The Story

Foundations of Language Science and Technology

Semantics 4
 4

Manfred Pinkal
 Saarland University

The Story

- Modelling natural-language inference as deduction in a framework of truth-conditionally interpreted logic appears intuitive and straightforward
- But: Logical methods are expensive and lack robustness and coverage.
- Corpus-based statistical methods for modelling inference are inexpensive and have no coverage problem.
- But: Shallow statistical models of inference are inherently imprecise and resist a satisfactory intuitive interpretation.
- But: There are highly promising approaches, which combine deep logic-based and shallow statistical methods.
- We will look at Bill MacCartney's doctoral dissertation on "Naturallanguage Inference" as one of the most interesting approaches.
- Modelling natural-language inference as deduction in a framework of truth-conditionally interpreted logic appears intuitive and straightforward.
- But: Logical methods are expensive and lack robustness and coverage.
- Corpus-based statistical methods for modelling inference are inexpensive and have no coverage problem.
- But: Shallow statistical models of inference are inherently imprecise and resist a satisfactory intuitive interpretation.
- But: There are highly promising approaches, which combine deep logic-based and shallow statistical methods.
- We will look at Bill MacCartney's doctoral dissertation on "Naturallanguage Inference" as one of the most interesting approaches.

P: Whooping cough, or pertussis, is a highly contagious bacterial infection characterized by violent coughing ts, gasp for air that resemble 'whoop' sounds, and vomiting
H : Pertussis is not very contagious.
P: Energy analysts said oil prices could soar as high as $\$ 80$ a barrel, if damage reports from oil companies bear bad news.
H: Oil prices surged.

- "Knowledge-lean" systems relying on shallow information (word overlap, string match, distributional similarity) perform better than naïve baseline of 50%, but only to some degree ($60-65 \%$).
- They may provide a good estimate of "aboutness": Is the Premiss/ text about the issue raised by the hypothesis?
- Systems relying on deep linguistic analysis and logical entailment perform drastically worse than naïve baseline (but are significantly more precise on cases they can treat).
- How can the best of deep and shallow methods be combined?

More examples

P: Several airlines polled reported cost increases

H: Several airlines reported cost increases

- Deletion of modifiers preserves entailment.

P: Several airlines polled reported cost increases
H: Several companies reported cost increases

- Two entailment-inducing edits ad up to entailment again.

P: Several airlines reported cost increases
H: Several companies reported cost increases

- H can be obtained from P by a single substitution.
- airlines and companies stand in hyponymy relation
- From this, it clearly follows that P (logically) entails H without a full logical analysis of the sentences.

More examples

P: Several airlines reported cost increases

H: Several airlines polled reported cost increases

- Insertion (of modifiers) causes non-entailment (actually, it causes inverse entailment.

P: Several airlines reported cost increases
H: Several companies polled cost increases

- The combination of edits with opposite entailment effects leads to non-entailment (semantic independence) of P and H .
FLST 2009/2010 © Manfred Pinkal, Saarland University

Example

What we need

P: Several airlines polled saw costs grow more than expected.
H: Some companies reported cost increases.

Atomic Edit	Lexical entailment		Sentence-level e.	
SUB(several, some)	\rightarrow	\sqsubset	\rightarrow	\sqsubset
SUB(airlines, companies)	\rightarrow	\sqsubset	\rightarrow	\sqsubset
DEL(polled)	\rightarrow	\sqsubset	\rightarrow	\sqsubset
SUB(saw, reported)	\rightarrow	$\equiv ?$	\rightarrow	\equiv
SUB(costs, cost)	\rightarrow	\equiv	\rightarrow	\equiv
SUB(grow, increase)	\rightarrow	\equiv	\rightarrow	\equiv
DEL(more than expected)	\rightarrow	\sqsubset	\rightarrow	\sqsubset

The effect of context

P: John bought a new convertible.
H: John bought a new car.
P: John didn't buy a new convertible.
H: John didn't buy a new car.

- In an affirmative standard context, a context with "positive polarity", an "upward monotonic" context, sentence-level entailment is atomic lexical entailment.
- In the context of a negation, a context with "negative polarity", a "downward monotonic" context, atomic lexical entailment is inverted on the sentence level.
- A method to find the best or most appropriate alignment/ sequence of edit steps between P and H.
- A method to identify the specific lexical entailment relations induced by specific SUB edits; DEL and INS induce $[$ and \sqsupset, respectively.
- A full specification of the join operation between entailment relations.
- A method to compute the effect of the lexical entailment relations on the logical entailment relation between full sentences - taking the context of the edits into account.

Example contexts: Conditionals

P: If John will buy a new convertible, he will run into financial difficulties.
H: If John will buy a new car, he will run into financial difficulties.

P: If John will buy a new car, he will run into serious financial difficulties.
H: If John will buy a new car, he will run into financial difficulties.

P: No airline reported cost increases.
$P:$ No company reported cost increases.
P: No airline reported extreme cost increases.
P : No airline reported cost increases.
P : All airlines reported cost increases.
P : All companies reported cost increases.
P : All airlines reported extreme cost increases
P : All airlines reported cost increases.
P : Most airlines reported cost increases.
P: Most companies reported cost increases.
P: Most airlines reported extreme cost increases.
P: Most airlines reported cost increases.

What we need

- A method to find the best or most appropriate alignment/ sequence of edit steps between P and H .
- A method to identify the specific lexical entailment relations induced by specific SUB edits; DEL and INS induce \ulcorner and \sqsupset, respectively.
- A full specification of the join operation between entailment relations
- A method to compute the effect of the lexical entailment relations on the logical entailment relation between full sentences - taking the context of the edits into account.

P: Bill doubts whether John bought a new convertible.
H: Bill doubts whether John bought a new car.
P: Bill doubts whether John bought a new convertible
H: Bill doubts whether John bought a new car.
P: Bill refused to drive a convertible.
H: Bill refused to drive a car.

Logical Entailment

Frege's Principle:

- The meaning of a complex expression is uniquely determined by the meanings of its sub-expressions and its syntactic structure.
- The model-theoretic interpretation of FOL is perfectly compositional in the sense of Frege's Principle.
- But: Is there a way to give a compositional semantic interpretation to natural-language expressions? Is there a "surface compositional interpretation" for natural language?

Composing FOL formulae

... doesn't work for quantification

- Every student works $\Rightarrow \forall x($ student $(x) \rightarrow \operatorname{work}(x))$

Direct interpretation of NL constituents

- Every student works
$\Rightarrow \quad \forall x($ student $(x) \rightarrow$ work $(x) \llbracket \rrbracket)$

FLST 2009/2010 © Manfred Pinkal, Saarland University

Entailment projection

- Every student works \vDash Every undergraduate works

Entailment projection

- Every student works \vDash Every undergraduate works

S

FLST 2009/2010 © Manfred Pinkal, Saarland University

FOL: Lack of Expressiveness

John is a married piano player	piano-player $(\mathrm{j}) \wedge \operatorname{married}(\mathrm{j})$
John is a blond criminal	criminal $(\mathrm{j}) \wedge$ blond(j$)$
John is a poor piano player	piano-player $(\mathrm{j}) \wedge \operatorname{poor}(\mathrm{j}) ?$
John is an alleged criminal	criminal $(\mathrm{j}) \wedge$ alleged (j) ???

Types:

- The set of basic types is $\{\mathrm{e}, \mathrm{t}\}$:
- e (for entity) is the type of individual terms
- t (for truth value) is the type of formulas
- All pairs (σ, τ) made up of (basic or complex) types σ, τ are types. (σ, τ) is the type of functions which map arguments of type σ to values of type τ.
- In short: The set of types is the smallest set \mathbf{T} such that $e, t \in \mathbf{T}$, and if $\sigma, \tau \in \mathbf{T}$, then also $(\sigma, \tau) \in \mathbf{T}$.

Second-order predicates

Bill is blond. Blond is a hair colour.

$$
\frac{\text { bill: } e \text { blond: }<e, t>}{\text { blond(bill): } t}
$$

Blond is a hair colour.
blond: <e,t> hair colour : <<e,t>,t> hair_colour (blond): t
Bill is a hair colour ???

- Hair-colour is a second-order predicate. hair_colour(bill) is not even a well-formed expression.

Type-theoretic syntax

- Vocabulary:
- A (possibly empty) set of constants: Con $_{\tau}$, for every type τ
- A set of variables: Var ${ }_{\tau}$, for every type τ
- The usual FOL operators: connectives, quantifiers, equality
- The sets of well-formed expressions $W E E_{\tau}$ for every type τ are given by:
- Con $_{\tau} \cup \operatorname{Var}_{\tau} \subseteq W_{\tau}$ for every type τ
- If $\alpha \in \mathrm{WE}_{<\sigma, \tau\rangle}, \beta \in \mathrm{WE}_{\sigma}$, then $\alpha(\beta) \in \mathrm{WE}_{\tau}$.
- If A, B are in $W E_{t}$, then so are $\neg A,(A \wedge B),(A \vee B),(A \rightarrow B),(A \leftrightarrow B)$
- If A is in $W E_{t}$, then so are $\forall v A$ and $\exists v A$, where v is a variable of arbitrary type.
- If α, β are well-formed expressions of the same type, then $\alpha=\beta \in$ We_{t}.

Using Higher-Order Variables

- Bill has the same hair colour as John. $\exists G($ hair_colour $(G) \wedge G($ bill $) \wedge G(j o h n))$
- Santa Claus has all the attributes of a sadist.

$$
\forall F \forall a(\text { sadist }(\mathrm{a}) \wedge F(\mathrm{a}) \rightarrow F(\mathrm{~b}))
$$

Type-theoretic semantics [1]

- Let U be a non-empty set of entities. The domain of possible denotations for every type τ, D_{τ}, is given by:
- $D_{e}=U$
- $D_{t}=\{0,1\}$
- $D_{\langle\sigma, \tau}$ is the set of all functions from D_{σ} to D_{τ}

Type-theoretic semantics [1]

- Let U be a non-empty set of entities. The domain of possible denotations for every type τ, D_{τ}, is given by:
- $D_{e}=U$
- $D_{t}=\{0,1\}$
- $D_{<\sigma, \tau\rangle}$ is the set of all functions from D_{σ} to D_{τ}
- A model structure for a type theoretic language:

$$
\mathrm{M}=\langle\mathrm{U}, \mathrm{~V}\rangle \text {, where }
$$

- $\mathrm{U}\left(\right.$ or $\left.\mathrm{U}_{\mathrm{M}}\right)$ is a non-empty domain of individuals
- $\mathrm{V}\left(\right.$ or $\left.\mathrm{V}_{\mathrm{M}}\right)$ is an interpretation function, which assigns to every member of Con $_{\tau}$ an element of D_{τ}.
- Variable assignment g assigns every variable of type τ a member of D_{τ}.
- Let U consist of John, Bill, Mary, Paul, and Sally (persons, not proper names!)
- $D_{t}=\{0,1\}$
- $D_{e}=U=\{j, b, m, p, s\}$
- $\mathrm{D}_{\text {ee,t>}}=\left\{\left[\begin{array}{c}j \rightarrow 1 \\ b \rightarrow 0 \\ m \rightarrow 1 \\ p \rightarrow 0 \\ s \rightarrow 1\end{array}\right],\left[\begin{array}{c}j \rightarrow 1 \\ b \rightarrow 0 \\ m \rightarrow 1 \\ p \rightarrow 1 \\ s \rightarrow 1\end{array}\right],\left[\begin{array}{c}j \rightarrow 0 \\ b \rightarrow 1 \\ m \rightarrow 0 \\ p \rightarrow 0 \\ s \rightarrow 1\end{array}\right], \ldots\right\}$

An element of $D_{\ll e, t>,<e, t \gg}$

$$
\left[\begin{array}{l}
{\left[\begin{array}{l}
j \rightarrow 1 \\
b \rightarrow 0 \\
m \rightarrow 1 \\
p \rightarrow 0 \\
s \rightarrow 1
\end{array}\right]}
\end{array} \rightarrow\left[\begin{array}{l}
j \rightarrow 1 \\
b \rightarrow 0 \\
m \rightarrow 1 \\
p \rightarrow 0 \\
s \rightarrow 0
\end{array}\right]\right]\left[\begin{array}{l}
j \rightarrow 0 \\
j \rightarrow 0 \\
b \rightarrow 1 \\
m \rightarrow 0 \\
p \rightarrow 0 \\
b \rightarrow 0 \\
s \rightarrow 1
\end{array}\right] \rightarrow\left[\begin{array}{l}
{\left[\begin{array}{l}
j \rightarrow 0 \\
p \rightarrow 0 \\
s \rightarrow 1
\end{array}\right]} \\
{\left[\begin{array}{l}
j \rightarrow 1 \\
b \rightarrow 0 \\
m \rightarrow 1 \\
p \rightarrow 1 \\
s \rightarrow 1
\end{array}\right] \rightarrow\left[\begin{array}{l}
j \rightarrow 1 \\
b \rightarrow 0 \\
m \rightarrow 1 \\
p \rightarrow 0 \\
s \rightarrow 0
\end{array}\right]} \\
\ldots
\end{array}\right]
$$

Interpretation function, examples

$$
\mathrm{V}_{\mathrm{M}}(j o h n)=\mathrm{j} \quad \mathrm{~V}_{\mathrm{M}}(\text { mary })=\mathrm{m}
$$

V_{M} (piano player): $\left[\begin{array}{l}j \rightarrow 1 \\ b \rightarrow 0 \\ m \rightarrow 1 \\ p \rightarrow 0 \\ s \rightarrow 1\end{array}\right] \quad \mathrm{V}_{\mathrm{M}}$ (semanticist): $\left[\begin{array}{c}j \rightarrow 0 \\ b \rightarrow 1 \\ m \rightarrow 0 \\ p \rightarrow 0 \\ s \rightarrow 1\end{array}\right]$

$$
\mathrm{V}_{\mathrm{M}} \text { (skier): }\left[\begin{array}{c}
j \rightarrow 1 \\
b \rightarrow 0 \\
m \rightarrow 1 \\
p \rightarrow 1 \\
s \rightarrow 1
\end{array}\right]
$$

FLST 2009/2010 © Manfred Pinkal, Saarland University
37

A predicate modifier

$$
\mathrm{V}_{\mathrm{M}} \text { (talented): }\left[\begin{array}{cc}
{\left[\begin{array}{l}
j \rightarrow 1 \\
b \rightarrow 0 \\
m \rightarrow 1 \\
p \rightarrow 0 \\
s \rightarrow 1
\end{array}\right]} & \rightarrow\left[\begin{array}{l}
j \rightarrow 1 \\
b \rightarrow 0 \\
m \rightarrow 1 \\
p \rightarrow 0 \\
s \rightarrow 0 \\
s \rightarrow 0
\end{array}\right] \\
{\left[\begin{array}{l}
b \rightarrow 1 \\
m \rightarrow 0 \\
p \rightarrow 0 \\
s \rightarrow 1
\end{array}\right]} & \rightarrow\left[\begin{array}{l}
j \rightarrow 0 \\
b \rightarrow 0 \\
m \rightarrow 0 \\
p \rightarrow 0 \\
j \rightarrow 1 \\
b \rightarrow 0 \\
s \rightarrow 1 \\
s \rightarrow 1 \\
p \rightarrow 1 \\
s \rightarrow 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{l}
j \rightarrow 1 \\
b \rightarrow 0 \\
m \rightarrow 1 \\
p \rightarrow 0 \\
s \rightarrow 0
\end{array}\right]
\end{array}\right]
$$

FLST 2009/2010 © Manfred Pinkal, Saarland University

Example

John is a talented piano-player
 \Rightarrow talented(piano-player)(john)

[[talented(piano-player)(john)]] $\mathrm{M,g}=$
$[[$ talented (piano-player) $\left.)]]^{\mathrm{M}, \mathrm{g}}([\text { jiohn }]]^{\mathrm{M}, \mathrm{g}}\right)=$
[[talented]] ${ }^{\mathrm{M}, \mathrm{g}}\left(\left[\right.\right.$ [piano-player]] $\left.\left.{ }^{\mathrm{M}, \mathrm{g}}\right)([\text { [john }]]^{\mathrm{M}, \mathrm{g}}\right)=\mathrm{V}_{\mathrm{M}}$
$\mathrm{V}_{\mathrm{M}}($ talented $)\left(\mathrm{V}_{\mathrm{M}}(\right.$ piano-player $\left.)\right)\left(\mathrm{V}_{\mathrm{M}}(\right.$ john $\left.)\right)$

Example continued:

FLST 2009/2010 © Manfred Pinkal, Saarland University

Example continued:

FLST 2009/2010 © Manfred Pinkal, Saarland University

Example continued:

FLST 2009/2010 © Manfred Pinkal, Saarland University

