

DFKI at QA@Clef 2007

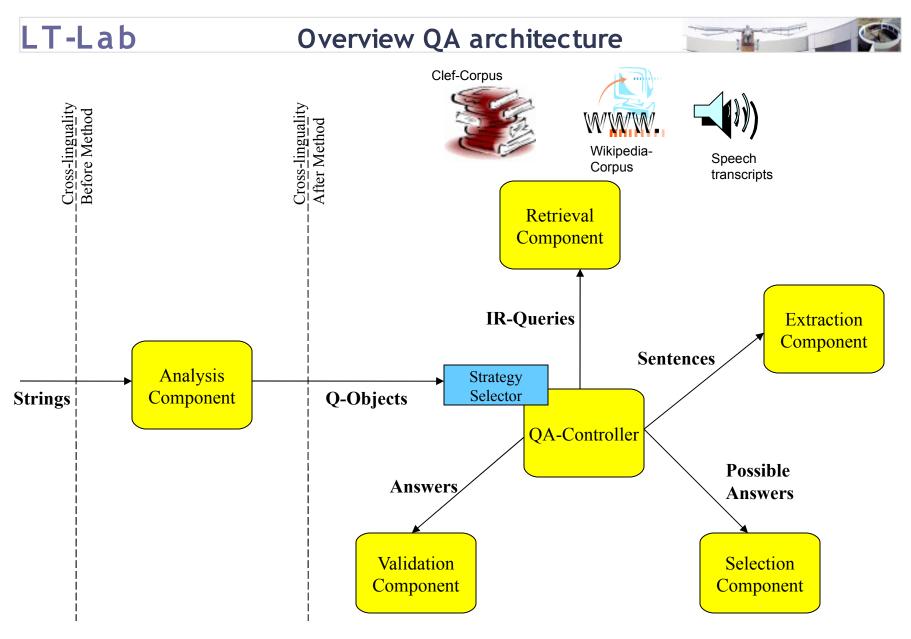
Günter Neumann, Bogdan Sacaleanu, Christian Spurk, Rui Wang

Language Technology Lab at DFKI

Saarbrücken, Germany

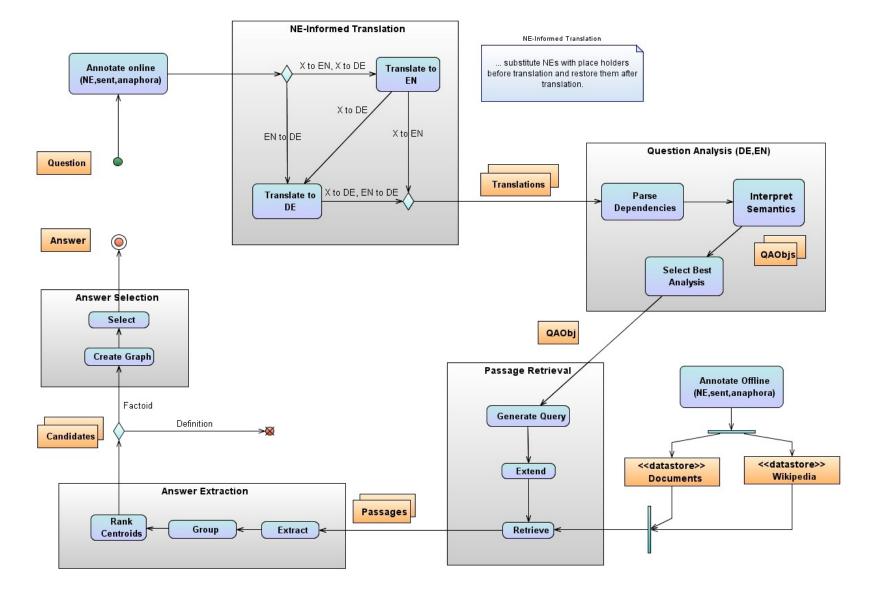
- r DFKI is participating since 2003
 - Focus on German monolingual QA and German/English cross-lingual QA
 - Promising results so far (acc.): DEDE=43,50%, ENDE=32,98%, DEEN=25.50%
- Goal for Clef 2007: increase spectrum of activities
 - Consideration of additional language pairs (ESEN, PTDE)
 - Participation in QAST pilot task
 - Participation in Answer Validation Exercise (AVE)

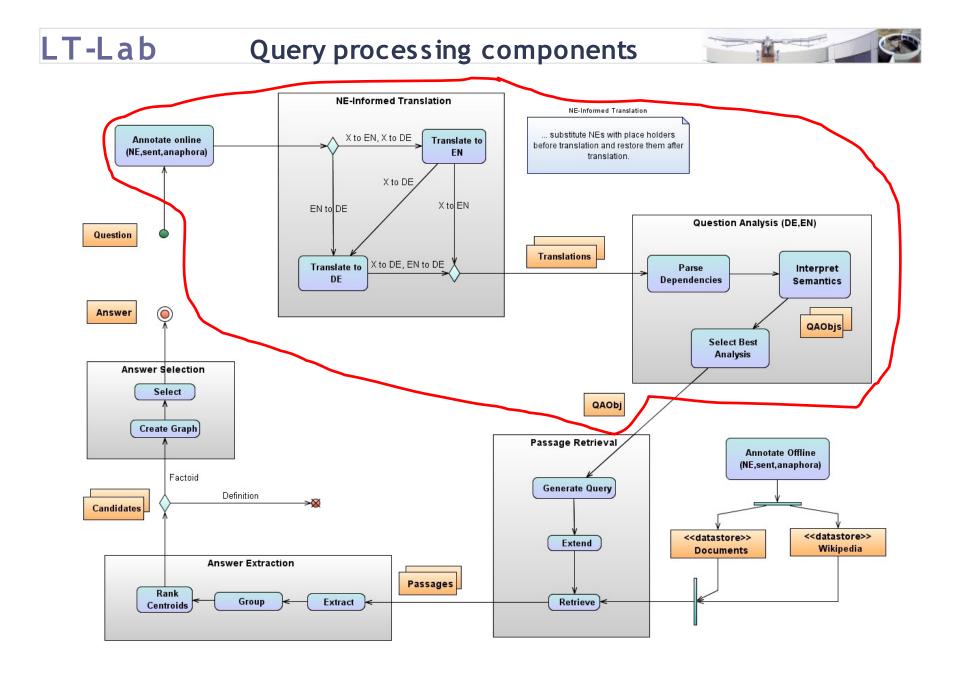
γ NL question

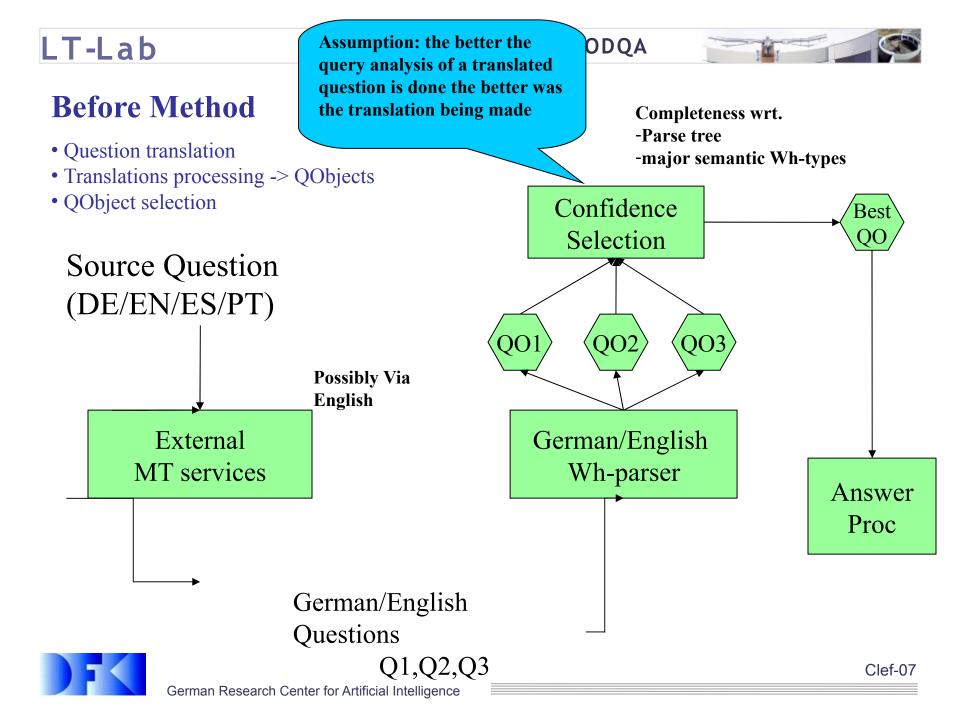

- Declarative description of search strategy and control information
- Analysis should be as complete and accurate as possible
- Use of full parsing and semantic constraints
- Consider document sources as implicit search space
 - Off-line: Provide question type oriented preprocessing for context selection
 - On-line: Provide question specific preprocessing for answer processing

LT-Lab Common architecture for different answer pools

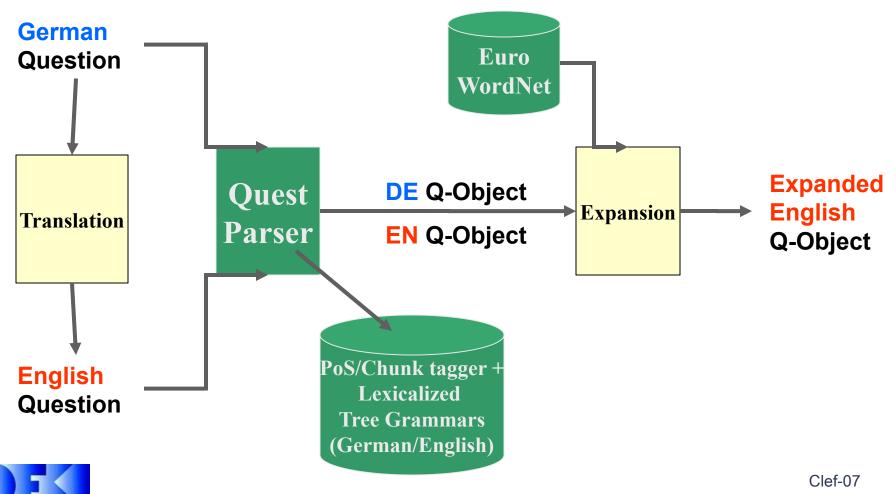
- Answer sources (covered by our technology)
 - Structured sources (DBMS)
 - Linguistically well-formed textual sources (news articles)
 - Well-structured web sources (Wikipedia)
 - Web snippets
 - Speech transcripts, cf. QAST
- r Assumption:
 - QA for different answer sources share pool of same components
- Service oriented architecture (SOA) for QA
 - Strong component-oriented approach
 - Basis for open-source QA architecture (cf. EU project QALL-ME)






Clef-07

System Architecture for Clef 2007



Cross-language Query Analysis: After Method

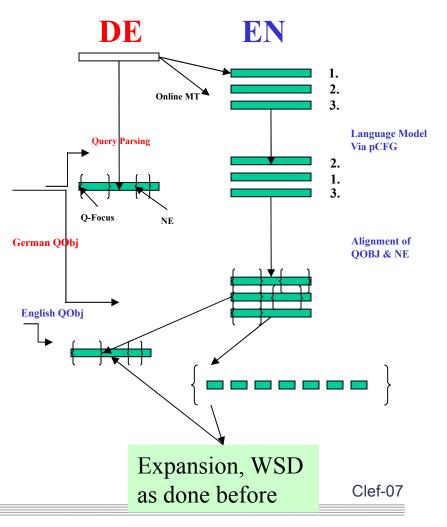
LT-Lab Example

1. Translation services for Word Sense Disambiguation (WSD)

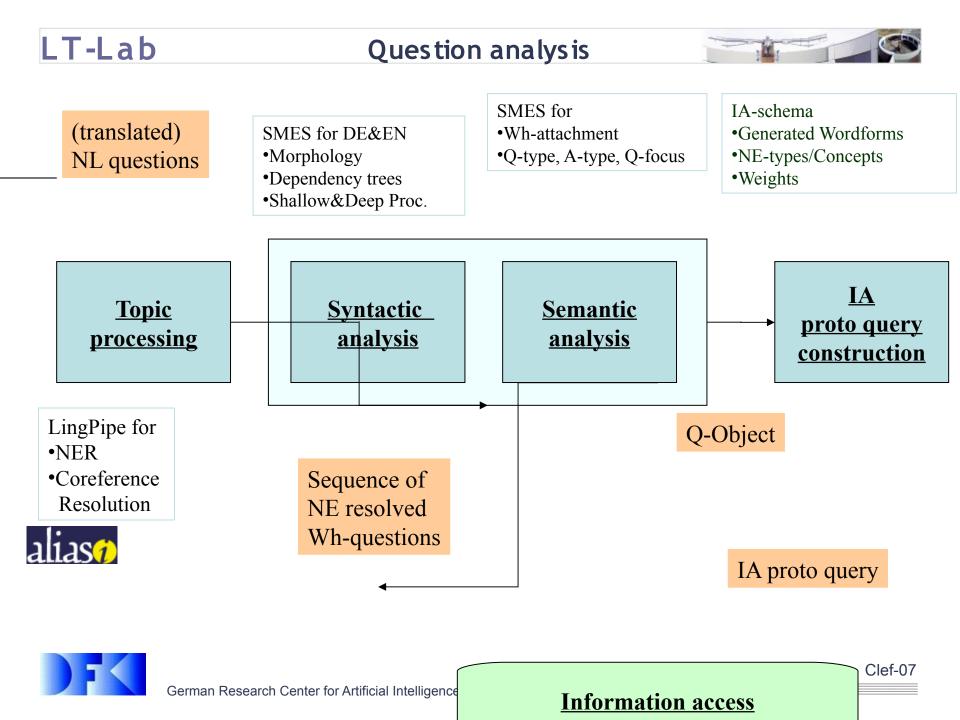
Wo wurde das Militärflugzeug Strike Eagles 1990 *eingesetzt*?

FreeTranslation: Where did the military airplane become would strike used Eagles 1990?
Systran: Where was the military aircraft Strike Eagle used 1990?
Logos: Where was the soldier airplane Strike Eagles installed in 1990?

BoO_{EN} := {soldier, airplane, strike, eagle, install, 1990, military, become, strike, *use*, aircraft}

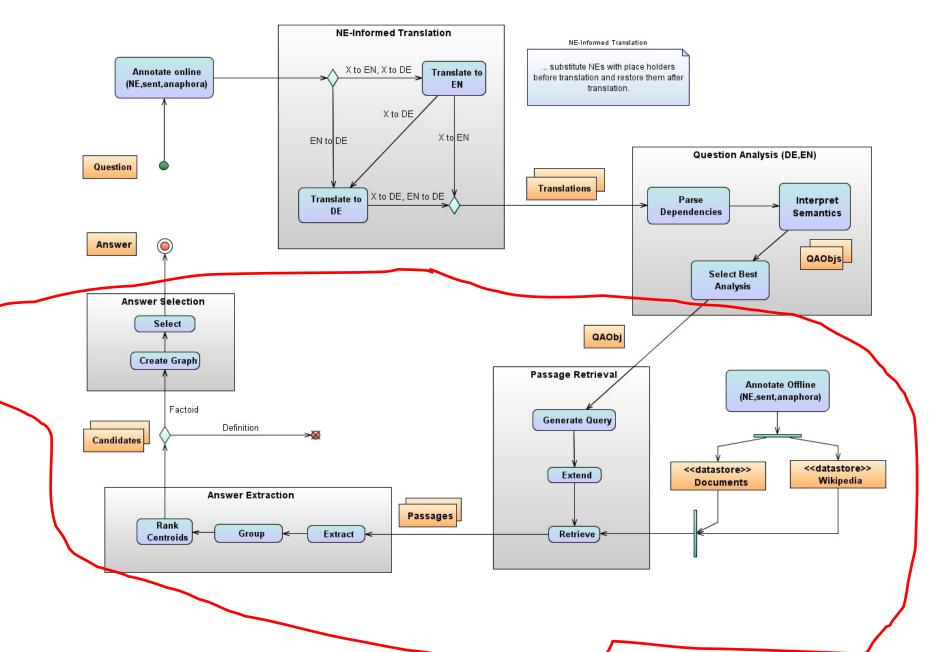

2. Query expansion using EuroWordNet

$\forall x \in BoO_{EN}$: lookup(EuroWN);	Reading-697925	Reading-1453934:
If x is unambiguous: extend BoO _{EN}	EN: {handle, <i>use</i> , wield}	EN: {behave toward, use}
Else \forall readings(x): get its aligned German readings &	DE: {handhaben, hantieren}	DE: not aligned
Look them up in BoO_{GN} If successfully then add English terms to	Reading-658243:	
BoO _{EN}	EN: {apply, employ, make use	e of, put to <i>use</i> , use, utilise, utilize}
German Research Center for Artificial Inte		edienen, benutzen, <i>einsetzen</i> ,ef97

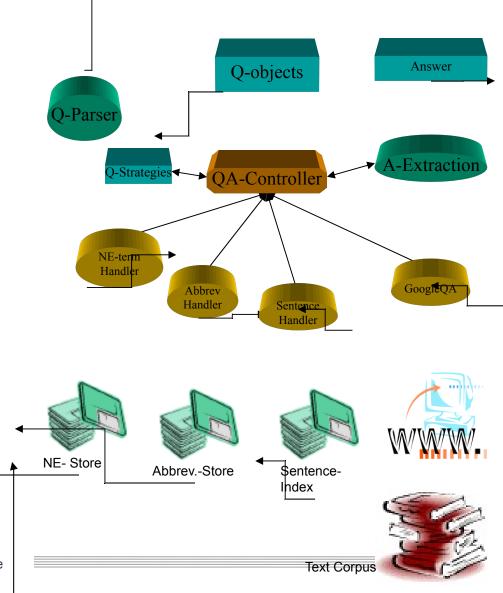

LT-Lab Hybrid NL-Query Translation for Cross-lingual ODQA

Improvements

- Language Model
 - translations from the on-line MT systems are ranked according to a language model
 - pCFG extracted from document corpus \Rightarrow corpus-sensible ranking of translations
- Allignment of Query-Information
 - based on several filters (dictionary, PoS & string similarity)
 ⇒ "transformation" of DE-QueryObject (Q-Focus) onto to EN-translation
 ⇒ no need of parsing on English side
- NE-specific alignment
 - Not person names
 - but organizations, locations



LT-Lab Output example of	query analys is
Which Jewish painter lived from Exploiting Natural Language Generation	
<qobj id="qId0" lang="DE" msg="quest" score="1"></qobj>	IA query created for Lucene
<nl-string id="qId0"> <source id="qId0" lang="DE"/>Welche juedischen Maler</nl-string>	
von 1904-1944?	+neTypes:NUMBER
<targets></targets>	AND
	("lebten" OR "lebte" OR "gelebt" OR
<qa-control> <q-focus>Maler</q-focus></qa-control>	
<q-rocos>water</q-rocos> <q-scope>leb</q-scope>	"leben" OR "lebt")
<q-type restriction="TEMP">C-COMPLETION</q-type>	AND +maler^4
<a-type type="list:SOME">NUMBER</a-type>	AND jüdisch^1
	AND 1944^1
< <u>KEYWORDS</u> > <keyword id="kw0" type="UNIQUE"></keyword>	AND 1904^1_
<tk pos="V" stem="leb">lebten</tk>	
<keyword id="kw1" type="UNIQUE"></keyword>	
<tk pos="A" stem="juedisch">juedischen</tk>	
<expanded-keywords></expanded-keywords>	
<ne-list></ne-list>	
<ne id="ne0" type="DATE">1944</ne>	
<ne id="ne1" type="DATE">1904</ne> 	


Answer processing components

LT-Lab Open-domain Question Answering: Multi-dimensional annotation

- Idea: off-line annotation of the data collection, which support
 - Query-specific indexing (Qstrategies), and
 - Answer extraction
- Sentence-level pre-processing proved valuable
 - Sentences-boundary
 - Named Entity + Co-reference
 - Abbreviations
 - NE-lists (+ context)

Why multi-dimensional annotation of un-structured text?

- The assumption is that a structural analysis of un-structured texts towards the type of information that can be the focus of questions, will support the retrieval of relevant small textual information units through informative IR-queries.
 - From candidate document retrieval to candidate answer retrieval.
- However, since we cannot foresee all the different user's interests/questions, a challenging research question is:
 - How detailed can the structural analysis be made without putting over a "straitjacket" of a particular view on the un-structured source?
- The assumptions here are:
 - Questions and answers are somewhat related ("questions influence the information geometry and hence, the information view and access", see also Rijsbergen, 2004)
 - There is a bias between off-line and on-line answer extraction.

We have performed some experiments focusing on the relationship between the size of information units and answer containment (using the QA-test set from Clef-2003).

#N Unit-Type	1	5	10	20	30	40	50	100
Sentences*	37.9	58.2	65.8	69.6	70.8	72.1	74	75.9
Sentences	28.4	53.1	60.1	67	70.2	72.7	72.7	74.6
Passages*	39.8	63.2	68.3	73.4	74	75.3	76.5	77.8
Passages	31.6	60.7	67.7	71.5	74.6	77.2	77.2	80.3
Documents*	47.4	69.6	76.5	80.3	81.6	82.9	82.9	83.5
Documents	46.2	68.3	77.8	82.2	82.2	83.5	84.1	85.4

As a result we hyphothesized that it is reasonable to use NE-annotated sentences as major retrieval units for the IR-engine

 \Rightarrow

Simplified answer extraction process & no need of special passage extraction methods

Precision of retrieval for different unit types and top N units retrieved, namely documents, passages, sentences – and their NE-annotated correspondents (marked by *).

Experiments & Results

Run ID	Right		Right W		U	Performance still ok although some lost		
	#	%	#	#	#			
dfki061dede _M	60	30	121	14	5	Coverage problems of English Wh-parser		
dfki061ende _c	37	18.5	144	18	1			
dfki061deen _c	14	7	178	6	2	<u>BUG in NE-Informed</u> <u>Translation (used DE-</u> <u>based recognizer)</u>		
$dfki062esen_C$	10	5	180	10_	ð	Problems with MT online		
dfki062ptde _c	5	2.5	189	4	2	<u>services</u> (PT-EN-DE)		

- Online MT services are still insufficient
 - Develop own MT solutions, cf. EU project EuroMatrix
- Bad coverage of our English Wh-parser
 - First prototype for Clef 2007
- Answer extraction currently robust enough for different answer sources
 - Similar performance for newspaper and Wikipedia
- Need more semantic analysis on answer side without lost of coverage and domain-independency
 - We are exploring cognitive semantics (cf. Talmy, 1987)
- Number of QA components also used in QAST pilot task and AVE

r QAST pilot task

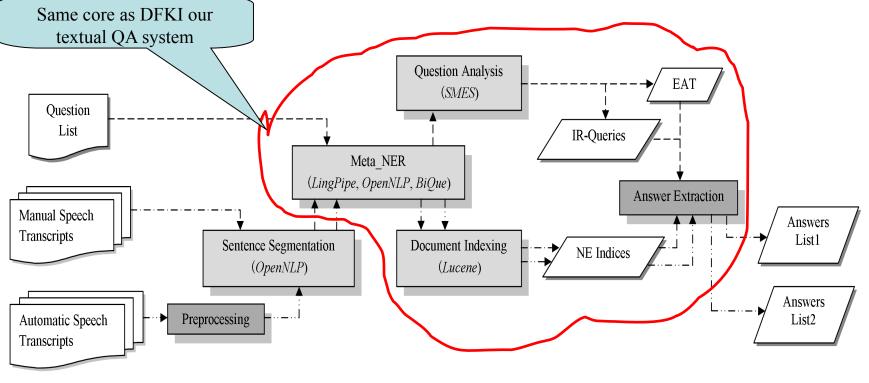
- For given written factoid question
- Extract answer from manual or automatic speech transcripts
- Answer Validation Exercise
 - Given a triple of form (question, answer, supporting text)
 - Decide whether the answer to the question is correct and
 - Is supported or not according to the given supporting text

Result (encouraging)

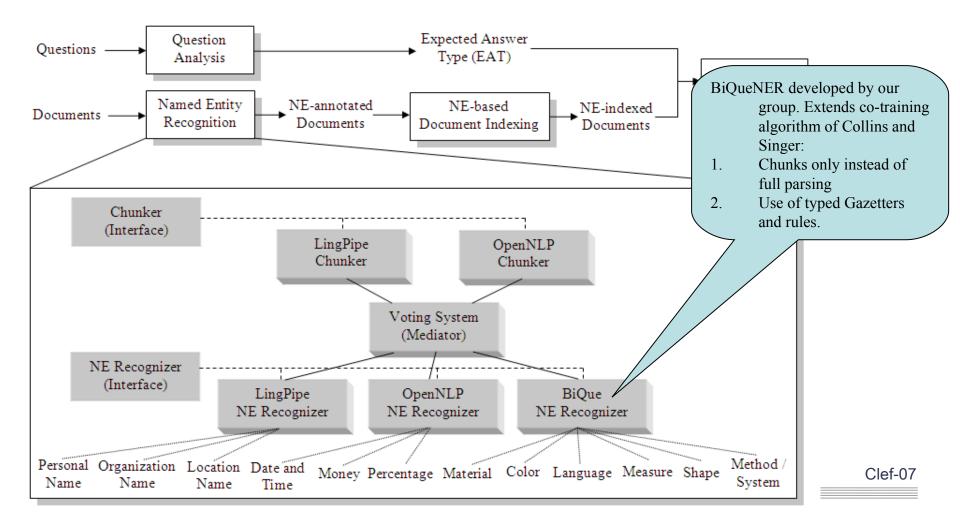
Task	#Q	##A	MRR	ACC
T1	98	19	0.17	0.15
T2	98	9	0.09	0.09

T1 = Chill corpus manual

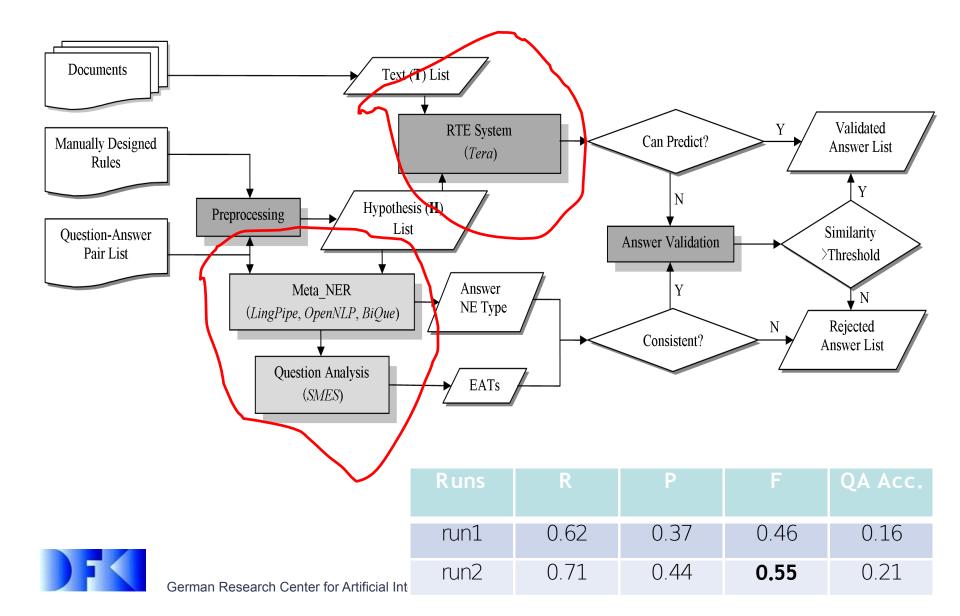
T2 = Chill corpus automatic


Result (really encouraging)

Runs	Recall	Precisio n	F- meas ure	QA Accurac y
dfki07- run1	0.62	0.37	0.46	0.16
dfki07- run2	0.71	0.44	0.55	0.21


- r Goals
 - Get experience with this sort of answer sources
 - Adapt our text-based open-domain QA system that we used for the Clef main tasks
 - Since QAST required different set of expected answer types we developed a federated search strategy for NER called Meta-NER

- r Call several NER in parallel
- Merge results by a voting strategy



- AVE System is based on our RTE system (cf. Wang & Neumann, AAAI-2007, RTE-3 challenge)
- r RTE method already demonstrated good results for QA task
 - RTE-3 (only QA): 81.5 %, Trec-2003 QA: 65.7 %
- r RTE Method: Novel sentence level Kernel method
 - Subtree alignment on syntactic level
 - Check similarity between tree of H and relevant subtree in T
 - Subsequence kernel
 - Consider all possible subsequence of spine (path) of difference pairs
 - SVM for classification

AVE architecture

- Supporting text from web documents cause parsing problems
- Violation of some of our RTE system's assumptions
 - Required: H should be "verbally" smaller than T
 - Violated by: Q-A made patterns are too long
 - impact on recall
- If supporting text is very long (a complete document) then our RTE system is misleaded
 - Impact on precision

Thanks!

Clef-07