Details of Two Unsupervised NE Learning Methods

- Unsupervised NE Classification
 - Michael Collins and Yoran Singer, 1999

- Unsupervised Learning of Generalized Names
 - Yangarber, Lin, Grishman, 2002
 - Lin, Yangarber, Grishman, 2003

Unsupervised NE classification

based on Michael Collins and Yoran Singer, EMNLP 1999

 The task: to learn a decision list to classify strings as person, location or organization

> The learned decision list is an *ordered* sequence of if-then rules

... says Mr. Gates, founder of Microsoft ...

 R_1 : if <u>features</u> then person

 R_2 : if <u>features</u> then location

R₃: if <u>features</u> then organization

 R_n : if <u>features</u> then person

... says Mr. Gates, founder of Microsoft ...

Outline of Unsupervised Co-Training

- Parse an unlabeled document set
- Extract each NP, whose head is tagged as proper noun
- Define a set of relevant features, which can be applied on extracted NPs
- Define two separate types of rules on basis of feature space
- Determine small initial set of seed rules
- Iteratively extend the rules through co-training

Two Categories of Rules

 The key to the method is redundancy in the two kind of rules.

....says Mr. Cooper, a vice president of...

Paradigmatic or spelling

Syntagmatic or contextual

Huge amount of unlabeled data gives us these hints!

The Data

- 971,746 New York Times sentences were parsed using full sentence parser.
- Extract consecutive sequences of proper nouns (tagged as NNP and NNPS) as named entity examples if they met one of following two criterion.
- Note: thus seen, NNP(S) functions as a generic NEtype, and the main task is now to sub-type it.

Kinds of Noun Phrases

- There was an appositive modifier to the NP, whose head is a singular noun (tagged NN).
 ...says [Maury Cooper], [a vice president]...
- 2. The NP is a complement to a preposition which is the head of a PP. This PP modifies another NP whose head is a singular noun.
 - … fraud related to work on [a federally funded sewage plant] [in [Georgia]].

(spelling, context) pairs created

...says Maury Cooper, a vice president...
(Maury Cooper, president)

 … fraud related to work on a federally funded sewage plant in Georgia.

(Georgia, plant_in)

Features

for representing examples for the learning algorithm

- Set of spelling features
 - Full-string=x
 - Contains(x)
 - Allcap1
 - Allcap2
 - Nonalpha=x

(full-string=Maury Cooper) (contains(Maury)) IBM N.Y. A.T.&T. (nonalpha=..&.)

- Set of context features
 - Context = x(context = president)
 - Context-type = x

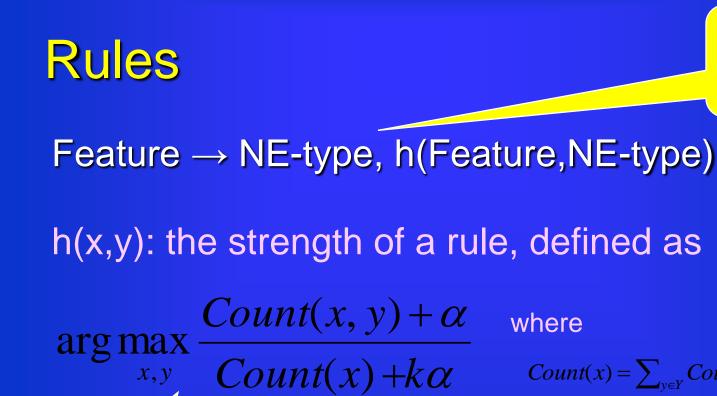
appos or prep

It is strongly assumed that the features can be partitioned into two types such that each type alone is sufficient for classification

© Günter Neumann, LT1

Examples of named entities and their features

<u>Sentence</u>	Entities(Spelling/Context)	(Active) Features
But Robert Jordan, a partner at Steptoe & Johnson who took	Robert Jordon/partner	Full-string=Robert_Jordan, contains(Robert), contains(Jordan), context=partner, context-type=appos
	Steptoe & Johnson/partner_at	Full-string=Steptoe_&_Johnson, contains(Steptoe), contains(&), contains(Johnson), nonalpha=& , context=partner_at, context-type=prep
By hiring a company like A.T.&T	A.T.&T./company_like	Full-string= A.T.&T., allcap2, nonalpha=&. , context=company_like, context- type=prep
Hanson acquired Kidde Incorporated, parent of Kidde Credit, for	Kidde Incorporated/parent	Full-string=Kidde_Incorporated, contains(Kidde), contains(Incorporated), context=parent, context-type=appos
	Kidde Credit/parent_of	Full-string=Kidde_Credit, contains(Kidde), contains(Credit), context=parent_of, context-type=prep



Two separate types of rules: Spelling rules Context rules

© Günter Neumann, LT1

Is an estimate of

probability of the

NE-type given the

the conditional

feature, P(y|x)

The rules ordered according to their strengths h form a decision list: the sequence of rules are tested in order, and the answer to the *first* satisfied rule is output.

Count(x) = $\sum_{y \in Y} Count(x, y)$ α is a smoothing parameter k = #NE-types

7 SEED RULES

Note: only one type of rules used as seed rules, and all NE-types should be covered

- Full-string = New York \rightarrow Loca
- Full-string = California → Locz on
- Full-string = U.S.
- Contains(Mr.)

 \rightarrow Location \rightarrow Person

- Contains(Incorporated) → Organization
- Full-string=Microsoft
- Full-string=I.B.M.

 \rightarrow Organization

 \rightarrow Organization

The Co-training algorithm

- 1. Set N=5 (max. # of rules of each type induced in each iteration)
- Initialize: Set the spelling decision list equal to the set of seed rules. Label the training set using these rules.
- **3.** Use these to get contextual rules. (x = feature, y = label)
 - 1. Compute h(x,y), and induce at most N * K rules
 - 2. all must be above some threshold p_{min} =0.95
- 4. Label the training set using the contextual rules.
- 5. Use these to get N*K spelling rules (same as step 3.)
- 6. Set spelling rules to seed plus the new rules.
- **7.** If N < 2500, set N=N+5, and goto step 3.
- 8. Label the training data with the combined spelling/contextual decision list, then induce a final decision list from the labeled examples where all rules (regardless of strength) are added to the decision list.

Example

(IBM, company)

- …IBM, the company that makes…
- (General Electric, company)
 - ...General Electric, a leading company in the area,...
- (General Electric, employer)
 - ... joined General Electric, the biggest employer...
- (NYU, employer)
 - NYU, the employer of the famous Ralph Grishman,...

Why Separate Spelling, Context Features? Can use theory behind co-training to explain how algorithm work fimust correctly

Requirements:

- 1. Classification problem f: $X \rightarrow Y$
 - 1. $f_1(x_{1,i}) = f_2(x_{2,i}) = y_i$ for i = 1...m
 - 2. $f_1(x_{1,i}) = f_2(x_{2,i})$ for i = m+1...n

must agree with each other on unlabeled ex.

classify labeled

examples, and

(softer criteria requires f_1 and f_2 to minimize the disagreements \rightarrow similarity)

Open question: best similarity function?

- 2. Can partition features X into 2 types of features x = (x_1, x_2)
- 3. Each type is sufficient for classification
- 4. x_1, x_2 not correlated to tightly (e.g., no deterministic function from x_1 to x_2)

3. & 4. Say that features can be partitioned.

The Power of the Algorithm

Greedy method

- At each iteration method increases number of rules
- While maintaining a high level of agreement between spelling & context rules

For n= 2500:

- 1. The two classifiers give both labels on 49.2% of the unlabeled data
- 2. And give the same label on 99.25% of these cases
- The algorithm maximizes the number of unlabeled examples on which the two decision list agree.

Evaluation

- 88,962 (spelling, context) pairs.
 - 971,746 sentences
- 1,000 randomly extracted to be test set.
- Location, person, organization, noise (items outside the other three)
- 186, 289, 402, 123 (- 38 temporal noise).
- Let N_c be the number of correctly classified examples
 - Noise Accuracy: N_c / 962
 - Clean Accuracy: N_c /(962-85)

<u>Algorithm</u>	<u>Clean Accuracy</u>	Noise Accuracy	
Baseline	45.8%	41.8%	
EM	83.1%	75.8%	
Yarowsky 95	81.3%	74.1%	
Yarowsky Cautious	91.2%	83.2%	
DL-CoTrain	91.3%	83.3%	
CoBoost	91.1%	83.1%	

Remarks

- Needs full parsing of unlabeled documents
 - Restricted language independency
 - Need linguistic sophistication for new types of NE
- Slow training
 - In each iteration, full size of training corpus has to be re-labeled
- DFKI extensions
 - Typed Gazetteers
 - Chunk parsing only
 - Integrated into a cross-language QA system

Unsupervised Learning of Generalized Names

Yangarber, Lin, Grishman, Coling 2002 & Lin, Yangarber, Grishman, ICML 2003

- Much work on ML-NE focuses on classifying <u>proper</u> <u>names (PNs)</u>
 - Person/Location/Organization
- IE generally relies on domain-specific lexicon or <u>Generalized Names (GNs)</u>
 - Closer to terminology: single- or multi-word domain-specific expressions
- Automatic learning of GNs is an important first step towards truly adaptive IE
 - IE system that can automatically adapt itself to new domains

How GNs differ from PNs

- Not necessary capitalized
 - tuberculosis
 - E. coli
 - Ebola haemorrhagic fever
 - Variant Creutzfeldt-Jacob disease
- Name boundaries are non-trivial to identify
 - "the four latest typhoid fever cases"
- Set of possible candidate names is broader and more difficult to determine
 - "<u>National Veterinary Services</u> Director <u>Dr. Gideon Bruckner</u> said no cases of <u>mad cow disease</u> have been in <u>South Africa</u>."
- Ambiguity
 - E. coli : organism or disease
 - Encephalitis : disease or symptom

NOMEN: the Learning Algorithm

- 1. <u>Input</u>: Seed names in several chosen categories
- 2. Tag occurrences of names
- 3. Generate local patterns around tags
- 4. Match patterns elsewhere in corpus
 - 1. Acquire top-scoring pattern(s)
- 5. Acquired patterns tags new names
 - 1. Acquire top-scoring name(s)
- 6. Repeat

Pre-processing

Text-Zoner

- Extract textual content
- Strips of headers, footers etc.
- Tokenizer
 - Produces lemmas
- POS tagger
 - Statistically trained on WSJ
 - Unknown or foreign words are not lemmatized and tagged as noun

- For each <u>target</u> category select N initial <u>trusted</u> seeds
 - Diseases:
 - Cholera, dengue, anthrax, BSE, rabies, JE, Japanese encephalitis, influenza, Nipah virus, FMD
 - Locations:
 - United States, Malaysia, Australia, Belgium, China, Europe, Taiwan, Hong Kong, Singapore, France
 - Others
 - Case, health, day, people, year, patient, death, number, report, farm
- Use frequency counts computed form corpus or some external data-base
- Many more additional categories can be defined

Positive vs. Negative Seeds

- A seed name serves as
 - a positive example for its own class, and
 - a negative example for all other classes.
- Negative examples help steer the learner away from unreliable patterns
 - Competing classes
 - Termination of unsupervised learning

Pattern generation

- Tag every occurrence of each seed in corpus
 - "...new cases of <dis> cholera </dis> this year in ..."
- For each tag, generate context rule: start/left-tag
 - [new case of <dis> cholera this year]
- Generalized left-side candidate patterns:
 - [new case of <dis> * * *]
 - [* case of <dis> * * *]
 - [* * of <dis> * * *]
 - [* * * <dis> cholera this year]
 - [* * * <dis> cholera this *
 - * <dis> cholera * *

*

• *

Pattern generation

- For each tag, generate context rule: end/right-tag
 - [case of cholera </dis> this year in]
- Generalized right-side candidate patterns:
 - [case of cholera </dis> * * *]
 - [* of cholera </dis> * * *]
 - [* * cholera </dis> * * *]
 - [* * * </dis> this year in]
 - [* * * </dis> this year *]
 - [* * * </dis> this * *]
- Note: all are potential patterns

Pattern application

- Apply each candidate pattern to corpus, observe where the pattern matches
 - E.g., the pattern [* * of <dis> * * *]
- Each pattern predicts one boundary: search for the partner boundary using a noun group NG regex:
 - [Adj* Noun+]
 - "...distributed the yellow fever vaccine to the people"
- The resulting NG can be (wrt. currently tagged corpus)
 - Positive: "...case of <dis> dengue </dis> ..."
 - Negative: "...North of <loc> Malaysia </loc> ..."
 - Unknown: "...symptoms of <?> swine fever </?> in ..."

Identify candidate NGs

- Sets of NG that the pattern p matched
 - Pos = distinct matched NG types of correct category
 - Neg = distinct matched NG types of wrong category
 - Unk = distinct matched NGs of unknown category

Collect statistics for each pattern

$$acc(p) = \frac{|Pos|}{(|Pos| + |Neg|)}$$
$$conf(p) = \frac{|Pos|}{(|Pos| + |Neg| + |Unk|)}$$

Pattern selection

- Discard pattern p if $acc(p) < \theta$
- The remaining patterns are ranked by
 - Score(p) = conf(p)*log|Pos(p)|
- Prefer patterns that:
 - Predict the correct category with less risk
 - Stronger support: match more distinct known names
- Choose top n patterns for each category
 - [* die of <dis> * * *]
 - [* vaccinate against <dis> * * *]
 - [* * * </dis> outbreak that have]
 - [* * * </dis> * * *]
 - [* case of <dis> * * *]

To get positive score, a pattern must have at least two distinct NGs as positive example, and more positive than negative exam.

Name selection

- Apply each accepted pattern to corpus, to find candidate names (using the NG)
 - "More people die of <dis> profound heartbreak than grief."
- Rank each name type t based on quality of patterns that match it:

$$Rank(t) = 1 - \prod_{p \in M_t} (1 - conf(p))$$

M_t is the set of accepted patterns which match any of the instances of t

- Require $|M_t| \ge 2 \implies t$ should appear ≥ 2 times
- M_t contains at least one pattern predicting the left boundary of t and one pattern predicting the right boundary
- Conf(p) assigns more credit to reliable patterns

Name selection

- Accept up to 5 top-ranked candidate names for each category
- Iterate learning algorithm until no more names can be learned
 - Bootstrap by using in each new iteration the extended set of new names to reannotate the corpus

Salient Features of Nomen

- Generalized names
- A few manually-selected seeds
- Un-annotated corpus
- Un-restricted context (no syntactic restrictions)
- Patterns for left and right contexts independently
- Multiple categories simultaneously

Experiments

 Construction of reference lists for judging recall & precision of NOMEN

Compiled from multiple sources (medical DB, Web,	Reference List	Disease	Location
manual review)	Manual	2492	1785
	-Recall (26K)	322	641
Appearing two or more time in development corpus	Recall (100K)	616	1134
in development corpus	Precision	3588	2404

Manual list + acronyms + strip generic heads

Score recal against recall list and precision against precision list; Distinguish type and token tests

Results

- Final recall & precision for 8 categories
 - Around 70% (in case of type-based evaluation)
 - Classical PN: Recall: 86-92%, Precision: above 70%
- Multi-class learning has positive effects
 - A category is less likely to expand beyond its true territory
 - The accepted names in each category serve as negative example for all categories
 - The learners avoid acquiring patterns with too many negatives
 - In some sense, the categories self-tune each other
- Comparison with human-in-the-loop
 - "More groups" can be as good as "few groups + human reviewer"
- Using a negative category (noun groups that belong to neither category, but generic terms), then also substantial increase in performance