
Chunk parsing exercise

• Goal:
– Write a programm that uses regular expressions to

recognize noun groups/chunks.

• Starting point:
– http://www.cnts.ua.ac.be/conll2000/chunking/

– Check CoNLL 2002 homepage and learn about goals
and data format

• Two different data sets are issued
– Download training and test data
– Evaluation script (in Perl)

Chunk parsing exercise

• Form of annotation:
– Each line a word + its annotation

• POS
• NP/PP/VP chunks

• Sequence of words are annotated according
to the IOB1 standard
– I-XP: words inside a chunk
– B-XP: beginning of a XP chunk
– O: for all elements outside any chunk
– XP stands for NP, PP, VP, ADJP, SBAR

Example of an chunk annotated sentence
in CoNLL format

He PRP B-NP
reckons VBZ B-VP
the DT B-NP
current JJ I-NP
account NN I-NP
deficit NN I-NP
will MD B-VP
narrow VB I-VP
to TO B-PP
only RB B-NP
I-NP
1.8 CD I-NP
billion CD I-NP
in IN B-PP
September NNP B-NP
. . O

In order to use standard RE packages
transform data into a string

• Input string
“The/Det woman/NN will/MD give/VB Mary/NNP a/Det
book/NN”

• Output string
“The/B-NP woman/I-NP will/B-VP give/I-VP Mary/B-NP a/B-NP
book/I-NP”

• Alternative:
– In: “DET NN MD VB NNP Det NN”
– Out: “B-NP I-NP … “

• Note: Gets easier input, probably more difficult output

In order to simplify the problem

• You might implement separate
programs for recognizing each chunk
type individually

Structure of program: read in data

• Read in each sentence from file (all tokens
between \newline) using readline() function

• Two possibilies
– Fetch two first elements (which are seprated by

\tab)

– Just fetch POS tag (second element)

• Append each such token to a string
(initialized by „“)

Structure of program: define regular
expressions (e.g., Python)

import re
pattern for html tags of form <TAG> or </TAG> or both ending with digit
if pattern is found bind it to pattern variable ?P<tag>

def apply_re(f):
 expr = re.compile(r"(?P<tag>(<(/)?[a-zA-Z]+(\d)?>))")
 file = open(f, 'r')
 for line in file.readlines():
 # searches only first match
 #res = expr.search(line)
 # searches all matches and binds it to a list
 res = expr.findall(line)
 if res == None:
 print "No match!"
 else:
 for tg in res:
 print tg
 return file.close()

Write result to output in CoNLL format

• Tranform each string to CoNLL format
• Append it to some output file

• Call Perl script conlleval.txt to evaluate
your results

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8

