
Foundations of Language Science and
Technology!

Semantics 4a

Manfred Pinkal

Saarland University

FLST 2009/2010 © Manfred Pinkal, Saarland University 2

Textual Inference and Logical
Inference

 P: Several airlines reported cost increases

 H: Several companies reported cost increases

FLST 2009/2010 © Manfred Pinkal, Saarland University 3

Example

P: Several airlines polled saw costs grow more than
expected.

H: Some companies reported cost increases.

 Atomic Edit Lexical entailment Sentence-level e.

 SUB(several, some) ! ! ! !

 SUB(airlines, companies) ! ! ! !

 DEL(polled) ! ! ! !
 SUB(saw, reported) ! ! ? ! !

 SUB(costs, cost) ! ! ! !

 SUB(grow, increase) ! ! ! !

 DEL(more than expected) ! ! ! !

FLST 2009/2010 © Manfred Pinkal, Saarland University 4

The effect of context:!
Monotonicity properties

 P: John bought a new convertible.
 H: John bought a new car.

 P: John didn’t buy a new convertible.
 H: John didn’t buy a new car.

 P: All airlines reported cost increases.
 P: All companies reported cost increases.

 P: All airlines reported extreme cost increases.
 P: All airlines reported cost increases.

FLST 2009/2010 © Manfred Pinkal, Saarland University 5

What we need

•! A method to find the best or most appropriate alignment/
sequence of edit steps between P and H.

•! A general definition for entailment between expressions of
arbitrary type.

•! A method to identify the specific lexical entailment
relations induced by specific SUB edits; DEL and INS
induce ! and ", respectively.

•! A method to determine monotonicity properties of
contexts

•! A compositional method to project entailment relations to
the sentence level, taking monotonocity properties of
context into account.

•! A full specification of the join operation between
entailment relations.

FLST 2009/2010 © Manfred Pinkal, Saarland University 6

What we need

•! A method to find the best or most appropriate alignment/
sequence of edit steps between P and H.

•! A general definition for entailment between expressions of
arbitrary type.

•! A method to identify the specific lexical entailment
relations induced by specific SUB edits; DEL and INS
induce ! and ", respectively.

•! A method to determine monotonicity properties of
contexts

•! A compositional method to project entailment relations to
the sentence level, taking monotonocity properties of
context into account.

•! A full specification of the join operation between
entailment relations.

FLST 2009/2010 © Manfred Pinkal, Saarland University 7

General definition of entailment

•! For sentences A, B ! WEt:

 A ! B iff A # B

•! For proper nouns a, b ! WEe:

 a ! b iff a " b iff [[a]] = [[b]]

•! For functional expressions !, " ! WE<#,$>:
 ! ! " iff for all d ! D$: [[!]](d) ! [["]](d)

FLST 2009/2010 © Manfred Pinkal, Saarland University 8

What we need

•! A method to find the best or most appropriate alignment/
sequence of edit steps between P and H.

•! A general definition for entailment between expressions of
arbitrary type.

•! A method to identify the specific lexical entailment
relations induced by specific SUB edits.

•! A method to determine monotonicity properties of
contexts

•! A compositional method to project entailment relations to
the sentence level, taking monotonocity properties of
context into account.

•! A full specification of the join operation between
entailment relations.

FLST 2009/2010 © Manfred Pinkal, Saarland University 9

Lexical Entailment

•! Assignment of lexical entailment uses features such as
–! WordNet synonymy (! and "), hyponymy (!), antonymy (neither !

nor ")
–! distributional similarity

–! part of speech (in particular: proper noun/ common noun/
pronoun)

–! string similarity (for pairs of proper nouns)

–! special logically fixed relations (all ! some, and ! or)

•! Concrete assignment of entailment relations is done with
a (decision tree) classifier.

FLST 2009/2010 © Manfred Pinkal, Saarland University 10

What we need

•! A method to find the best or most appropriate alignment/
sequence of edit steps between P and H.

•! A general definition for entailment between expressions of
arbitrary type.

•! A method to identify the specific lexical entailment
relations induced by specific SUB edits; DEL and INS
induce ! and ", respectively.

•! A method to determine monotonicity properties of
contexts

•! A compositional method to project entailment relations to
the sentence level, taking monotonocity properties of
context into account.

•! A full specification of the join operation between
entailment relations.

FLST 2009/2010 © Manfred Pinkal, Saarland University 11

Monotonicity

•! ! ! WE<#,$> is upward monotonic, iff ! denotes a function
f such that
 for all d, d’ ! D#: f(d) ! f(d’) iff d ! d’.

•! ! ! WE<#,$> is downward monotonic, iff ! denotes a
function f such that
 for all d, d’ ! D#: f(d) ! f(d’) iff d " d’.

FLST 2009/2010 © Manfred Pinkal, Saarland University 12

Monotonicity, Examples

•! Most verbs and common nouns are upward monotonic.

 red:
 upward monotonic, e.g.: convertible ! car
 red convertible ! red car
 big:
 neither: flea !animal
 big flea # big animal

 doesn’t :
 downward monotonic: walk ! move

 doesn’t walk " doesn’t move

FLST 2009/2010 © Manfred Pinkal, Saarland University 13

What we need

•! A method to find the best or most appropriate alignment/
sequence of edit steps between P and H.

•! A general definition for entailment between expressions of
arbitrary type.

•! A method to identify the specific lexical entailment
relations induced by specific SUB edits; DEL and INS
induce ! and ", respectively.

•! A method to determine monotonicity properties of
contexts

•! A compositional method to project entailment relations to
the sentence level, taking monotonocity properties of
context into account.

•! A full specification of the join operation between
entailment relations.

FLST 2009/2010 © Manfred Pinkal, Saarland University 14

Monotonicity, Examples

•! Upward monotonic context: ! " !, " " ", # " #

•! Downward monotonic context: ! " ", " " !, # " #

•! Neither: ! " #, " " #, # " #

FLST 2009/2010 © Manfred Pinkal, Saarland University 15

What we need

•! A method to find the best or most appropriate alignment/
sequence of edit steps between P and H.

•! A general definition for entailment between expressions of
arbitrary type.

•! A method to identify the specific lexical entailment
relations induced by specific SUB edits; DEL and INS
induce ! and ", respectively.

•! A method to determine monotonicity properties of
contexts

•! A compositional method to project entailment relations to
the sentence level, taking monotonocity properties of
context into account.

•! A full specification of the join operation between
entailment relations.

FLST 2009/2010 © Manfred Pinkal, Saarland University 16

The join operation

•! ! + ! = !

•! " + " = "
•! All other combinations of !, ", and # yield #

FLST 2009/2010 © Manfred Pinkal, Saarland University

Quantification

S

!every student works"

NP

!every student"

Det

!every"

Every

VP

!work"

N

!student"

V

!work"

student works

17 FLST 2009/2010 © Manfred Pinkal, Saarland University

The Semantics of Quantified NPs

 Every student works.

 every-student’: ((e,t),t) work’: (e,t)

 every-student’(work’): t

 ‘Every student’ denotes a second-order predicate that is true of a first-

order predicate, if all students are in the denotation of that predicate.

 More technically speaking, for A# UM:

 !every-student’"M,g(A)=1 iff VM !student’" #A

 Simliarly for ‘a student’ and ‘no student’

18

FLST 2009/2010 © Manfred Pinkal, Saarland University

Examples

19 !

j"1

b" 0

m"1

p" 0

s"1

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

" 1

j" 0

b"1

m" 0

p" 0

s"1

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

" 0

j"1

b" 0

m" 0

p"1

s"1

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

" 0

...

$

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

!

j"1

b" 0

m"1

p" 0

s"1

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

" 1

j" 0

b"1

m" 0

p" 0

s"1

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

" 0

j"1

b" 0

m" 0

p"1

s"1

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

" 1

...

$

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

!

j"1

b" 0

m"1

p" 0

s"1

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

" 0

j" 0

b"1

m" 0

p" 0

s"1

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

" 1

j"1

b" 0

m" 0

p"1

s"1

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

" 0

...

$

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

every student some students no student

under the assumption that the denotation of student is {j, m}

FLST 2009/2010 © Manfred Pinkal, Saarland University
20

Internal NP structure

 Determiners denote functions from first-order predicates („student“) to

second-order predicates („every student“) ; in other words: functions from
first-order predicates to functions from first-order predicates to truth values.

 every: ((e,t),((e,t),t)) student: (e,t)

 every(student): ((e,t),t) work: (e,t)

 every(student)(work): t

Semantically, every is a two-place second-order relation that takes two

predicates as arguments and returns “true” if the denotation of the first is a

subset of the denotation of the second predicate.

“every student works” is true iff the set of students is a subset of the set of
working individuals.

FLST 2009/2010 © Manfred Pinkal, Saarland University
21

Internal NP structure

•! Other determiners, like „no“ or the indefinite article can be interpreted

accordingly:

 VM (every)(A)(B) = 1 iff A#B

 VM (a)(A)(B) = 1 iff A$B % $

 VM (no)(A)(B) = 1 iff A$B = $

•! From these interpretations we can read off the monotonicity
properties:

–! a is upward monotonic, every and no are downward monotonic (in their

first argument).

–! a student and every student are upward monotonic, no student is

downward monotonic.

FLST 2009/2010 © Manfred Pinkal, Saarland University
22

Topics in Computational Semantics

•! Refinement and compositional treatment of vector-space

semantics

•! Automatic acquisition of semantic resources (lexica, frame
structures, scripts) from corpora

•! Automatic acquisition of inference paraphrase and

inference patterns from corpora

•! Supervised, semi-supervised, unsupervised semantic

processing

•! Combining logic-based and distributional semantic
methods

