2

The Story

- Modelling natural-language inference as deduction in a framework of truth-conditionally interpreted logic appears intuitive and straightforward.
- But: Logical methods are expensive and lack robustness and coverage.
- Corpus-based statistical methods for modelling inference are inexpensive and have no coverage problem.
- But: Shallow statistical models of inference are inherently imprecise and resist a satisfactory intuitive interpretation.
- But: There are highly promising approaches, which combine deep logic-based and shallow statistical methods.
- We will look at Bill MacCartney's doctoral dissertation on "Naturallanguage Inference" as one of the most interesting approaches.

FLST 2009/2010 © Manfred Pinkal, Saarland University

Negation and polarity

- P: Whooping cough, or pertussis, is a highly contagious bacterial infection characterized by violent coughing ts, gasp for air that resemble 'whoop' sounds, and vomiting
- H: Pertussis is not very contagious.
- P: Energy analysts said oil prices <u>could</u> soar as high as \$80 a barrel, if damage reports from oil companies bear bad news.
- H: Oil prices surged.

inexpensive and have no coverage problem.

and resist a satisfactory intuitive interpretation.

logic-based and shallow statistical methods.

3

The Story

straightforward.

coverage.

Semantics 4

Foundations of Language Science and

Technology

Saarland University

Modelling natural-language inference as deduction in a framework of

truth-conditionally interpreted logic appears intuitive and

But: Logical methods are expensive and lack robustness and

· Corpus-based statistical methods for modelling inference are

But: Shallow statistical models of inference are inherently imprecise

• But: There are highly promising approaches, which combine deep

 We will look at Bill MacCartney's doctoral dissertation on "Naturallanguage Inference" as one of the most interesting approaches.

General Tendencies of Results

- "Knowledge-lean" systems relying on shallow information (word overlap, string match, distributional similarity) perform better than naïve baseline of 50%, but only to some degree (60-65%).
- They may provide a good estimate of "aboutness": Is the Premiss/ text about the issue raised by the hypothesis?
- Systems relying on deep linguistic analysis and logical entailment perform drastically worse than naïve baseline (but are significantly more precise on cases they can treat).
- · How can the best of deep and shallow methods be combined?

6

- P: Several airlines reported cost increases
- H: Several companies reported cost increases
- H can be obtained from P by a single substitution.
- *airlines* and *companies* stand in hyponymy relation
- From this, it clearly follows that P (logically) entails H without a full logical analysis of the sentences.

FLST 2009/2010 © Manfred Pinkal, Saarland University

More examples

5

- P: Several airlines polled reported cost increases
- H: Several airlines reported cost increases
- · Deletion of modifiers preserves entailment.
 - P: Several airlines polled reported cost increases
 - H: Several companies reported cost increases
- Two entailment-inducing edits ad up to entailment again.

FLST 2009/2010 © Manfred Pinkal, Saarland University

More examples

- P: Several airlines reported cost increases
- H: Several airlines polled reported cost increases
- Insertion (of modifiers) causes non-entailment (actually, it causes inverse entailment.
 - P: Several airlines reported cost increases
 - H: Several companies polled cost increases
- The combination of edits with opposite entailment effects leads to non-entailment (semantic independence) of P and H.
- FLST 2009/2010 © Manfred Pinkal, Saarland University

Example

- P: Several airlines polled saw costs grow more than expected.
- H: Some companies reported cost increases.

Atomic Edit	Lexio	al entailn	nent	Sentence-le	vel e.
SUB(<i>several, some</i>)	\rightarrow	E	\rightarrow	L	
SUB(airlines, companies)	\rightarrow		\rightarrow	E	
DEL(<i>polled</i>)	\rightarrow		\rightarrow	E	
SUB(saw, reported)	\rightarrow	≡?	\rightarrow	≡	
SUB(<i>costs, cost</i>)	\rightarrow	≡	\rightarrow	≡	
SUB(grow, increase)	\rightarrow	≡	\rightarrow	≡	
DEL(more than expected)	\rightarrow		\rightarrow	E	

FLST 2009/2010 © Manfred Pinkal, Saarland University

The effect of context

9

- P: John bought a new convertible.
- H: John bought a new car.
- P: John didn't buy a new convertible.
- H: John didn't buy a new car.
- In an affirmative standard context, a context with "positive polarity", an "upward monotonic" context, sentence-level entailment is atomic lexical entailment.
- In the context of a negation, a context with "negative polarity", a "downward monotonic" context, atomic lexical entailment is inverted on the sentence level.

- A method to find the best or most appropriate alignment/ sequence of edit steps between P and H.
- A method to identify the specific lexical entailment relations induced by specific SUB edits; DEL and INS induce □ and □, respectively.
- A full specification of the join operation between entailment relations.
- A method to compute the effect of the lexical entailment relations on the logical entailment relation between full sentences - taking the context of the edits into account.

FLST 2009/2010 © Manfred Pinkal, Saarland University

Example contexts: Conditionals

- *P:* If John will buy a new convertible, he will run into financial difficulties.
- H: If John will buy a new car, he will run into financial difficulties.
- *P*: If John will buy a new car, he will run into serious financial difficulties.
- H: If John will buy a new car, he will run into financial difficulties.

Example contexts: Quantifiers

- P: No airline reported cost increases.
- P: No company reported cost increases.
- P: No airline reported extreme cost increases.
- P: No airline reported cost increases.
- P: All airlines reported cost increases.
- P: All companies reported cost increases.
- P: All airlines reported extreme cost increases. P: All airlines reported cost increases.
- P: *Most airlines reported cost increases.*
- P: Most companies reported cost increases.
- P: Most airlines reported extreme cost increases.
- P: *Most airlines reported cost increases.*

FLST 2009/2010 © Manfred Pinkal, Saarland University

What we need

13

- A method to find the best or most appropriate alignment/ sequence of edit steps between P and H.
- A method to identify the specific lexical entailment relations induced by specific SUB edits; DEL and INS induce □ and □, respectively.
- A full specification of the join operation between entailment relations.
- A method to compute the effect of the lexical entailment relations on the logical entailment relation between full sentences taking the context of the edits into account.

Example contexts: Verbs

- P: Bill doubts whether John bought a new convertible.
 H: Bill doubts whether John bought a new car.
- P: Bill doubts whether John bought a new convertible.
- H: Bill doubts whether John bought a new car.
- P: Bill refused to drive a convertible.
- H: Bill refused to drive a car.

FLST 2009/2010 © Manfred Pinkal, Saarland University

Logical Entailment

Logical Entailment

FLST 2009/2010 © Manfred Pinkal, Saarland University

Composing FOL formulae

17

19

• John likes Mary ⇒ like(john, mary)

Frege's Principle:

- The meaning of a complex expression is uniquely determined by the meanings of its sub-expressions and its syntactic structure.
- The model-theoretic interpretation of FOL is perfectly compositional in the sense of Frege's Principle.
- But: Is there a way to give a compositional semantic interpretation to natural-language expressions?
 Is there a "surface compositional interpretation" for natural language?

FLST 2009/2010 © Manfred Pinkal, Saarland University

• Every student works

... doesn't work for quantification

- $\Rightarrow \forall x(student(x) \rightarrow work(x))$
- S $\forall x(student(x) \rightarrow work(x))$ NP VP ? work l Det N V ? student work l Every student works

FLST 2009/2010 © Manfred Pinkal, Saarland University

20

Direct interpretation of NL constituents

 $\forall x(student(x) \rightarrow work(x) [])$

FLST 2009/2010 © Manfred Pinkal, Saarland University

Entailment projection

21

• Every student works \models Every undergraduate works

Entailment projection

• Every student works ⊨ Every undergraduate works

FLST 2009/2010 © Manfred Pinkal, Saarland University

FOL: Lack of Expressiveness

John is a married piano player	piano-player(j) < married(j)
John is a blond criminal	criminal(j) < blond(j)
John is a poor piano player	piano-player(j) < poor(j) ?
John is an alleged criminal	criminal(j) < alleged(j) ???

FOL: Lack of Expressiveness

25

Yesterday, we had minus temperatures. Probably, it will snow tomorrow. Unfortunately, it is extremely cold.

Flipper is a dolphin. A dolphin is a mammal.

⊨ Flipper is a mammal.

Bill is blond. Blond is a hair colour.

⊭ Bill is a hair colour.

FLST 2009/2010 © Manfred Pinkal, Saarland University

Some Useful Types for NL Semantics

- Proper name
- bill: e

it rains: t

- Sentence
- One-place predicate constant:

work, student: <e,t>

very, relatively:

like, larger than: <e, <e, t>>

- Two-place relation:
- Sentence adverbial:

yesterday, unfortunately: <t,t> Attributive adjective:

married, poor, alleged: <<e,t>,<e,t>>

<<<e.t>.<e.t>.<<e.t>.>>

Degree modifier:

٠

The Language of Type Theory

Types:

- The set of basic types is {e, t} :
 - e (for entity) is the type of individual terms
 - t (for truth value) is the type of formulas
- All pairs (σ, τ) made up of (basic or complex) types σ, τ are types. (σ, τ) is the type of functions which map arguments of type σ to values of type τ.
- In short: The set of types is the smallest set T such that e,t∈T, and if σ,τ ∈T, then also (σ,τ) ∈T.

FLST 2009/2010 © Manfred Pinkal, Saarland University

Second-order predicates

Bill is blond. Blond is a hair colour. <u>bill: e blond: <e,t></u> blond(bill): t Blond is a hair colour. <u>blond: <e,t> hair colour : <<e,t>,t></u> hair_colour (blond): t Bill is a hair colour 222

 Hair-colour is a second-order predicate. *hair_colour(bill)* is not even a well-formed expression.

Type-theoretic syntax

- · Vocabulary:
 - A (possibly empty) set of constants: Con $_{\tau}$, for every type τ
 - A set of variables: $\text{Var}_{\tau},$ for every type τ
 - The usual FOL operators: connectives, quantifiers, equality
- The sets of well-formed expressions WE_τ for every type τ are given by:
 - $Con_{\tau} \cup Var_{\tau} \subseteq WE_{\tau}$ for every type τ
 - If $\alpha \in WE_{<\sigma, \tau>}$, $\beta \in WE_{\sigma}$, then $\alpha(\beta) \in WE_{\tau}$.
 - If A, B are in WE_t, then so are \neg A, (A \land B), (A \lor B), (A \leftrightarrow B),(A \leftrightarrow B)
 - If A is in WE_t, then so are $\forall v$ A and $\exists v$ A, where v is a variable of arbitrary type.
 - If $\alpha,\,\beta$ are well-formed expressions of the same type, then $\alpha\text{=}\beta\in\mathsf{We}_t$

29

Function Application: Examples

Bill drives fast		drive: <e,t></e,t>	fast: < <e,t>,<e,t>></e,t></e,t>	
	bill: e	fast(drive): <e,t></e,t>		
		fast(drive)(l	pill): t	
Mary works in Saa	rks in Saarbrücken		<e, <<e,t="">,<e,t>>></e,t></e,>	sb: e
	wor	— k: <e,t></e,t>	in(sb): << <e,t>,<e,< th=""><th>t>>></th></e,<></e,t>	t>>>
ma	у: е	wo	rk(in(sb))): <e,t></e,t>	
		work(in(sb)))	
FLST 2009/2010 © Man	red Pinkal,	Saarland Un	versity	

- The most important syntactic operation in type-theory is function application:

If $\alpha \in WE_{<_{\sigma,\tau}>}$, $\beta \in WE_{\sigma}$, then $\alpha(\beta) \in WE_{\tau}$.

 Note: A functor of complex type combines with an appropriate argument to a yield a (more complex) expression of less complex type.

FLST 2009/2010 © Manfred Pinkal, Saarland University

30

Using Higher-Order Variables

- Bill has the same hair colour as John.
 ∃G (hair_colour(G) ∧ G (bill) ∧ G (john))
- Santa Claus has all the attributes of a sadist.
 ∀F∀a(sadist(a) ∧ F(a) → F(b))

Type-theoretic semantics [1]

- Let U be a non-empty set of entities. The domain of possible denotations for every type τ, D_τ, is given by:
 - D_e = U
 - $D_t = \{0, 1\}$
 - $D_{<\sigma,\,\tau>}$ is the set of all functions from D_σ to D_τ

- Example
 - Let U consist of John, Bill, Mary, Paul, and Sally (persons, not proper names!)
 - $D_t = \{0, 1\}$ - $D_e = U = \{j, b, m, p, s\}$

FLST 2009/2010 © Manfred Pinkal, Saarland University

34

FLST 2009/2010 © Manfred Pinkal, Saarland University

An element of $D_{<<e,t>, <e,t>>}$

$[j \rightarrow 1]$		$[j \rightarrow 1]$
$b \rightarrow 0$		$b \rightarrow 0$
$m \rightarrow 1$	\rightarrow	$m \rightarrow 1$
$p \rightarrow 0$		$p \rightarrow 0$
$s \rightarrow 1$		$s \rightarrow 0$
$\begin{bmatrix} j \rightarrow 0 \end{bmatrix}$		$\begin{bmatrix} j \rightarrow 0 \end{bmatrix}$
$b \rightarrow 1$		$b \rightarrow 0$
$m \rightarrow 0$	\rightarrow	$m \rightarrow 0$
$p \rightarrow 0$		$p \rightarrow 0$
$s \rightarrow 1$		$s \rightarrow 1$
$\begin{bmatrix} j \rightarrow 1 \end{bmatrix}$		$[j \rightarrow 1]$
$b \rightarrow 0$		$b \rightarrow 0$
$m \rightarrow 1$	\rightarrow	$m \rightarrow 1$
$p \rightarrow 1$		$p \rightarrow 0$
$\lfloor s \rightarrow 1 \rfloor$		$\lfloor s \rightarrow 0 \rfloor$
		1

33

Type-theoretic semantics [1]

- Let U be a non-empty set of entities. The domain of possible denotations for every type τ, D_τ, is given by:
 - D_e=U
 - $D_t = \{0, 1\}$
 - $D_{<\sigma,\,\tau>}$ is the set of all functions from D_σ to D_τ
- A model structure for a type theoretic language: M = <U, V>, where
 - U (or $U_{\mbox{\scriptsize M}})$ is a non-empty domain of individuals
 - V (or V_M) is an interpretation function, which assigns to every member of Con_{τ} an element of D_{τ}.
- Variable assignment g assigns every variable of type $\tau\,$ a member of $D_{\tau}.$

Interpretation function, examples

 $V_{M}(john) = j \qquad V_{M}(mary) = m$ $V_{M}(piano \ player): \begin{bmatrix} j \rightarrow 1 \\ b \rightarrow 0 \end{bmatrix} \qquad V_{M}(semanticist): \begin{bmatrix} j \rightarrow 0 \\ b \rightarrow 1 \end{bmatrix}$

$$V_{M}(semanticist) = \begin{bmatrix} b \to 0 \\ m \to 1 \\ p \to 0 \\ s \to 1 \end{bmatrix}$$

$$V_{M}(skier) = \begin{bmatrix} j \to 1 \\ b \to 0 \\ m \to 1 \\ p \to 1 \\ s \to 1 \end{bmatrix}$$

FLST 2009/2010 © Manfred Pinkal, Saarland University

Type-theoretic semantics [2]

37

• Interpretation (with respect to model structure M and variable assignment g):

[[α]] ^{M,g} = V_M(α), if α constant

[[α]] ^{M,g} = g(α), if α variable

$[[\alpha(\beta)]]^{M,g} = [[\alpha]]^{M,g}([[\beta]]^{M,g})$

$$\begin{split} & [[\neg \varphi]]^{M,g} = 1 & \text{iff} & [[\varphi]]^{M,g} = 0 \\ & [[\varphi \land \psi]]^{M,g} = 1 & \text{iff} & [[\varphi]]^{M,g} = 1 \text{ and } [[\psi]]^{M,g} = 1, \text{ etc.} \\ & \text{If } v \in \text{Var}_{\tau}, \ & [[\exists v \varphi]]^{M,g} = 1 & \text{iff} & \text{there is } a \in D_{\tau} \text{ such that } [[\varphi]]^{M,g[v/a]} = 1 \\ & \text{If } v \in \text{Var}_{\tau}, \ & [[\forall v \varphi]]^{M,g} = 1 & \text{iff} & \text{for all } a \in D_{\tau} : [[\varphi]]^{M,g[v/a]} = 1 \\ & [[\alpha = \beta]]^{M,g} = 1 & \text{iff} & [[\alpha]]^{M,g} = [[\beta]]^{M,g} \end{split}$$

	$\left[\left[j \rightarrow 1 \right] \right]$		$[j \rightarrow 1]$
	$b \rightarrow 0$		$b \rightarrow 0$
V _M (<i>talented</i>):	$m \rightarrow 1$	\rightarrow	$m \rightarrow 1$
	$ p \rightarrow 0 $		$p \rightarrow 0$
	$ s \rightarrow 1 $		$s \rightarrow 0$
	$\begin{bmatrix} j \rightarrow 0 \end{bmatrix}$		$\begin{bmatrix} j \rightarrow 0 \end{bmatrix}$
	$b \rightarrow 1$		$b \rightarrow 0$
	$m \rightarrow 0$	\rightarrow	$m \rightarrow 0$
	$p \rightarrow 0$		$p \rightarrow 0$
	$\lfloor s \rightarrow 1 \rfloor$		$s \rightarrow 1$
	$[j \rightarrow 1]$		$\begin{bmatrix} j \rightarrow 1 \end{bmatrix}$
	$ b \rightarrow 0 $		$b \rightarrow 0$
	$ m \rightarrow 1 $	\rightarrow	$m \rightarrow 1$
	$ p \rightarrow 1 $		$ p \rightarrow 0 $
	$\lfloor s \rightarrow 1 \rfloor$		$\lfloor s \rightarrow 0 \rfloor$
	1		1

FLST 2009/2010 © Manfred Pinkal, Saarland University

Example

38

John is a talented piano-player ⇒ talented(piano-player)(john)

Example continued:

Example continued:

42

FLST 2009/2010 © Manfred Pinkal, Saarland University

Example continued:

FLST 2009/2010 © Manfred Pinkal, Saarland University

41

