
Lecture
“Foundations of Language Science and Technology:

Statistical Natural Language Processing”
Prof. Dr. D. Klakow

Exercise sessions starting 30/11/2009

Exercise

“Spam, Spam, Spam!” Unsolicited email is commonly referred to as “spam”. Your
task for this exercise session is to build a Näıve Bayes classifier that can auto-
matically classify a given document (e.g. incoming email) using the two classes
SPAM and HAM(=not spam).

Subtasks:

1. Download the data from

http://www.lsv.uni-saarland.de/data/spam_dat.tar

The package spam_dat.tar contains training and testing data for both
spam and non-spam messages.
You can unpack the package with:

tar -xf spam_dat.tar

2. Build a word-based language model for each of the classes, HAM and SPAM.
The training data are in the files ham_training and spam_training, re-
spectively. Instead of using relative frequencies as your probabilities, smooth
your language models with absolute discounting. Use the following equation:

Pd(xi|ωk) = max(N(xi,ωk)−d,0)P
xi

N(xi,ωk)
+ d·n+P

xi
N(xi,ωk)

· 1
|V |

where n+ =
∑

xi:N(xi,ωk)>0 1. It would be nice if the discounting parameter
d could be optionally specified as a command line option. Use d = 0.7 as
a default value. The file vocab_100000.wl contains the vocabulary with
which you are to build your language models.

3. Write a classifier that classifies each mail contained in the test file
ham_spam_testing. A new mail begins with #*#*# followed by the class
label. Your program should output the predicted class for each mail in the
test file along with the overall number of correctly and incorrectly classi-
fied mails. The predicted class for the test mail is the class which has the
highest probability according to the class-specific language model and the
class prior. In order to prevent an underflow in your classifier use a sum of
logarithms instead of a product of the probabilities:

ω̂ := arg maxωk
log Pd(x|ωk) + log P (ωk)

where Pd(x|ωk) is a class-specific language model and P (ωk) is a class prior.

General Remarks:

• You may implement this exercise in any programming language. However,
we recommend either of the following languages: Perl, Python or Ruby.

• Please document your code properly, so that it can be easily tested without
reading the entire source code.

• The exercise will be discussed in the exercise session on 30/11/2009. We
do not expect you to have submitted your final solution by then. The sole
purpose of this exercise session will be to discuss your questions regarding
solving this exercise!

• The deadline for this exercise is 3/12/2009 11am.

• Send your program to Michael.Wiegand@lsv.uni-saarland.de

• In case you have further questions with regard to this exercise, please send
your mail to the address mentioned above.

