- Typically assumes binary relevance judgments.
- Requires considerable human effort for large document/query corpora.

#### **Precision and Recall**



1110100

## **Precision and Recall**

- Precision
  - The ability to retrieve top-ranked documents that are mostly relevant.
- Recall
  - The ability of the search to find **all** of the relevant items in the corpus.

### **Determining Recall is Difficult**

- Total number of relevant items is sometimes not available:
  - Sample across the database and perform relevance judgment on these items.
  - Apply different retrieval algorithms to the same database for the same query. The aggregate of relevant items is taken as the total relevant set.

Language Technology I – Information Retrieval

#### **Trade-off between Recall and Precision**



**F-Measure** 

- One measure of performance that takes into account both recall and precision.
- Harmonic mean of recall and precision:

1110100



 Compared to arithmetic mean, both need to be high for harmonic mean to be high.

## E Measure (parameterized F Measure)

• A variant of F measure that allows weighting emphasis on precision over recall:



- Value of β controls trade-off:
  - $\beta = 1$ : Equally weight precision and recall (E=F).

- $\beta > 1$ : Weight recall more.
- $\beta < 1$ : Weight precision more.