2

Foundations of Language Science and Technology

Semantics 4a

Manfred Pinkal Saarland University

- Textual Inference and Logical Inference
- P: Several airlines reported cost increases
- H: Several companies reported cost increases

FLST 2009/2010 © Manfred Pinkal, Saarland University

Example

- P: Several airlines polled saw costs grow more than expected.
- H: Some companies reported cost increases.

Atomic Edit	Lexica	l entailm	ent	Sentence-level e.
SUB(<i>several, some</i>)	\rightarrow	C	\rightarrow	
SUB(airlines, companies)	\rightarrow		\rightarrow	E
DEL(<i>polled</i>)	\rightarrow		\rightarrow	E
SUB(saw, reported)	\rightarrow	≡?	\rightarrow	≡
SUB(costs, cost)	\rightarrow	≡	\rightarrow	≡
SUB(grow, increase)	\rightarrow	≡	\rightarrow	Ξ
DEL(more than expected)	\rightarrow		\rightarrow	C

The effect of context: Monotonicity properties

- P: John bought a new convertible.
- H: John bought a new car.
- P: John didn't buy a new convertible.
- H: John didn't buy a new car.
- P: All airlines reported cost increases.
- P: All companies reported cost increases.
- P: All airlines reported extreme cost increases.
- P: All airlines reported cost increases.

What we need

- A method to find the best or most appropriate alignment/ sequence of edit steps between P and H.
- A general definition for entailment between expressions of arbitrary type.
- A method to identify the specific lexical entailment relations induced by specific SUB edits; DEL and INS induce □ and □, respectively.
- A method to determine monotonicity properties of contexts
- A compositional method to project entailment relations to the sentence level, taking monotonocity properties of context into account.
- A full specification of the join operation between entailment relations.

FLST 2009/2010 © Manfred Pinkal, Saarland University

General definition of entailment

5

- For sentences A, $B \in WE_t$: A \sqsubset B iff A \vDash B
- For proper nouns a, b ∈ WE_e: a □ b iff a □ b iff [[a]] = [[b]]
- For functional expressions α, β ∈ WE_{<σ,τ>}:
 α □ β iff for all d ∈ D_τ: [[α]](d) □ [[β]](d)

- A method to find the best or most appropriate alignment/ sequence of edit steps between P and H.
- A general definition for entailment between expressions of arbitrary type.
- A method to identify the specific lexical entailment relations induced by specific SUB edits; DEL and INS induce □ and □, respectively.
- A method to determine monotonicity properties of contexts
- A compositional method to project entailment relations to the sentence level, taking monotonocity properties of context into account.
- A full specification of the join operation between entailment relations.

FLST 2009/2010 © Manfred Pinkal, Saarland University

What we need

6

- A method to find the best or most appropriate alignment/ sequence of edit steps between P and H.
- A general definition for entailment between expressions of arbitrary type.
- A method to identify the specific lexical entailment relations induced by specific SUB edits.
- A method to determine monotonicity properties of contexts
- A compositional method to project entailment relations to the sentence level, taking monotonocity properties of context into account.
- A full specification of the join operation between entailment relations.

Lexical Entailment

- Assignment of lexical entailment uses features such as
 - WordNet synonymy (□ and □), hyponymy (□), antonymy (neither □ nor □)
 - distributional similarity
 - part of speech (in particular: proper noun/ common noun/ pronoun)
 - string similarity (for pairs of proper nouns)
 - special logically fixed relations (*all* □ *some*, *and* □ *or*)
- Concrete assignment of entailment relations is done with a (decision tree) classifier.

- A method to find the best or most appropriate alignment/ sequence of edit steps between P and H.
- A general definition for entailment between expressions of arbitrary type.
- A method to identify the specific lexical entailment relations induced by specific SUB edits; DEL and INS induce □ and □, respectively.
- A method to determine monotonicity properties of contexts
- A compositional method to project entailment relations to the sentence level, taking monotonocity properties of context into account.
- A full specification of the join operation between entailment relations.
- FLST 2009/2010 © Manfred Pinkal, Saarland University

FLST 2009/2010 © Manfred Pinkal, Saarland University

Monotonicity

9

- $\alpha \in WE_{<_{\sigma,\tau>}}$ is upward monotonic, iff $\,\alpha$ denotes a function f such that

for all $d, d' \in D_{\sigma}$: f(d) \sqsubset f(d') iff d \sqsubset d'.

 α ∈ WE_{<g,τ>} is downward monotonic, iff α denotes a function f such that for all d, d' ∈ D_α: f(d) ⊏ f(d') iff d □ d'.

· Most verbs and common nouns are upward monotonic.

red:

upward monotonic, e.g.: *convertible* ⊏ *car red convertible* ⊏ *red car*

big:

neither:

flea ⊏animal big flea # big animal

doesn't:

downward monotonic: *walk* ⊏ *move doesn't walk* □ *doesn't move*

11

What we need

13

- A method to find the best or most appropriate alignment/ sequence of edit steps between P and H.
- A general definition for entailment between expressions of arbitrary type.
- A method to identify the specific lexical entailment relations induced by specific SUB edits; DEL and INS induce □ and □, respectively.
- A method to determine monotonicity properties of contexts
- A compositional method to project entailment relations to the sentence level, taking monotonocity properties of context into account.
- A full specification of the join operation between entailment relations.

FLST 2009/2010 © Manfred Pinkal, Saarland University

What we need

- A method to find the best or most appropriate alignment/ sequence of edit steps between P and H.
- A general definition for entailment between expressions of arbitrary type.
- A method to determine monotonicity properties of contexts
- A compositional method to project entailment relations to the sentence level, taking monotonocity properties of context into account.
- A full specification of the join operation between entailment relations.

- Upward monotonic context: $\Box \Rightarrow \Box, \exists \Rightarrow \exists, \# \Rightarrow \#$
- Downward monotonic context: $\Box \Rightarrow \Box, \Box \Rightarrow \Box, \# \Rightarrow \#$
- Neither: $\Box \Rightarrow \#, \exists \Rightarrow \#, \# \Rightarrow \#$

FLST 2009/2010 © Manfred Pinkal, Saarland University

The join operation

- [+[=[
-]+]=]
- All other combinations of □, □, and # yield #

Quantification

Every student works.

every-student': ((e,t),t) work': (e,t) every-student'(work'): t

'Every student' denotes a second-order predicate that is true of a first-order predicate, if all students are in the denotation of that predicate.

More technically speaking, for $A \subseteq U_M$: [every-student']^{M,g}(A)=1 iff V_M [student'] $\subseteq A$ Similarly for 'a student' and 'no student'

FLST 2009/2010 © Manfred Pinkal, Saarland University

18

Examples

every student	some students	no student		
$ \begin{bmatrix} j \rightarrow 1 \\ b \rightarrow 0 \\ m \rightarrow 1 \\ p \rightarrow 0 \\ s \rightarrow 1 \end{bmatrix} \rightarrow 1 $ $ \begin{bmatrix} j \rightarrow 0 \\ b \rightarrow 1 \\ m \rightarrow 0 \\ b \rightarrow 1 \\ m \rightarrow 0 \\ s \rightarrow 1 \end{bmatrix} $ $ \begin{bmatrix} j \rightarrow 0 \\ b \rightarrow 1 \\ m \rightarrow 0 \\ s \rightarrow 1 \\ s \rightarrow 1 \\ s \rightarrow 1 \end{bmatrix} $ $ \begin{bmatrix} m \rightarrow 0 \\ p \rightarrow 0 \\ m \rightarrow 0 \\ p \rightarrow 1 \\ s \rightarrow 1 \end{bmatrix} $	$ \begin{bmatrix} j \rightarrow 1 \\ b \rightarrow 0 \\ m \rightarrow 1 \\ p \rightarrow 0 \\ s \rightarrow 1 \end{bmatrix} \rightarrow 1 $ $ \begin{bmatrix} j \rightarrow 0 \\ b \rightarrow 1 \\ m \rightarrow 0 \\ b \rightarrow 1 \\ m \rightarrow 0 \\ s \rightarrow 1 \end{bmatrix} $ $ \begin{bmatrix} j \rightarrow 0 \\ b \rightarrow 1 \\ m \rightarrow 0 \\ s \rightarrow 1 \\ b \rightarrow 0 \\ m \rightarrow 0 \\ m \rightarrow 0 \\ m \rightarrow 1 \\ s \rightarrow 1 \end{bmatrix} $ $ \dots $	$\begin{bmatrix} j \rightarrow 1 \\ b \rightarrow 0 \\ m \rightarrow 1 \\ p \rightarrow 0 \\ s \rightarrow 1 \end{bmatrix} \xrightarrow{j \rightarrow 0} \begin{bmatrix} j \rightarrow 0 \\ b \rightarrow 1 \\ m \rightarrow 0 \\ p \rightarrow 0 \\ s \rightarrow 1 \\ b \rightarrow 0 \\ m \rightarrow 0 \\ p \rightarrow 1 \\ s \rightarrow 1 \end{bmatrix} \xrightarrow{q \rightarrow 0} \begin{bmatrix} j \rightarrow 1 \\ b \rightarrow 0 \\ p \rightarrow 1 \\ s \rightarrow 1 \end{bmatrix}$		
under the assumption that the denotation of student is {i m}				

S

[every student works]

Ν

student

[student] [work]

νp

[work]

V

works

ŃP

[everv student]

Det [everv]

Every

FLST 2009/2010 © Manfred Pinkal, Saarland University

under the assumption that the denotation of *student* is {j, m}

17

Determiners denote functions from first-order predicates ("student") to second-order predicates ("every student"); in other words: functions from first-order predicates to functions from first-order predicates to truth values.

every: ((e,t),((e,t),t)) student: (e,t)

every(student): ((e,t),t) work: (e,t)

every(student)(work): t

Semantically, *every* is a two-place second-order relation that takes two predicates as arguments and returns "true" if the denotation of the first is a subset of the denotation of the second predicate.

"every student works" is true iff the set of students is a subset of the set of working individuals.

Internal NP structure

21

- Other determiners, like "no" or the indefinite article can be interpreted accordingly:
 - V_{M} (every)(A)(B) = 1 iff A \subseteq B
 - $V_{M}(a)(A)(B) = 1$ iff $A \cap B \neq \emptyset$
 - V_{M} (no)(A)(B) = 1 iff A \cap B = \varnothing
- From these interpretations we can read off the monotonicity properties:
 - *a* is upward monotonic, *every* and *no* are downward monotonic (in their first argument).
 - *a student* and *every student* are upward monotonic, *no student* is downward monotonic.

- Refinement and compositional treatment of vector-space semantics
- Automatic acquisition of semantic resources (lexica, frame structures, scripts) from corpora
- Automatic acquisition of inference paraphrase and inference patterns from corpora
- Supervised, semi-supervised, unsupervised semantic processing
- Combining logic-based and distributional semantic methods

FLST 2009/2010 © Manfred Pinkal, Saarland University

22