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An example model structure 
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•! An interpretation function [[  ]]M,g recursively assigns semantic values 

[[ ! ]]M,g to all expressions ! with respect to a model structure and a 

variable assignment g.  

•! Interpretation of terms: 

  [[ c ]]M,g = VM(c) for all individual constants c 

  [[ x ]]M,g = g(x)  

•! Interpretation of atomic expressions: 

   [[ R(t1, ..., tn) ]]M,g = 1  iff ([[t1]]M,g ,..., [[tn]]M,g ) ! VM(R) 

   [[ t1 = t2 ]]M,g = 1  iff  [[t1]]M,g = [[t2]]M,g 

Interpretation of Atomic Formulae 
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 [[ ¬" ]]M,g = 1  iff  [[ " ]]M,g = 0  

 [[ " ! # ]]M,g = 1  iff  [[ " ]]M,g = 1 and [[ # ]]M,g = 1 

 [[ " " # ]]M,g = 1  iff  [[ " ]]M,g = 1 or [[ # ]]M,g = 1 

 [[ " ! # ]]M,g = 1  iff  [[ " ]]M,g = 0 or [[ # ]]M,g = 1  

 [[ " ↔ # ]]M,g = 1  iff  [[ " ]]M,g = [[ # ]]M,g  

•! Connectives in predicate logic are truth-functional: Their truth-value 

is completely determined by the truth-values of their constituent 

clauses. 

•! The interpretation of connectives can be represented by truth-

tables. 

Interpretation of connectives 
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Truth Tables for Connectives 

A ¬A 

0 1 

1 0 

A B (A!B) 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

A B 
(A"B

) 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

A B (A!B) 

0 0 1 

0 1 1 

1 0 0 

1 1 1 

A B (A!B) 

0 0 1 

0 1 0 

1 0 0 

1 1 1 
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•! A preliminary formulation of a general interpretation function for 

quantified formulae: 

 [["xA]]M,g = 1 iff  

  there is at least one variable assignment g’ such that [[A]]M,g’ = 1 

 [[#xA]]M,g = 1 iff  

   [[A]]M,g’ = 1 for all variable assignments g’. 

Quantifier Interpretation-!
Preliminary! 
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 “Bill works”: Truth conditions 

•! Input sentence is: “Bill works”  

•! Semantic construction returns the formula  work(bill) 

•! Predicate logic interpretation gives the truth conditions: 

  [[work(bill)]]M,g = 1   

  iff  [[bill]]M,g ! VM (work) 

  iff  VM (bill) ! VM(work)   

•! “work(bill)” is true in a model structure M iff the object denoted by 

“bill” in M is member of the set denoted by “work” in M. 

Note that the computation is valid irrespective of the choice of a 

special variable asignment function. 
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 “Bill works”: Truth values 

[[work(bill)]]M,g = 1   iff    VM (bill) ! VM(work) 

Let M=M1:     Let M=M2:  

 VM1 (bill) ! VM1(work),   VM2 (bill) $ VM2(work),  

 so [[work(bill)]]M1,g = 1   so [[work(bill)]]M2,g = 0  

            student 

teacher 

work 

bill 

mary 

M2 

student 

teacher 

work 

bill 

mary 

M1 
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 “Every student works”: Truth conditions 

•! “Every student works”  # #x(student(x) ! work(x)) 

•! [[#x(student(x) ! work(x))]]M,g = 1   

  iff  [[student(x) ! work(x)]]M,g' = 1 for every variable assignment g' 

       [[student(x) ! work(x)]]M,g' = 1  

       iff [[student(x)]]M,g' = 0    or  [[work(x)]]M,g' = 1  

       iff [[x]]M,g' $ VM (student) or  [[x]]M,g' ! VM (work) 

           iff g'(x) $ VM (student) or  g'(x) ! VM (work) 

•! #x(student(x) ! work(x))  is true in M iff for every variable 

assignment g': g'(x) $ VM (student) or  g'(x) ! VM (work)   

 Note that again the computation is valid irrespective of the choice of a 

special variable assignment function g: This time because all variables 

occuring in the original formula are bound by the universal quantifier, the 

assignment g is overwritten (by g') during interpretation. 
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“Every student works”: Truth conditions!
continued 

•! #x(student(x) ! work(x))  is true in M iff for every variable 

assignment g': g'(x) $ VM (student) or  g'(x) ! VM (work) 

•! In other words: for every variable assignment g':  

  If g'(x) ! VM (student), then g'(x) ! VM (work) 

•! Which is equivalent to saying that: for every a ! UM: 

  If a ! VM (student), then a ! VM (work) 

•! Which again is equivalent to: VM (student) % VM (work) 

Thus: 

•! #x(student(x) ! work(x))  is true in M iff  VM (student) % VM (work) 
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“Every student works”: Truth values 

[[#x(student(x) ! work(x))]]M,g = 1 iff  VM (student) % VM (work) 

Let M=M1:     Let M=M2:  

VM1 (student) % VM1 (work),   VM2 (student) & VM2(work),  

so [[#x(student(x)!work(x))]]M1,g =1  so [[#x(student(x)!work(x))]]M2,g =0

   

            student 

teacher 

work 

bill 

mary 

M2 

student 

teacher 

work 

bill 

mary 

M1 
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Truth, Satisfaction, Entailment 

•! A formula A is true in model structure M  

  iff [[A]]M,g  = 1 for every variable assignment g.  

•! A formula A is valid (' A)  

–! iff A is true in every model structure. 

•! A set of formulas " entails formula A (" ' A) iff A is true in in every 

model structure M in which all A ! " are true. 

 If all A $ " are true in a model structure M, we also say that M 

satisfies (or: simultaneously satisfies) ". 
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Computing Entailment 

•! Does  " = {student(bill), #x(student(x) ! work(x))} entail work(bill) ? 

•! student(bill), #x(student(x) ! work(x)) ' work(bill)  ? 

•! For every M :  

 student(bill) is true in M    iff VM (bill) ! VM(student) 

 #x(student(x) ! work(x)) is true in M iff  VM (student) % VM (work) 

•! From  VM (bill) ! VM(student) and VM (student) % VM (work), it follows that  

 VM (bill) ! VM(work)   (basic set-theoretic law) 

•! Now, VM (bill) ! VM(work) is just the truth condition for work(bill).  

•! Therefore: In every model structure M satisfying student(bill) and 

#x(student(x)!work(x)), the formula work(bill) is true:   

 Entailment holds. 
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Entailment and Deduction 

•! We just have proved: 

 student(bill), #x(student(x) ! work(x)) ' work(bill) 

•! We did this independent of the choice of non-logical constants. Thus, 

the result can be generalized to arbitrary individual constants b and one-

place predicates F, G: 

 F(b), #x(F(x) ! G(x)) ' G(b) 

•! On the basis of this result, we can safely use the deduction rule: 

 F(b), #x(F(x) ! G(x)) ! G(b)  (one of the Aristotelian syllogisms). 

•! Whenever we see formulas of the form F(b) and #x(F(x) ! G(x)) in a 

database, we can apply the rule and add G(b), without doing any 

semantic interpretation. 

FLST 2009/2010 © Manfred Pinkal, Saarland University 15 

Deduction Calculi 

•! Computing entailment and other logical concepts through 

semantic interpretation is inefficient and in many cases 

infeasible. 

•! Deduction calculi (or proof theoretic systems) provide a 

strictly syntactic way of checking entailment, through 

rewrite of logical formulae.  

•! Formula A is derivable (deducible) from a set of formulas 

" (" ! A) in a given deduction system, iff one can obtain A 

starting from ", by using deduction rules and possibly 
axioms of that deduction system.  
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Soundness and Completeness 

•! Truth-conditional interpretation of the logical formalism 
enable us to determine whether some given deduction 
system is  
–! sound, i.e., derives only those formula A from a set of premisses " 

which are entailed by ". 

–! complete, i.e., allows to derive all formulae entailed by ". 

•! In short: 
–! Soundness: If " ( A, then " ' A. 

–! Completeness: If " ' A, then " ( A. 

•! Sound and complete deduction systems derive all and 
only the truth-conditionally correct entailments. 
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A simple Deduction Example 

•! Actually, rules used in the standard deduction calculi (and proved to be sound 

or correct) are even more general. 

•! The following simple derivation uses the rules of Universal Instantiation and 
Modus Ponens, which in combination have the same effect as the syllogism 

above. 

(1) #d (student(d)$work(d))   Premise 
      

(2) student(bill)$work(bill)  Universal Instantiation:#xA(A [x/a] 

(3) student(bill)   Premise 

(4) work(bill)    Modus Ponens: A, A$B ( B (2), (3) 
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Theorem Provers 

•! The problem of FOL entailment checking is very hard: It is 
even undecidable. 

•! However, there are automated deduction systems 
available (called theorem provers, because the original 
motivation was mathematical theorem proving), which 
have been optimized through the decades, and have 
become very efficient. 

•! So, efficiency is not the problem ...  
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The Story 

•! Modelling natural-language inference as deduction in a framework of 

truth-conditionally interpreted logic appears intuitive and 

straightforward. 

•! But: Logical methods are expensive and lack robustness and 

coverage. 
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Problems with logic-based inference 

Modelling of inference  with logical deduction 

•! requires full translation of natural-language text into precise 
first-order representations 

•! requires additional axioms encoding lexical-semantic and 
common-sense knowledge 

•! requires special techniques to process common-sense 
knowledge. 
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Translating text to FOL – Good News 

•! Principle of compositionality (“Frege’s Principle”): The meaning 
of a complex expression (a sentence) is determined by the 
meanings of its parts (its words) plus syntactic information. 

•! The basic task of semantic composition or semantic 
construction has been solved by type-theoretic semantics 
(typed lambda-calculus, Montague grammar). 

•! Wide-coverage grammars are available, which provide deep 
syntactic information (e.g., in the HPSG or LFG framework). 

•! These grammar frameworks also provide efficient 
implementations of the semantic composition process, in part 
using first-order unification. 
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Basic Semantic Construction 

S 

NP VP 

V NP 
John 

likes    Mary 

like'(_,_) mary' 

john' 

like'(_,mary') 

like'(john',mary') 
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Semantic Costruction using !
%-conversion 

•! Every student works. S 

 (%G#x(student(x)$ G(x)))(work) : t 

 & #x(student(x)$ work(x)) : t 

NP 

(%F%G#x(F(x)$ G(x)))(student) : <<e,t>,t> 

 & %G#x(student(x)$ G(x)) : <<e,t>,t> 

every 

VP 

work : <e,t> 

VP 

work : <e,t> 

works 

N 

student : <e,t> 
Det 

 %F%G#x(F(x)$ G(x)) : <<e,t>,<<e,t>,t>> 

student 
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A more complex example 

Premise: 

•! Several airlines polled saw costs grow more than expected, 
even after adjusting for inflation 

Hypothesis: 

•! Some companies reported cost increases. 
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A more complex example 

Several airlines polled saw costs grow more than expected. 

%severalx(airline(x) " %y(poll(y,x) " see(x, %z%d(costs(z) " 
degree(d) " grow(z,d) "%d’(degree(d’) " expect(x, grow(z,d’)) " 
d’>d))) 

%severalx(airline(x) "  
     %y(poll(y,x) "  
            see(x, %z%d(costs(z) " 

             degree(d) " 
             grow(z,d) " 

            %d’(degree(d’) "  
         expect(x, grow(z,d’)) " 
          d’>d))))) 
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Davidsonian Event Semantics 

John kicked Bill 

•! Standard Predicate-Logic Representation, 1 argument position 
per syntactic complement: 
     kick(john, bill) 

•! Davidsonian Representation, 1 additional existentially bound 
event argument : 
     %e kick(e, john, bill) 

•! Neo-Davidsonian Representation: Event Verbs are represented 
by 1-place predicates + thematic role information encoded in 2-
place relations: 
           %e (kick(e) " agent(e, john) " patient(e, bill)) 
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A more complex example 

Several airlines polled saw costs grow more than expected. 

%several%y %z%e1%e2%e3%e4%e5%d%d’  (airline(x)  

  " poll(e1) " agent(e1,y) " patient(e1,x)  

  " see(e2) " agent(e2,x) " patient(e2, e3)  

  " grow(e3) " costs(z) " agent(e3,z) " degree(e3,d) 

  " expect(e4) " agent(e4,x) " patient(e4, e5) 

   " grow(e5) " agent(e5,z) " degree(e5,d’) 

  " d’>d) 
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Translating text to FOL – Bad News 

•! Full translation of natural-language text into precise logical 
representations is tremendously difficult.  

•! The basic semantic construction task is a challenge, but 
doable. Two related tasks are really hard: 

•! Semantic Resolution: Finding the contextually appropriate 
reading for natural-language sentence, which typically comes 
with a vast number of possible readings. 

•! Extending (and interpreting!) the representation framework to 
cover all “ontologically difficult” cases (which abound in every 
ordinary newspaper text). 
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The Knowledge Bottleneck 

•! Inference typically requires additional axioms encoding 
lexical-semantic and common-sense knowledge.  

•! Examples: 

 Premise: Several airlines polled saw costs grow more than expected, 
even after adjusting for inflation 
 Hypothesis: Some companies reported cost increases. 
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The Knowledge Bottleneck 

•! Inference typically requires additional axioms encoding 
lexical-semantic and common-sense knowledge.  

•! Examples: 

 Premise: Several airlines polled saw costs grow more than expected, 
even after adjusting for inflation 
 Hypothesis: Some companies reported cost increases. 
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The Knowledge Bottleneck 

•! Inference typically requires additional axioms encoding 
lexical-semantic and common-sense knowledge.  

•! Examples: 

 Premise: Several airlines polled saw costs grow more than expected, 
even after adjusting for inflation 
 Hypothesis: Some companies reported cost increases. 

 Premise:  Security authorities have declared a state of maximum 
emergency in Guatemala, which is located directly in the path of the 
hurricane. 
 Hypothesis: There is a state of maximum emergency in Guatemala 
because of the hurricane. 
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The Knowledge Bottleneck 

•! Inference typically requires additional axioms encoding 
lexical-semantic and common-sense knowledge.  

•! Large lexical-semantic resources are available: 
–! WordNet provides knowledge about semantic relations, in 

particular the hyponymy or sub-concept relation like airline – 
company 

–! FrameNet provides knowledge of the kind that relates the 
constructions "costs grow" and "cost increases"  

•! Wide-coverage common-sense knowledge bases are 
missing. 
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Default Knowledge 

•! Common-sense knowledge is typically uncertain, only valid by 
default. An example: 

•! From Tweety is a bird 

 we infer Tweety can fly as a typical property of birds. 

 But: Inference holds only in the absence of more specific 
contradictory knowledge like Tweety is a chicken. 

 Learning that Tweety is a chicken has the effect that the inference 
must be removed 

•! Logical inference is generally monotonic. Knowledge can be added, 
but never removed. 

•! To model inference with uncertain knowledge, we have to use special 
systems for non-monotonic reasoning. 
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Problems with logic-based inference 

•! No success stories from language technology 
applications 

•! Poor performance in modeling natural-language inference 
mechanisms (robustness, coverage) 

•! Is logic an appropriate basis to represent meaning and 
model inference, after all? 
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Textual Inference 

... also called “textual entailment”, as an alternative to the logic-
based inference concept. 

„We say that T entails H if the meaning of H can be inferred from the  
meaning of T, as would typically be interpreted by people. This  
somewhat informal definition is based on (and assumes) common  
human understanding of language as well as common background  
knowledge.”"

 Dagan, Glickmann, Magnini, RTE 2004 Workshop Proceedings"
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Textual Inference 

36 

Premise/ Text Hypothesis 

SRText SRHypothesis 

Semantic  

Interpretation 

' 

Logical Entailment 

' 

Textual Inference 
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Shallow Inference Checking 

Dolphins are mammals, not fish.  

They are warm blooded like man,  
and give birth to one baby called 

a calf at a time. At birth a  
bottlenose dolphin calf ... 

Dolphins are mammals. 

#d (dolphin(d)$mammal(d) '¬fish(d)) #d (dolphin(d)$mammal(d)) 

Semantic  

Interpretation 

' 

Logical Entailment: " 

' 
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The Story 

•! Modelling natural-language inference as deduction in a framework of 

truth-conditionally interpreted logic appears intuitive and 

straightforward. 

•! But: Logical methods are expensive and lack robustness and 

coverage. 

•! Corpus-based statistical methods for modelling inference are 

inexpensive and have no coverage problem. 

 Basic idea: Approximating inference by similarity between H and P. 
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Word Overlap 

String match: 

P: Dolphins are mammals, not fish. 

H: Dolphins are mammals. 

Word Overlap: 

P: William H. Seward served as Secretary of State under President 
Abraham Lincoln. 

H: William H. Seward  was Lincoln's Secretary of State 
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Word Overlap 

String match: 

P: Dolphins are mammals, not fish. 

H: Dolphins are mammals. 

Word Overlap: 

P: William H. Seward served as Secretary of State under President 
Abraham Lincoln. 

H: William H. Seward  was Lincoln's Secretary of State 

P-H-relatedness:  # of words in H occurring in P 

     length of H 


